
Grand Challenge: Real-time Analysis of Social Networks
Leveraging the Flink Framework

Giacomo Marciani
giacomo.marciani@gmail.com

Marco Piu
pyumarco@gmail.com

Michele Porretta
micheleporretta@gmail.com

Matteo Nardelli
nardelli@ing.uniroma2.it

Valeria Cardellini
cardellini@ing.uniroma2.it

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

ABSTRACT
In this paper, we present a solution to the DEBS 2016 Grand
Challenge that leverages Apache Flink, an open source plat-
form for distributed stream and batch processing. We de-
sign the system architecture focusing on the exploitation of
parallelism and memory efficiency so to enable an effective
processing of high volume data streams on a distributed in-
frastructure. Our solution to the first query relies on a dis-
tributed and fine-grain approach for updating the post scores
and determining partial ranks, which are then merged into a
single final rank. Furthermore, changes in the final rank are
identified so to update the output only if needed. The sec-
ond query efficiently represents in-memory the evolving so-
cial graph and uses a customized Bron-Kerbosch algorithm
to identify the largest communities active on a topic. We
leverage on an in-memory caching system to keep the largest
connected components which have been previously identified
by the algorithm, thus saving computational time.

The experimental results show that, on a portion of the
dataset large half that provided for the Grand Challenge,
our system can process up to 400 tuples/s with an average
latency of 2.5 ms for the first query, and up to 370 tuples/s
with an average latency of 2.7 ms for the second query.

CCS Concepts
•Information systems → Data streams;

Keywords
Social-network graphs, Real-time data processing, Flink

1. INTRODUCTION
Social network analysis aims at discovering and investigat-

ing social phenomena and trends through the exploitation
of methodologies and tools. With the spread diffusion of
social networks, scientific communities from different fields

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS ’16 June 20-24, 2016, Irvine, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4021-2/16/06.

DOI: http://dx.doi.org/10.1145/2933267.2933517

and commercial companies have investigated how to effec-
tively extract valuable information from the great amount
of daily produced data. An emerging activity, which is gain-
ing strategic value, is the real-time identification of com-
munities within social networks that mostly stimulate the
interest and interaction among their users. Indeed, compa-
nies often rely on these communities to conduct advertising
campaigns with focused targets. The diffusion of on-demand
computing resources (i.e., Cloud computing) and the consol-
idation of enabling technologies for real-time analytics (e.g.,
stream processing) have enriched decision-making processes
that can now be supported by data, which, for example, can
be gathered from communities, user reactions, and trending
topics. Differently from other contexts, the real-time anal-
ysis of social networks is challenging, because it requires to
handle an evolving social structure. Moreover, this structure
is usually represented by graphs, which, per se, may require
to apply algorithms with not negligible complexity. The
sixth edition of the DEBS Grand Challenge [4] focuses on
these problems and calls for applications that provide real-
time analysis of an evolving social-network graph. Specifi-
cally, an application should collect streams of social events,
such as friendships, posts, comments, likes, so to (1) deter-
mine the posts that currently trigger the most activity in
the social network, and (2) identify large communities that
are currently involved in a topic.

In this paper, we present our efficient and easily tunable
solution to the Grand Challenge. It can run on a single
node as requested for the Grand Challenge evaluation, but
we design its architecture to be executed in a distributed
environment. To this end, we rely on Apache Flink [3], an
emerging open source and scalable data stream processing
framework.

The paper is organized as follow. In Section 2 we present
the design approach of our solution and the topologies that
address the Grand Challenge queries. In Section 3 we present
some performance results. Finally, we conclude in Section 4
identifying some further improvements for future work.

2. GRAND CHALLENGE SOLUTION
The DEBS 2016 Grand Challenge poses two queries that

require to efficiently handle several entities interacting each
other (i.e., posts and comments) with the goal of discover-
ing some complex dynamics which strongly depend on the
passing of time. The design approach of our application re-
volves around two principles: parallelization and memory ef-

386

data

Query
top
rank

Figure 1: High-level architecture of our solution.

ficiency. The application incorporates two independent solu-
tions that answer the two queries. Aside the specific details,
both the solutions rely on a sequence of possibly parallel op-
erators that apply stepwise transformations to the incoming
events. Specifically, the application: (1) reads the events
from the dataset stored on a file and pushes them within the
system; (2) computes the score associated to each relevant
entity (i.e., post, comments); (3) on the basis of this score,
determines the top-k rankings with a two-step approach (be-
ing k a query-related parameter); and (4) emits the updated
top-k rankings. The meaning of score, and the way it is com-
puted, changes according to the query. For the first query,
each post receives a score resulting from all its comments;
the score provided by each comment and the score of the post
itself slowly decay with the passing of time. For the second
query, each comment receives a score depending on the size
of the community that interacts with it within a given time
window. Due to the great amount of data, computing the
score represents the critical operation; therefore, we exploit
parallelism to concurrently determine the score by working
on independent partitions of the incoming events.

