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Abstract—Software containers are changing the way dis-

tributed applications are executed and managed on cloud com-

puting resources. Interestingly, containers offer the possibility

of handling workload fluctuations by exploiting both horizontal

and vertical elasticity “on the fly”. However, most of the existing

control policies consider horizontal and vertical scaling as two

disjointed control knobs. In this paper, we propose Reinforce-

ment Learning (RL) solutions for controlling the horizontal

and vertical elasticity of container-based applications with the

goal to increase the flexibility to cope with varying workloads.

Although RL represents an interesting approach, it may suffer

from a possible long learning phase, especially when nothing

about the system is known a-priori. To speed up the learning

process and identify better adaptation policies, we propose RL

solutions that exploit different degrees of knowledge about the

system dynamics (i.e., Q-learning, Dyna-Q, and Model-based).

We integrate the proposed policies in Elastic Docker Swarm,

our extension that introduces self-adaptation capabilities in the

container orchestration tool Docker Swarm. We demonstrate the

effectiveness and flexibility of model-based RL policies through

simulations and prototype-based experiments.

Index Terms—Reinforcement Learning, Elasticity, Self-

adaptation, Container, Docker

I. INTRODUCTION

The fast increasing adoption of container technologies
calls for effective deployment and management strategies
for containerized applications, also addressing their run-time
adaptation [1]. Moreover, the ability of cloud computing to
provide resources on demand encourages the development of
elastic applications, which can be adapted in face of chang-
ing working conditions (e.g., variable workload). Containers
allow to easily adapt the application deployment through
horizontal and vertical scaling. Horizontal elasticity allows
to increase (scale-out) and decrease (scale-in) the number
of application instances (e.g., containers). Vertical elasticity
allows to increase (scale-up) and decrease (scale-down) the
amount of computing resources assigned to each application
instance. Most of the existing solutions consider either hori-
zontal (e.g., [2]) or vertical elasticity (e.g., [3], [4]). By fully
exploiting elasticity, an application can more quickly react
to small workload variations, through fine-grained vertical
scaling, as well as to sudden workload peaks, through hor-
izontal scaling. Nevertheless, so far only a limited number of
works has explored the benefits of combining the two elasticity
dimensions for container-based applications (e.g., [5]).

In this paper, we propose Reinforcement Learning (RL)
techniques for adapting at run-time the deployment of

container-based applications by means of horizontal and ver-
tical elasticity. Differently from the popular threshold-based
approaches used to drive elasticity (e.g., [3], [6]), we aim to
design a flexible approach that can customize the adaptation
policy without the need of manually tuning various configura-
tion knobs. RL refers to a collection of trial-and-error methods
by which an agent can learn to make good decisions through
a sequence of interactions between the controlled system and
the environment. As such, RL allows to express what the
user aims to obtain, instead of how it should be obtained
(as required by threshold-based policies). The adaptive nature
of RL makes it very appealing to devise auto-scaling Cloud
policies (e.g., [2], [7], [8]); within this context, RL approaches
have been mostly applied to control horizontal elasticity of
virtual machines (VMs). One of the main issues with RL
policies is the possibly long learning phase, which is especially
experienced when the algorithm assumes that nothing about
the system dynamics is known a priori (model-free learning).
An approach to boost the learning process is to provide the
learner with basic knowledge about its environment (model-

based learning). Therefore, together with the model-free Q-
learning and the Dyna-Q algorithm [9], we propose a novel
model-based RL approach that exploits what is known or can
be estimated about the system dynamics to self-control the
horizontal and vertical elasticity of container-based applica-
tions. We provide a general formulation that can take multiple
deployment goals properly weighted into account (i.e., to
minimize application performance penalty, adaptation cost,
and resource cost) and be integrated in container orchestration
tools. To show the benefits of our solution, we integrate it in
Docker Swarm, thus realizing Elastic Docker Swarm (EDS),
which extends Docker Swarm with self-adaptation capabilities.
Resorting on a decentralized MAPE control loop [10], EDS
can adapt the deployment of container-based applications at
run-time in decentralized manner.

The main contributions of this paper are as follows. First, we
design RL algorithms for controlling elasticity of container-
based applications using a model-based RL approach. For sake
of comparison, we also design approaches based on Q-learning
and Dyna-Q algorithms (Sections III-IV). Second, we present
a prototype implementation of the designed control policies in
EDS (Section V), our extension of the well-known orchestra-
tion tool Docker Swarm. Third, we extensively evaluate the
proposed solutions by means of simulations and prototype-
based experiments (Section VI). In particular, we show the
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flexibility and efficacy of using the proposed model-based RL
solution with respect the other elasticity control policies.

II. RELATED WORK

Cloud applications can be long-running and subject to
varying workloads. Software containers enable to accordingly
adapt the applications deployment at run-time, so to preserve
their performance. We can classify the existing research works
according to: (1) the scope, (2) the deployment goals, and (3)
the actions and methodologies used to adapt the deployment.

To identify the scope, we observe that elasticity actions
can be applied either at the infrastructure level [11] or at the
application level [12]. At the infrastructure level, the elasticity
controller changes the number of computing resources, usually
by acquiring and releasing VMs, e.g., [2], [8], [13]. At
the application level, the controller adjusts the computing
resources directly assigned to the application (e.g., changing
its parallelism degree [3], [12], [14]). A few solutions inte-
grate the elasticity controller within the application code, i.e.,
embedded elasticity [11]; having no separation of concerns,
the application itself should also implement mechanisms and
policies steering the adaptation. Conversely, most research
efforts use an external controller to carry out the adaptation
actions (e.g., [2], [6]); this approach improves software mod-
ularity and flexibility. To exploit such benefits, we propose an
external controller to manage horizontal and vertical elasticity
of distributed containerized applications.

The elasticity of containers (and VMs) is carried out in
order to achieve different objectives: to improve application
performance (e.g., [6]), load balancing and resource utilization
(e.g., [15], [16]), energy efficiency (e.g., [17]), and to reduce
the deployment cost (e.g., [3], [5], [12]). Few works (e.g., [18])
consider a combination of deployment goals, as we also do.

The actions that control the deployment of container-based
applications include the placement of containers on the un-
derlying computing nodes, their horizontal or vertical scaling,
and their migration (e.g., [19]). Elliott et al. [19] present a
novel approach to container management that enables the rapid
live migration of stateful containers between hosts belonging
to different cloud infrastructures. When containers are placed
on VMs, a second level of deployment can entail the VM
allocation onto the physical computing resources. Most of the
works consider a single level of deployment (e.g., [3], [12],
[18]), while few works solve a multi-level problem [5], [6].
In this paper, we consider only a single level of deployment
and exploit elasticity at the containers level.

To determine or adapt the deployment of container-based
applications, the existing approaches recur to two main
methodologies: mathematical programming and heuristics.
Mathematical programming approaches consider the initial
placement of containers (e.g., [16], [18]) as well as their run-
time deployment adaptation (e.g., [5], [12], [15]). Differently
from this paper and [5], the above works do not take into
account the adaptation cost, i.e., the performance penalty
resulting by the deployment reconfiguration. We can classify
the mostly used heuristics in: custom solutions (e.g., [16],

[18]), threshold-based (e.g., [3], [6]) and RL-based solutions.
Threshold-based policies represent the most popular approach
to scale containers at run-time, as well as for the cloud
infrastructure layer. Orchestration frameworks that support
container scaling (e.g., Kubernetes, Docker Swarm, Amazon
ECS) usually rely on best-effort threshold-based policies based
on some load metrics (e.g., CPU utilization). However, to
be effective threshold-based policies need to properly set the
threshold parameters, which may require some knowledge
of the application resource consumption. As such, setting
these thresholds can result in a cumbersome task. To identify
suitable thresholds, Barna et al. [6] estimate performance
metrics exploiting a layered queuing network model of the
system. Vertical elasticity solutions for cloud applications have
been explored only in few works (e.g., [3], [4]). ELASTIC-
DOCKER [3] employs a threshold-based policy to vertically
scale the container resources, while Shekhar et al. [4] propose
a data-driven and predictive framework based on machine
learning techniques in order to build a runtime model of the
system performance. Nevertheless, they do not consider the
combination of vertical and horizontal scaling.

RL represents an interesting approach for the run-time self-
management of cloud systems, where it has been mostly
applied to devise policies for VM allocation and provisioning
(e.g., [7], [8], [11]) and in more limited way to manage
containers (e.g., [2]). Arabnejad et al. [7] combine the Q-
learning and SARSA RL algorithms with a fuzzy inference
system that drives VM auto-scaling. Horovitz et al. [2] propose
a threshold-based policy for horizontal container elasticity
that uses Q-learning to adapt the scaling thresholds. Most
works have considered the classic Q-learning and SARSA
algorithms [9]; however, being model-free solution, they suf-
fer from slow convergence. To tackle this issue, Tesauro et
al. [8] propose a hybrid RL method to dynamically allocate
homogeneous servers to multiple applications. In the different
field of distributed data stream processing, a model-based RL
approach is presented in [20], which however only controls
the horizontal elasticity of the application operators. Func-
tion approximation represents another, orthogonal approach to
solve the slow convergence rate of RL: by approximating the
system state or the action-value function, the agent can explore
a reduced number of system configurations before learning a
good adaptation policy [9]. Tang et al. [21] propose a RL-based
solution for migrating containers deployed on fog computing
nodes. Interestingly, to deal with the large number of system
states, the authors integrate a deep neural network within
the Q-learning algorithm. Differently from these works, we
propose a novel model-based RL policy that exploits system
knowledge, so to reduce the learning phase and improve the
adaptation policy quality. Moreover, we investigate the benefits
of jointly exploiting vertical and horizontal elasticity to adapt
at run-time the application deployment.

III. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a very general application model, where the
application is a black-box entity that carries out specific tasks



(e.g., perform computation, access data sets). To properly
process increasing incoming workloads, multiple application
instances can be created and executed in parallel. Each in-
stance works autonomously and processes a subset of the
incoming requests. The application exposes requirements on
its response time, expressed in terms of a target response
time that should not be exceeded (i.e., Rmax). To simplify the
application deployment and run-time management, software
containers can be used (e.g., Docker).

At run-time, the application can be subject to varying
workloads. To meet its performance requirement, the amount
of computing resources granted to the application should
be dynamically changed in an efficient way. To this end,
we can exploit both vertical and horizontal elasticity, which,
nonetheless, can introduce performance penalties (e.g., down-
time), caused by the enactment of the adaptation actions. The
elasticity of the container-based application should be properly
driven so to guarantee the application performance, while
minimizing resource wastage, and adaptation costs.