To focus our effort on the application logic, we need a
high-throughput and scalable stream processing framework.
After having examined several alternatives, such as Storm1

and Spark2, we have chosen Flink [3], an open source project
maintained by the Apache Software Foundation, because it
shows promising performance with respect to other well-
known frameworks. Our application leverages some advanced
features provided by Flink; the most relevant one is the feed-
back stream, i.e., a stream towards upstream operators, that
we use to optimize the usage of memory by deleting expired
posts which cannot compete for the top-k ranking ones. To
answer the second query, the application also requires to effi-
ciently store the social graph, which represents the users and
their friendship relations, in order to periodically compute
and retrieve the largest communities. We solve this problem
through Redis [5], an in-memory data structure store, which
avoids the bottleneck given by mass storage I/O. Figure 1
depicts a high-level overview of our solution.

2.1 Query 1
The goal of the first query is to determine the updates of

the top-3 (i.e., k = 3) most influential posts in the social
network, that is, those that maintain over time a high rate
of interaction via comments. The scoring discipline encap-
sulate this concept, and is computed as follows. When a
post/comment is created, its initial score is set to 10 and is
then decreased by 1 once a day. The post score is the sum of
its value plus the score of every direct and indirect comment

1http://storm.apache.org/
2http://spark.apache.org/

rooted in it. Once the score reaches zero, the post expires
and does not compete for any ranking. We now describe
the operators involved in the first query, whose topology is
shown in Figure 2.

The Event Dispatcher is a centralized operator that reads
in parallel posts and comments from several data sources. It
converts each entry in a tuple containing only the fields that
are strictly necessary to the following operators. Taking ad-
vantage of the ascending events timestamp, it can efficiently
carry out the interlacing of events. Afterwards, the Com-
ment Mapper maps each comment to the related post. Ob-
serve that this operator also assigns indirect comments (i.e.,
comments of a post’s comment) to the related post by main-
taining in-memory a mapping table that links each post with
its comments. Storing this mapping table is challenging be-
cause it can potentially grow unlimited, thus saturating the
memory. To handle this situation, we exploit the feedback
mechanism, which allows us to store only the mapping of
not yet expired posts. The Post Score Updater is a parallel
operator that receives the streams of posts and comments
and updates the post score and number of commenters of the
post. To preserve the application integrity with parallelism,
the incoming streams are partitioned by the post identifier.
To synchronize the parallel instances of this operator, so
to properly update the scores, the upstream operator Com-
ment Mapper broadcasts a time sync message when the time
associated to posts and comments moves forward. The Ag-
gregator is a parallel rolling counting operator that merges
the single score updates to produce the total score for each
post. Moreover, this operator is in charge of emitting the
Feedback Stream. The Post Rank defines the partial top-3
ranking of posts handled by its upstreams operators; the
ranking is sorted by the post score. Then, the Post Rank
Merger merges all the partial rankings into a global one and
identifies the top-3 posts that trigger the most activity in
the social network. The latest two operators optimize the
sorting operations by (1) reducing the elements to be sorted
thanks to the parallelization; (2) pruning the expired posts;
and (3) avoiding to sort the elements that cannot actually
generate a ranking update (i.e., elements whose score is less
than the lowest in the rankings). Finally, the Post Rank Fil-
ter produces an updated result every time the top-3 most
active posts change.

2.2 Query 2
The second query focuses on identifying the k recent com-

ments that are supported by the larger communities. The
value of k is provided as parameter, whereas a community
is defined as the set of users, friends each other, who have
liked that comment. The topology of our solution is repre-
sented in Figure 3. The Event Dispatcher is a centralized
operator that reads in parallel comments, like events, and
friendship events from several data sources and, preserv-
ing their timestamp order, sends them downstream. The
Friendships Operator receives the friendship events and up-
dates the social graph, connecting the users that establish a
new friend relation. The social graph is stored into Redis,
where it is represented with adjacency lists indexed by the
user identifier. This representation allows us to efficiently
retrieve all the user’s friends, that are needed to compute
the largest community supporting a comment. The Com-
ment Score Updater receives comments and like events, and
computes the score associated to each comment as follows.