IV. HORIZONTAL AND VERTICAL ELASTICITY WITH RL
RL approaches aim to learn the optimal adaptation strategy

through direct interaction with the system [9]. RL strategies
aim to learn what to do (i.e., how to map situations to actions),
so to minimize a numerical cost signal. One of the challenges
that arises in RL is the trade-off between exploration and
exploitation. To minimize the obtained cost, a RL agent must
prefer actions, tried in the past, that it found to be effective
(exploitation). However, to discover such actions, it has to
explore new actions (exploration).

For each application, we consider a RL agent that is in
charge of adapting at run-time the application deployment with
the aim of minimizing a long-term cost.

The RL agent interacts with the application in discrete time
steps. At each time step, the agent observes the application
state and performs an action. One time step later, the ap-
plication transits in a new state, causing the payment of an
immediate cost. Both the paid cost and the next state transition
usually depend on external unknown factors. To minimize the
expected long-term cost, the agent estimates the so-called Q-
function. It consists in Q(s, a) terms, which represent the
expected long-term cost that follows the execution of action
a in state s. The Q-function is used to take scaling decisions:
given the system state s, the agent performs the action a that
minimizes Q(s, a). By observing the actual incurred costs,
Q(s, a) is updated over time, thus improving the scaling
policy. The different RL approaches adopt distinct strategies
for estimating the expected long-run cost.

We define the application state at time i as si = (ki, ui, ci),
where ki is the number of containers (i.e., application in-
stances), ui is the CPU utilization, and ci is the CPU share
granted to each container. We denote by S the set of all
the application states. Even though the CPU utilization (ui)
and CPU share (ci) are real number, we discretize them by
assuming that ui 2 {0, ū, ..., Lū} and ci 2 {c̄, 2c̄, ...,Mc̄},
where ū and c̄ are suitable quanta. We also assume that the

number of containers k ranges in the interval {1, 2, ...,Kmax},
where Kmax is the maximum application replication degree.

For each state s 2 S , we have a set of feasible adaptation
actions A(s) ✓ A, where A is the set of all actions. We pro-
pose two different action models: the 5-action model and the
9-action model. In the 5-action model, we can either perform
horizontal or vertical scaling, while in the 9-action model we
can jointly perform the two dimensions of scaling. Formally,
the 5-action model consists of A = {�r,�1, 0, 1, r}, where
±r represents a vertical scaling (i.e., +r to add CPU share and
�r to remove CPU share), ±1 represents a horizontal scaling
(i.e., +1 to scale-out and �1 to scale-in), and a = 0 is the do

nothing decision. Alternatively, the 9-action model consists of
A = {�1, 0,+1} ⇥ {�r, 0, r}. Obviously, not all the actions
are available in any application state: e.g., in 5-action model,
if the state s has k = Kmax and c = Mc̄, the available actions
are A(s) = {�r,�1, 0} (i.e., we cannot perform further scale
up and out operations).

To each triple (s, a, s0) we associate an immediate cost
function c(s, a, s0), which captures the cost of carrying out
action a when the application state transits from s to s

0.
The RL agent wants to minimize the cost so to (i) reduce
the number of adaptations, (ii) keep satisfying application
performance, and (iii) limit resource wastage. For this purpose,
the cost function includes three different contributions:

• the adaptation cost cadp, which accounts for the ap-
plication unavailability following an adaptation. For the
purpose of learning the adaptation policy, it suffices to
consider a simplified model that introduces a constant
penalty for vertical scaling actions. Indeed, horizontal
scaling decisions do not compromise the application
availability, because they can be performed by simply
starting/terminating containers;

• the performance penalty cperf , paid whenever the appli-
cation exceeds the response time bound Rmax;

• the resource cost cres for running the application. We
assume that the cost is proportional to the number of
application instances and assigned CPU share.

We combine the different costs into a single weighted cost
function, where the different weights allow us to express the
relative importance of each cost term. Formally, we define the
immediate cost function c(s, a, s0) as the weighted sum of the
costs, normalized in the interval [0, 1]:

c(s, a, s0) = wadp
1{vertical�scaling}cadp

cadp
+

+wperf
1{R(k+a1,u0,c+a2)>Rmax}cperf

cperf
+

+wres
(k + a1)(c+ a2)cres

Kmax · cres
= wadp1{vertical�scaling} +

+wperf1{R(k+a1,u0,c+a2)>Rmax} + (1)

+wres
(k + a1)(c+ a2)

Kmax



Algorithm 1 Dyna-Q
1: Initialize Q(s, a) and Model(s, a), 8s 2 S, 8a 2 A(s)
2: while true do

3: s observe the application state
4: a select an action using the current estimate of Q
5: Observe the next state s0 and the incurred cost c
6: Update Q (s, a) using Eq. 2
7: Model(s, a) c, s0

8: for i = 0! n do

9: s random state previously observed
10: a random action previously taken in s
11: c, s0  Model(s, a)
12: Update Q(s, a) using Eq. 2
13: end for

14: end while

where 1{·} is the indicator function, wadp, wperf and wres,
wadp + wperf + wres = 1, are non negative weights for the
different costs, and R(k, u, c) is the application response time
in the state s = (k, u, c). Furthermore, we decompose action
a in terms of number of containers added/removed, a1, and
amount of CPU share increased/decreased, a2.

We consider three different RL approaches that differ for
the actual learning algorithm adopted and on the assump-
tions about the system. We first consider the simple Q-
learning algorithm; it is a model-free algorithm that requires no
knowledge of the system dynamics. Then, we present Dyna-
Q, which builds a system model on the basis of the real
experience. Furthermore, we propose a model-based approach,
which exploits the known (or estimate) system dynamics to
accordingly update the Q-function. The model-based solution
enriches RL agents with a model of the system, thus driving
the exploration actions to speed up the learning phase.

A. Q-learning

Q-learning essentially estimates the optimal Q-function,
Q

⇤, by its sample averages [9]. In this paper, we consider
the simple ✏-greedy action selection method: at any decision
step i, with probability ✏, Q-learning chooses a random ac-
tion to improve its knowledge of the application, whereas,
with probability 1 � ✏, it chooses the greedy action by
exploiting its knowledge about the application (i.e., ai =
argmina2A(si) Q(si, a)). Most of the time the ✏-greedy policy
selects the best known action for a particular state, while
it favors the exploration of sub-optimal actions with low
probability. At the end of each time slot i, Q(si, ai) is updated
as follows:

Q (si, ai) (1� ↵)Q (si, ai) + ↵


ci + � min

a02A(si+1)
Q(si+1, a

0)

�

(2)

where ↵ 2 [0, 1] is the learning rate parameter and � 2 [0, 1)
is the discount factor. Observe that (2) simply updates the
old estimate of Q with the just observed values, such as the
observed cost ci and the discounted cost expected when the
system is in si+1, that is mina02A(si+1) Q(si+1, a

0).

B. Dyna-Q

Differently from Q-learning, Dyna-Q aims to speed up the
learning process by simulating the system interaction with
the environment [9]. Algorithm 1 summarizes the Dyna-Q
learning. At run-time, Dyna-Q observes the application state
and selects an adaptation action using the estimates of Q(s, a),
as Q-learning does. At the end of the time step i, Dyna-
Q exploits a sampled model of the system, Model(s, a),
to simulate the interaction between the application and the
environment (lines 8–13). Dyna-Q updates Model(s, a) at run-
time, by storing the next state s

0 and cost c for the explored
state-action pair (s, a), see line 7. Assuming a deterministic
environment, Dyna-Q updates the Q-function using (2) and
resorting on the state-action pairs previously observed.

C. Model-Based Reinforcement Learning

As third strategy, we consider a full backup model-based

RL approach (see [9]). In the full backup approach, we rely
on a possibly approximated system model and directly use the
Bellman equation to compute the Q-function:

Q(s, a) =
X

s02S

p(s0|s, a)

c(s, a, s0) + � min

a02A(s0)
Q(s0, a0)

�
8s2S,

8a2A(s)

(3)

We replace the unknown transition probabilities p(s0|s, a) and
the unknown cost function c(s, a, s0), 8s, s0 2 S and a 2 A(s),
by their empirical estimates.

To estimate p(s0|s, a), it is sufficient to estimate the CPU
utilization transition probabilities P [ui+1 = u

0|ui = u]. In
fact, we observe that:

p(s0|s, a) = P [si+1 = (k0, u0, c0)|si = (k, u, c), ai = a]

=

8
<

:

P [ui+1 = u0|ui = u] k0 = k + a1 ^
^ c0 = c+ a2

0 otherwise
(4)

where a = (a1, a2) is the scaling action, defined in term of
the updated number of containers (a1) and updated amount of
CPU share (a2). Since u takes value in a discrete set, we will
write Pj,j0 = P [ui+1 = j

0
ū|ui = jū], j, j0 2 {0, . . . , L} for

short. Let ni,jj0 be the number of times the CPU utilization
changes from state jū to j

0
ū, in the interval {1, . . . , i}, j, j0 2

{0, . . . , L}. At time i, the transition probability estimates are
dPj,j0 = ni,jj0/

PL
l=0 ni,jl, and, via (4), we estimate p̂(s0|s, a).

For the estimates of the immediate cost c(s, a, s0), we
observe that it can be written as the sum of two terms,
respectively named as the known and the unknown cost:

c(s, a, s0) = ck(s, a) + cu(s
0) (5)

The known cost ck(s, a) depends on the current state and
action; in our case, it accounts for the adaptation and resource
costs. The unknown cost cu(s0) depends on the next state s

0.
As in (1), cu(s0) accounts for the performance penalty. As
we assume that the application model is not known, we have



Algorithm 2 Model-Based Reinforcement Learning Update

1: Update estimates dPj,j0 and ĉu,i(si)
2: for all s 2 S do

3: for all a 2 A(s) do

4: Q(s, a) 
P

s02S p̂(s0|s, a)·
5: ·

⇥
ĉ(s, a, s0) + �mina02A(s0) Q(s0, a0)

⇤

6: end for

7: end for

to estimate cu(s0) online. Therefore, at time i, the RL agent
observes the immediate cost ci and estimates cu,i(s0) as:

cu,i(s
0) = ci � ck,i(s, a)

We use the sample value cu,i(s0) to update the estimate of the
unknown cost ĉu,i(s0), as follows:

ĉu,i(s
0) (1� ↵)ĉu,i�1(s

0) + ↵cu,i(s
0) (6)

The estimate of the unknown cost ĉu,i(s0) is then used to
compute the cost of applying a in s according to (5). Given a
state s = (k, u, c), we can heuristically assume that in the next
state s0 = (k0, u0

, c
0) the expected cost due to Rmax violation is

not lower when the number of containers is reduced, the CPU
utilization increases, and/or the CPU share is reduced. Vice
versa is also true. Therefore, while updating ĉu,i(s), 8s 2 S ,
we can enforce the following properties:

ĉu,i(s)  ĉu,i(s
0) 8k � k

0
, u  u

0
c � c

0

ĉu,i(s) � ĉu,i(s
0) 8k  k

0
, u � u

0
, c  c

0

Algorithm 2 summarizes the model-based RL update steps.