387

Post

Comment

Event
Dispatcher

Comment
Mapper

Aggregator

Aggregator

Aggregator

Post
Rank

Post
Rank

Post
Rank

Post Rank
Merger&
Filter

Top Rank

Post Comment Post Score Expired Post Time Sync

Post
Score
Updater

Post
Score
Updater

Post
Score
Updater

Feedback stream

Figure 2: The topology for Query 1.

Like

Friendship

Event
Dispatcher

Comment
Rank Merger&
Filter Top Rank

Comment Like Comment Score

Comment

Comment
Score
Updater

Comment
Score
Updater

Comment
Score
Updater

Comment
Score
Rank

Comment
Score
Rank

Comment
Score
Rank

Redis

Graph dataFriendship

Friendship
Operator

Graph update Sync

Figure 3: The topology for Query 2.

From each comment that was created not more than d sec-
onds ago, where d is an input parameter, the operator ex-
tracts the set of users U that have liked it. For each user
u ∈ U , the Comment Score Updater creates a user-based
social graph Gu, containing the user u, his/her friends, and
the friends of his/her friends; in Gu the users are intercon-
nected with respect to their friendships. Afterwards, for
each user-based social graph Gu, ∀u ∈ U , the operator runs
a customized version of the well-known and widely used
Bron-Kerbosch algorithm [2] to identify the largest clique
Cu associated to each user. Observe that, at this point,
the computed cliques depend only on the user-based social
graph (i.e., his/her friendships) and also include users who
have not liked the comment. Therefore, Comment Score
Updater removes from each clique Cu the users who have
not liked the comment, thus identifying the largest one as
the community that supports the comment. Determining
the cliques within a graph is an NP-hard problem, so we
adopted a lazy approach that executes the Bron-Kerbosch
algorithm (1) on subgraphs of the social network that, rely-
ing on friendships and being independent from like events,
should change slowly; and (2) just on comments that have
received a new like event, i.e., avoiding to recompute the
clique if not needed. Nevertheless, when a new friendship
relation is established, the Comment Score Updater inval-
idates and recomputes all the cliques. Since this operator
performs critical operations, we deploy multiple instances of
it; to preserve the application integrity while increasing the
parallelism, the incoming streams are partitioned relying on
the comment identifier. Similarly to the first query, i.e., us-
ing a step-wise approach, the Comment Score Rank and the

Comment Rank Merger rank the comments and identify the
top-k ones that are supported by the larger communities.

3. EVALUATION
We evaluate the performance of our solution on a single

Amazon EC2 c4.xlarge instance, running Debian 8.3 (Jessie)
and equipped with an Intel Xeon E5-2666 Haswell (2.6 GHz,
4 cores and 25 MB cache), 8 GB of RAM and SSD with 900
IOPS [1]. This experimental environment is very similar
to that employed for evaluating the Grand Challenge solu-
tions [4]. Our solution is implemented in Java 1.8 and relies
on Apache Flink 1.0.0 [3] and Redis 3.0.7 [5].

The experimental analysis evaluates for both queries (1)
the latency distribution on crucial operators, (2) the average
latency per tuple, and (3) the average memory utilization.
The latency is measured using the analysis tools provided
by the Flink framework, whereas the memory utilization is
recorded every second during the application execution.

Our solution aims at properly processing the dataset pro-
posed by the Grand Challenge in a timely way. This dataset
presents 55.9 × 106 events, distributed as: 44% comments,
39% likes, 15% posts, and 2% friendships. Preserving this
event distribution, our experimental evaluation considers
portions of the dataset ranging from 1% (55.9× 103 events)
to 50% (27.9 × 106 events) of the original dataset. We
parametrized the second query to identify the top-3 com-
ments supported by the larger communities with a sliding
window of 1 hour (i.e., k = 3, d = 3600 s).

To inspect the latency distribution, we can partition the
topology into the following meta-operators:

388

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 1 % 10 % 20 % 30 % 40 % 50 %

A
v

e
r
a

g
e
 L

a
te

n
c
y

 (
m

s)

Dataset Percentage

Query 1

Query 2

Figure 4: Query 1 and Query 2: average latency per tuple.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 1 % 10 % 20 % 30 % 40 % 50 %

A
v

e
r
a

g
e
 M

e
m

o
r
y

 U
sa

g
e
 (

G
B

)

Dataset Percentage

Query 1

Query 2

Figure 5: Query 1 and Query 2: average memory utilization.