V. DOCKER-BASED IMPLEMENTATION

A. Docker Swarm

Docker is an open-source platform to create, deploy, and
manage containerized applications. A Docker container is an
instance of a container snapshot (or image), which contains the
application together with all the data needed for its execution
(e.g., dependencies, configuration file). Docker comes with a
Docker Engine that allows to build and run containers, using
REST APIs or a command-line interface. Docker allows to
configure a container with specific resource quota, which limits
the amount of (CPU and memory) resources the container
can use on the hosting machine. At run-time, the resource
quota can be updated, thus realizing vertical elasticity. To
easily allocate multiple containers on distributed computing
resources, Docker integrated the swarm mode with the Docker
Engine from version 1.12 [22]. It enables to cluster Docker-
enabled nodes and simplify the execution of containers across
multiple nodes. The Docker Swarm architecture follows the
master-workers pattern. The master deals with the orchestra-
tion and scheduling of containers. It also manages the swarm
by accepting other nodes as workers. A worker provides its
computational capability to the swarm, enabling the distributed
execution of containers. Docker Swarm uses its scheduling
capabilities to allocate containers to the workers. The default
scheduling strategy is spread, which distributes containers so
to optimize for the node with the least number of containers.

Fig. 1: Architecture of Elastic Docker Swarm

B. EDS: Elastic Docker Swarm

To enable autonomic capabilities in Docker, we propose
Elastic Docker Swarm (for short, EDS). It extends the
Docker Swarm architecture so to introduce the MAPE control
loop [23]. The latter includes four main components (Monitor,
Analyze, Plan and Execute) that are responsible for the self-
adaptation functions. The Monitor collects data about the ap-
plication and the execution environment. The Analyze compo-
nent uses the collected data to determine whether an adaptation
is beneficial. If the adaptation is needed, the Plan component
determines an adaptation plan for the application, which is
enacted through the Execute component. The modularity and
the broad presence of APIs allowed us to easily integrate our
MAPE components in Docker. Being loosely coupled with
the Docker Swarm architecture, our components are general
enough and could be integrated with other orchestration tools.
We architect EDS following the master-workers pattern, used
to decentralize the MAPE control loop [10]. In particular, it in-
cludes a single master component, which runs the Analyze and
Plan phases, and multiple independent worker components,
which run the Monitor and Execute phases in a decentralized
manner. Having a single and centralized Analyze and Plan
component, the master-workers pattern can be easily equipped
with self-adaptation policies that determine when and how
an application reconfiguration should be performed. Fig. 1
represents the architecture of EDS. The decentralized Docker
Monitors and the Client realize the MAPE Monitor compo-
nent. A Docker Monitor runs on each node of the swarm; it
periodically publishes, on the message broker Apache Kafka,
information about CPU utilization of containers running on the
node. The Client collects, and periodically publishes on the
message broker, the application response time. The Container

Manager is the centralized control entity. First, it receives the
monitoring information through the message broker. Then, it
uses the RL agent to perform the Analyze and Plan phases.
Specifically, in the Analyze phase, the RL agent determines the
application state and updates the Q-function (see Section IV).
In the Plan phase, the manager uses the RL agent to identify
the scaling actions to be performed. To adapt the application
deployment, EDS runs the Execute phase, which, in its turn,
leverages on the Docker Swarm APIs. A vertical scale changes
the container configuration: this causes the unavailability of the
entire application for the time needed to enact the new config-



 0

 100

 200

 300

 400

 500

 600

 0  500  1000  1500  2000  2500  3000  3500  4000

D
a

ta
 r

a
te

 (
re

q
u

e
st

s/
s)

Simulation time

Fig. 2: Application workload used in simulation.

uration. A horizontal scale changes the number of containers
used to run the application. Although this operation should
introduce practically no downtime, performing a scale-out in
Docker Swarm introduces an adaptation cost. This depends
on the traffic routing strategy used by Docker Swarm, which
directs the application requests to the newly added instance,
even if it is not yet running. This introduces an adaptation cost
inversely proportional to the number of application instances.

VI. EXPERIMENTAL RESULTS

We thoroughly evaluate the proposed RL approaches using
simulation and EDS-based experiments.

A. Simulation Results

By means of simulations, we evaluate the proposed RL
policies with a threefold objective. First, we compare the
model-based RL approaches against the model-free approach.
Second, we investigate the benefits of using a 5-action or a 9-
action model. Third, we show the flexibility of RL approaches
that, with different cost function weights (Eq. 1), can learn
different adaptation policies, so to accordingly avoid Rmax

violations, resource wastage, or frequent adaptations.
We consider a reference application modeled as an M/D/ki

queue, because we can reasonably assume that: the application
receives random and independent (M) requests, its service time
is deterministic (D), and the number of servers is equal to
the number of containers (ki) used at the time step i. We
set the target response time Rmax = 50 ms and the service
rate µ = 200 · ci requests/s, where ci 2 (0, 1] is the amount
of CPU share. Moreover, we consider that the application
receives a number of requests that changes over time according
to the workload pattern shown in Fig. 2. This workload pattern
results by replaying the real-application data set, collected by
Chris Wrong [24], accelerated by a factor of 1800 (i.e., 30
minutes of events are replayed in 1 second).

The RL algorithms use the following parameters: discount
factor � = 0.99 and, for Q-learning and Dyna-Q, learning
rate ↵ = 0.1 and ✏ = 1/i, where i is the simulation time. To
discretize the application state, we use ū = 0.1 and c̄ = 10%.
We run the simulation on a machine with an Intel Core i7-
4700MQ (8 cores at 2.40 GHz) and 8 GB of RAM. Tables I
and II report the simulation results for the 5-action and 9-
action model, respectively.

When we consider the set of weights wperf = 0.90, wres =
0.09 and wadp = 0.01, avoiding Rmax violations is very

important. By comparing Tables I and II, we observe that, in
general, the 9-action model slows down the learning process,
because the agent should learn the impact of performing two
actions at once (e.g., scale-up and scale-out). Q-learning and
Dyna-Q obtain a similar number of Rmax violations (around
25–27%). Conversely, the model-based solution learns a better
elasticity policy that successfully controls the application with
only 2.85% of response time violations. From Table I, we can
see that the 5-action model simplifies the learning task, and all
the RL policies reduce the number of Rmax violations. With
Q-learning, the application has a response time that exceeds
Rmax for 18% of the time. Dyna-Q reduces this value to 7%.
Exploiting the system knowledge, the model-based solution
further reduces the violations to 2%.

We now consider the case when saving resources is more
important than the other objectives, i.e., wperf = 0.09,
wres = 0.90, and wadp = 0.01. Intuitively, the agent should
learn how to improve resource utilization at the expense of a
high application response time (i.e., that exceeds Rmax). We
can observe that the model-based solution successfully does it
when both the 5-action and the 9-action models are used (see
Tables I and II). The model-based solution runs the application
with 1.09 instances, on average, that can access only to 11% of
CPU resources; this represents the lowest amount of resources
assignable to the application. Run-time adaptations are also
avoided. As a consequence, the application is overloaded and
the resulting median response time is unbounded. Regardless
of the adopted action model, Q-learning and Dyna-Q struggle
to find a stable configuration (77–94% of adaptations). Fur-
thermore, although they lead to an average CPU utilization
of about 80%, they employ a higher number of containers
that can access to more resources (on average, 3 containers
allocated to 50% of computing resources). In this case, it is
not easy to capture the benefits of using 5 or 9 actions.

As third case, we balance the importance of three deploy-
ment goals, i.e., wperf = wres = wadp = 0.33. Table I shows
that the 5-action model allows to reduce the number of Rmax

violations and adaptations compared to 9-action model (Ta-
ble II). Q-learning and Dyna-Q have 19% of Rmax violations
(instead of 36–40% with 9 actions), at the expense of under-
utilizing computing resources (54–56% average resource uti-
lization, instead of 65–69% with 9 actions). Also in this case,
the model-based solution learns a better adaptation strategy,
which only slightly depends on the number of actions. With 5
actions, the model-based strategy reduces Rmax violations to
17%, with a 69% of average resource utilization. On average,
it runs the application with 2.5 containers, each of which can
use 86% of the assigned CPU. To achieve such trade-off,
this RL strategy decides to adapt the application for almost
45% of the time. From Table I, we can readily observe that
such behavior is needed to meet Rmax requirements in face
of changing workload.

Discussion. This set of experiments has shown the impor-
tance of providing system knowledge to improve the learning
task. As such, the model-based solution uses the experience
to estimate only the unknown system dynamics. Interestingly,



TABLE I: Simulation-based analysis: Application performance under different configurations of cost function weights and RL
policies, when the 5-action adaptation model is used.

Weights Policy Rmax violations Average CPU Average CPU Average number Median R Adaptations

(%) utilization (%) share (%) of containers (ms) (%)

wperf = 0.90, wres = 0.09, wadp = 0.01 Q-learning 17.87 55.83 62.84 4.49 13.57 76.06

Dyna-Q 7.12 48.66 80.21 3.88 8.97 87.98

Model-based 2.37 60.54 87.62 2.53 10.39 39.67

wperf = 0.09, wres = 0.90, wadp = 0.01 Q-learning 46.16 72.63 54.34 3.49 35.66 77.38

Dyna-Q 56.64 79.83 53.79 2.95 +1 91.45

Model-based 99.80 99.85 11.01 1.09 +1 3.25

wperf = wres = wadp = 0.33 Q-learning 19.32 55.89 68.50 4.28 11.60 71.26

Dyna-Q 19.52 53.68 73.23 3.95 9.41 84.48

Model-based 17.17 69.01 86.12 2.48 12.04 45.06

TABLE II: Simulation-based analysis: Application performance under different configurations of cost function weights and RL
policies, when the 9-action adaptation model is used.

Weights Policy Rmax violations Average CPU Average CPU Average number Median R Adaptations

(%) utilization (%) share (%) of containers (ms) (%)

wperf = 0.90, wres = 0.09, wadp = 0.01 Q-learning 27.17 62.82 61.32 3.87 15.59 88.98

Dyna-Q 25.77 63.39 62.60 3.56 15.29 92.53

Model-based 2.85 60.73 87.43 2.57 10.15 37.32

wperf = 0.09, wres = 0.90, wadp = 0.01 Q-learning 61.18 80.95 46.62 3.08 +1 89.38

Dyna-Q 62.58 81.89 46.32 3.70 +1 94.30

Model-based 99.80 99.85 11.04 1.09 +1 2.95

wperf = wres = wadp = 0.33 Q-learning 39.69 69.22 53.62 3.89 25.00 85.70

Dyna-Q 35.64 65.08 54.61 4.35 20.53 91.10

Model-based 19.50 70.75 78.35 2.56 15.16 40.29
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Fig. 3: Workload used in the prototype-based experiments.

it obtains best performance in every considered scenario. The
experiments also show that the 9-action model increases the
combination of state-actions to be evaluated, slowing down the
learning task. Nevertheless, the model-based policy success-
fully exploits the 9-action model to jointly perform vertical
and horizontal scaling and reduce the number of adaptations.