1. Src-Snk: which encapsulates the logic involved in in-
troducing and producing the events. It comprises la-
tencies due to the I/O operations and the generation
of tuples that allows to compute the scores (i.e., event
ordering, time synchronization, comment to post map-
ping);

2. Updater: which encapsulates the logic involved in com-
puting the post or comment score. It comprises the
most memory-intensive data structures, the feedback
stream (first query), and clique computation (second
query).

3. Ranker: which encapsulates the logic involved in rank-
ing the posts/comments and filtering the updates. It
comprises latencies due to the step-wise sorting and
ranking approach.

During all the experiments, approximately half of the la-
tency is introduced by the Updater and about a third by
the Ranker.

The average latency per tuple of both queries is repre-
sented in Figure 4. As the dataset increases in size, the
trend of this metric becomes clearer. For the first query, the
average latency increases almost linearly with the dataset
size; this trend is due to the growing number of post scores
that the system has to manage. For the second query, the
average latency increases exponentially as the dataset grows,
and, upto the 30% of the dataset, the system achieves laten-
cies lower than 1 ms. The performance trend of this query
is readily explained recalling that (1) the application has to
maintain in memory the whole social-graph, and (2) identi-
fying the cliques is an NP-hard problem. Moreover, we have
obtained empirical evidences that the centralized usage of
Redis for small and high-frequency updates shows poor per-
formances.

As regards the memory utilization, Figure 5 shows a com-
parison of this metric for both the queries. The general
tendency shows that the required memory reaches a steady

state below 4 GB. In the first query, this result is achieved
thanks to the feedback stream which allows to discard all the
data (e.g., comments, score) concerning the expired posts.
Observe that the advantage of exploiting the feedback stream
is proportional to the amount of posts and to their expiration
rate. In the second query, the memory utilization stabilizes
around 3 GB when the application processes at least 10%
of the whole dataset. Evaluating the memory utilization
trend, we can suppose that most of the social graph struc-
ture is built quickly while it tends to evolve slowly. When
the dataset grows over the 25%, an increasing computational
effort is due to the management of Redis, slowing down the
task of identifying the largest communities.

Summing up, the experimental results show that our so-
lution provides effective load balancing because the work-
load is balanced among the operators and cores, thus mak-
ing our solution not affected by back-pressure phenomena
in any portion of the stream and in any stage of computa-
tion; there is also an efficient memory usage, because the
physical memory is never close to saturation, thus avoiding
the overhead introduced by the garbage collection and mem-
ory swapping. However, there are some latency bottlenecks
that slow down the application execution, mainly due to the
presence of centralized and complex operators.

4. CONCLUSIONS
We have presented the design, implementation, and eval-

uation of our Flink-based solution to the DEBS 2016 Grand
Challenge. Despite its young age, Flink turned out to be
a solid stream processing framework with some interesting
features. An example is represented by the feedback stream,
which has allowed us to minimize the wastage of memory,
keeping its occupation low and steady, and to avoid back-
pressure and performance degradation. The experimental
results, conducted in the reference environment, show that
our solution can process up to 400 tuples/s with an average
latency of 2.5 ms for the first query, and up to 370 tuples/s
with an average latency of 2.7 ms for the second query, con-
sidering 50% of the original Grand Challenge larger dataset.

Leveraging the experience gathered to answer the Grand
Challenge, we identify the following improvements as future
work. We will exploit a finer-grained parallelism by en-
hancing the application components with more sophisticated
data structures and operations, which enable concurrent and
efficient updates. To further reduce the average application
latency, we will decouple the social events (e.g., post, com-
ment, like) from their content (e.g., post message), so to re-
duce the streams transmission time. Finally, we could make
the feedback stream self-adaptive, so to properly handle the
back-pressure mechanism, even when posts expire with an
unpredictable rate.

5. REFERENCES
[1] Amazon. EC2 Instance Types. aws.amazon.com/ec2.

[2] C. Bron and J. Kerbosch. Algorithm 457: Finding All
Cliques of an Undirected Graph. Commun. ACM,
16(9):575–577, 1973.

[3] Apache Flink. flink.apache.org, 2016.

[4] V. Gulisano, Z. Jerzak, S. Voulgaris, and H. Ziekow.
The DEBS 2016 Grand Challenge. In Proc. of ACM
DEBS ’16. ACM, 2016.

[5] Redis. redis.io, 2016.

389