B. Prototype-based Results

Encouraged by the positive simulation results, we evaluate
the RL algorithms in a real environment. To this end, we
integrate the proposed policies in EDS. In particular, we
compare the model-based RL solution against Q-learning,
when both the 5-action and the 9-action models are considered.
Due to space limitation, we do not consider Dyna-Q, which
nonetheless introduces only a limited improvement over Q-
learning. We deploy EDS on a cluster of 4 Amazon EC2
instances with 2 vCPUs and 8 GB of RAM (i.e., t2.large).
The reference application computes upon request the sum of
the first n elements of the Fibonacci sequence (complexity

O(n2)). As shown in Fig. 3, the application receives a varying
number of requests. In this case, the incoming workload
follows the load pattern resulting by replaying the reference
data set [24] so to stress the resource usage by the application.
The application requires Rmax = 50 ms as target response
time. EDS executes the Analyze phase of the MAPE control
loop every 3 minutes. Tables III and IV report the experimental
results for the 5-action and the 9-action models, respectively;
for sake of comparison, we report in Table V the application
performance resulting by a static deployment.

We first consider the set of weights wperf = 0.90, wres =
0.09, wadp = 0.01: in this case, optimizing the application
response time is more important than saving resources; more-
over, adaptation costs are negligible. Q-learning slowly learns
how to adapt the application deployment. As we can see from
Fig. 4a and Table III, when the 5-action model is considered,
Q-learning often changes the application deployment (i.e.,
66% of the time) performing both horizontal and vertical
scaling operations. Moreover, the application response time
exceeds Rmax for 30% of the time. Taking advantage of the
system knowledge, the model-based solution reduces the num-
ber of Rmax violations to 12% (see Fig. 4b). Differently from
Q-learning, the model-based policy uses a higher number of
medium-size containers: on average, it deploys 5.11 containers
that can access to 47% of CPU (instead of 1.7 containers with
89% of CPU). In general, the model-based solution obtains
better performance than Q-learning and more quickly reacts
to workload variations (see Fig. 4). From Table IV, we can
observe that the 9-action model makes the learning process
more challenging for Q-learning, which violates Rmax for 81%
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(b) Model-based

Fig. 4: Application performance using the 5-action adaptation model and weights wperf = 0.90, wres = 0.09, wadp = 0.01.
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(b) Model-based

Fig. 5: Application performance using the 5-action adaptation model and weights wperf = 0.09, wres = 0.90, wadp = 0.01.
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Fig. 6: Application performance using the 5-action adaptation model and weights wperf = wres = wadp = 0.33.



TABLE III: Prototype-based experiments: Application performance under different configurations of cost function weights and
RL policies, when the 5-action adaptation model is used.

Weights Policy Rmax violations Average CPU Average CPU Average number Median R Adaptations

(%) utilization (%) share (%) of containers (ms) (%)

wperf = 0.90, wres = 0.09, wadp = 0.01 Q-learning 29.77 48.81 88.70 1.70 4.18 65.65

Model-based 12.10 37.35 47.34 5.11 6.11 50.81

wperf = 0.09, wres = 0.90, wadp = 0.01 Q-learning 38.21 50.87 89.19 1.54 4.24 67.48

Model-based 97.81 90.85 24.01 2.12 25959.45 61.31

wperf = wres = wadp = 0.33 Q-learning 55.06 63.55 84.43 1.48 223.35 66.46

Model-based 39.23 52.22 52.0 4.21 8.30 32.31

TABLE IV: Prototype-based experiments: Application performance under different configurations of cost function weights and
RL policies, when the 9-action adaptation model is used.

Weights Policy Rmax violations Average CPU Average CPU Average number Median R Adaptations

(%) utilization (%) share (%) of containers (ms) (%)

wperf = 0.90, wres = 0.09, wadp = 0.01 Q-learning 80.54 82.21 45.14 1.58 9738.49 93.51

Model-based 24.11 31.53 46.03 7.10 6.92 44.68

wperf = 0.09, wres = 0.90, wadp = 0.01 Q-learning 88.19 87.29 39.37 1.46 16587.03 90.55

Model-based 97.58 91.05 20.16 2.32 29654.97 59.68

wperf = wres = wadp = 0.33 Q-learning 96.77 94.07 40.40 1.49 18740.43 88.71

Model-based 33.60 60.19 36.72 4.59 18.63 28.0

TABLE V: Prototype-based experiments: Application performance resulting from different configurations of static deployment.

Policy Rmax violations Average CPU Average CPU Average number Median R Adaptations

(%) utilization (%) share (%) of containers (ms) (%)

Static with 10 containers and 100% CPU share 0.0 5.19 100.0 10.0 3.76 0.0

Static with 3 containers and 50% CPU share 0.0 29.45 50.0 3.0 4.29 0.0

Static with 2 containers and 50% CPU share 22.31 54.30 50.0 2.0 14.02 0.0

of the time (and registers 9.7 s as median response time).
Also the model-based solution increases the number of Rmax

violations by 12% with respect to the 5-action model setting.
However, the 9-action model allows to reduce the number
of the deployment reconfigurations almost by 5% for model-
based, also because this model allows both horizontal and
vertical scaling in parallel.

We now consider the case when saving resources is more
important than meeting the Rmax bound and the adaptation
costs are negligible, i.e., wperf = 0.09, wres = 0.90, wadp =
0.01. Table III and IV show that, in general, Q-learning
performs worse than model-based in terms of resource usage.
Using the 5-action model, Q-learning deploys, on average,
1.54 containers that can use up to 89% of the CPU, leading
to a low 51% of resource utilization. This is also visible in
Fig. 5a. Conversely, the model-based solution identifies an
adaptation policy that runs the application using, on average,
2.12 instances that access to 24% of the computing resources.
As shown in Fig. 5b, the model-based algorithm produces a
higher resource utilization (on average equal to 91%). Model-
based has a similar behavior even when the 9-action model
is used. On average, its resource usage is higher than in
Q-learning (91.05% and 87.29%, respectively), as also the
percentage of application response time Rmax violations. This
strictly follows from the weights configuration that clearly
prefers to save resources in the face of Rmax violations. As we
can observe from Table IV, Q-learning finds a solution that is
similar to that obtained by model-based. However, Q-learning

changes continuously the application deployment (i.e., 90.55%
of the time, instead of 59.68%).

When the different deployment goals are equally important,
i.e., wperf = wres = wadp = 0.33, the model-based solution
reduces the number of Rmax violations (39% instead of 55%
by Q-learning, under the 5-action model, and 34% instead
of 97%, under the 9-action model). Moreover, model-based
changes the application deployment less than Q-learning; as
a consequence, the application availability increases. From
Fig. 6b, we can observe that model-based prefers horizontal
scaling to vertical scaling. This depends on the definition of the
adaptation cost in EDS: changing the container configuration
(i.e., vertical scaling) is more expensive than adding new
containers (i.e., horizontal scaling). Also under this config-
uration of weights, when the 9-action model is adopted, Q-
learning registers a significant performance reduction. During
the experiment, Q-learning cannot learn a suitable adaptation
policy, resulting in a great number of reconfigurations (almost
89% of the time) and exceeding Rmax for 96.77% of the
time. Conversely, model-based obtains better performance in
both the action configurations. In particular, the model-based
solution exceeds Rmax at most 34% of the time, under the
9-action model (39% with the 5-action model). Although it is
not straightforward to draw conclusion on resource utilization,
we can easily see from Tables III and IV that model-based
identifies a trade-off configuration between those resulting
from the previously considered weights configurations.

Discussion. Overall, the prototype-based experiments con-



firm the benefits of the model-based approach. From Table III
and IV, we can appreciate the benefits of a model-based RL
algorithm also with respect to a static configuration (reported
in Table V). Although a static configuration can lead to satisfy-
ing performance for specific edge-case deployment goals, this
configuration is application-specific and not flexible, meaning
that it cannot react to sudden workload peaks or changes.
Conversely, the RL-based approach is general and dynamic,
requiring only to specify the deployment objectives to be
pursued. It allows to specify what the user aims to obtain
(through the cost function weights), instead of how it should
be obtained. Among the RL approaches, the model-based is
the most promising one, as also confirmed by the prototype-
based experiments: it finds the best adaptation strategy for all
weight and action model configurations.

We conclude by observing that the model-based solution is
more computational demanding. Indeed, each learning update
step requires to iterate over all the states, all the actions, and
all the next states (see Eq. 3). The resulting computational
complexity is O(|S|2|A|). However, given the limited number
of available actions and that many transition probabilities are
equal to 0, the complexity reduces to O(Kmaxd 1c̄ ed

1
ūe

2).

VII. CONCLUSIONS

Most existing elasticity policies resort on threshold-based
heuristics that require to express how specific goals should
be achieved. In this paper, aiming to design more general
and flexible solution, we have proposed different RL poli-
cies for controlling the elasticity of container-based applica-
tions. Specifically, we have designed and evaluated model-
free and model-based solutions, which exploit different degree
of knowledge about the system dynamics. We conducted a
thorough evaluation of the different RL approaches using
simulations and prototype-based experiments. To this end, we
have developed EDS, an extension of Docker Swarm equipped
with self-adaptation capabilities. The results have shown the
flexibility and benefits of RL solutions: while Q-learning
suffers from slow convergence time, the model-based approach
can successfully learn the best adaptation policy, according to
the user-defined deployment goals.

As future work, we will extend the proposed RL policies
to control multi-component applications (e.g., microservices)
deployed in a geo-distributed fog computing environment,
where heterogeneous computing resources communicate with
non-negligible network latencies. As regards the EDS archi-
tecture, we plan to design and integrate new decentralized
control patterns for controlling the elasticity of container-
based applications, e.g., recurring to a hierarchical control
solution [10]. Indeed, the master-workers pattern still includes
centralized components that can easily become a system
bottleneck, especially when a multitude of applications, scat-
tered in a large-scale geo-distributed environment, should be
controlled. Conversely, a hierarchical (or a fully decentralized)
approach can more efficiently control the application deploy-
ment, following the divide-et-impera principle. As such, it

represents a promising approach for controlling microservice-
based applications in fog environments.
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