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Abstract—Modern network infrastructures rich of logically
centralized agents, such as DHCP, AAA, SDN controller agents,
need to use redundancy in order to guarantee high availability
and consensus protocols to have strong consistency. Unfortu-
nately, consensus protocols, which are traditionally deployed as
application-layer services running on end-to-end servers, are
often recognized as system performance bottlenecks. In this
paper, we present a possible solution leveraging programmable
network hardware in order to offer consensus as service for
the application, thus reducing occupied server resources and
accelerating the protocol with programmable hardware. This
is obtained by defining a high-level abstraction for describing
consensus protocols and conducting a feasibility study through
the implementation of the Paxos protocol with a SmartNIC.

Index Terms—in-network computing, programmable network
devices, consensus protocols, paxos, flowblaze

I. INTRODUCTION

Nowadays, network infrastructures are rich of “logically
centralized” agents, e.g., enterprise-level servers such as
DHCP, AAA, or large-scale SDN network deployments lever-
aging logically centralized controllers.

Since network infrastructure reliability is fundamental for
many different types of business, which use, build, and operate
highly available and scalable services [1], [2], logically cen-
tralized agents need to be physically redundant. The different
replicas of a single component need to be kept consistent,
therefore they need to reliably agree on some value used
for the computation (e.g., the next valid operation to be
executed by a replicated agent). This problem is well known
in distributed computing as consensus problem, thus several
protocols have been proposed to solve it [3]–[5].

Consensus protocols are usually deployed as software run-
ning on end-to-end servers, either with custom protocols em-
bedded into the applications [6], or as software agents [7], [8].
Unfortunately, for this reason, consensus protocols have been
widely recognized as performance bottlenecks for many sys-
tems [9], [10], leading to the necessity of expensive system re-
engineering in order to meet stringent latency constraints [10],
or the adoption of more relaxed forms of consistency [11].

There have been many attempts in literature to optimize
consensus (e.g., [12]–[14]), often strengthening basic assump-
tions about the behaviour of the network [15]–[17].

The goal of this paper is to challenge a different approach
towards the deployment of consensus protocols. Specifically,
our goal is to assess the feasibility of a “bump-in-the-wire”

implementation of a consensus protocol, i.e., a modular im-
plementation running inside a smart Network Interface Card
which:

(i) is meant to run below the application and to offer
primitives to it;

(ii) permits to reduce server resources consumption, as the
consensus protocol is offloaded inside an external NIC,
and

(iii) being “closer” to the wire and run in hardware, permits
to cut latency and accelerate performance.

In challenging such design, we take advantage of, and ex-
tend, the significant work carried out in the last 5 years on
programmable data planes and in-network computing [18].
The latter, which has recently emerged as a new research
area, refers to the execution on programmable network devices
deployed at large scale of some limited form of application-
specific computations at line rate [19]–[21], so as to obtain
orders of magnitude higher throughput and lower latency
than a corresponding execution on a traditional server. In-
network computation has been exploited for accelerating many
application-level tasks [22]–[24], including consensus proto-
cols [25], [26]. However, the main limitation of the latter
works is to provide the hardware implementation of a specific
consensus protocol, thus limiting the adoption of consensus
protocols offloading in network devices. In fact, a specific
protocol “as-it-is” might not fit the requirements of a system,
requiring a customized implementation [6]. In this case, a
hardware accelerated implementation can be very expensive,
since it requires a significant expertise in hardware design.

This paper aims to analyze the offloading of consensus
to programmable network devices, rather than offloading a
specific consensus algorithm. The main contribution of this
work is to define a high-level abstraction for describing con-
sensus protocols (Section III), which: (i) allows the developer
to focus solely on implementing the protocol behaviour with-
out being bogged down in tricky, time-consuming hardware
performance optimizations, and (ii) can be easily implemented
in hardware devices. The second contribution of this work is
to develop (Section IV) and evaluate (Section V) a hardware-
accelerated prototype of the Paxos protocol for the FlowBlaze
programmable dataplane [27], in order to assess (i) the feasi-
bility of this approach, and (ii) the flexibility of the FlowBlaze
platform. Since now the computation is decoupled from the
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end-to-end servers, we then study a possible deployment on a
data center architecture. The prototype is then evaluated with
microbenchmarks of the single component implementation,
and a macrobenchmark of the solution deployed into the
topology.

II. BACKGROUND

A. Paxos

Paxos is possibly the most widely adopted protocol for
solving the Consensus Problem, in a network of unreliable
processors which can communicate by message passing [3],
[28]. Each processor can implement one or more of the four
Paxos roles: proposers propose a value, acceptors choose a
single value from the proposals, learners learn which value
has been chosen, and the leader ensures protocol termination
and message ordering. The leader is typically a proposer or a
learner, and it is elected using a leader election protocol. A
single execution of consensus, which begins with a proposal
from the proposer and ends with the learners finding out the
value chosen by the acceptors, is called an instance. Each
instance is composed by a series of rounds, each one divided
in two phases.

In phase 1 the coordinator extracts a unique round number
and requests a votation from the acceptors. Each acceptor that
has voted for a value, promises that it will reject any request
(both phases 1 and 2) with a lower than equal value. If any
acceptor has already voted a value for the current instance,
it will return the value together with its correspondent round
number to the coordinator. When a majority of the acceptors
has confirmed the promise to the coordinator, phase 1 is finally
completed.

In phase 2 the coordinator selects the value to be voted,
using (i) an arbitrary value if any of the acceptors returned
a value in phase 1, otherwise (ii) the value associated with
the highest round number received from the previous phase.
Then, the coordinator sends this value, together with the round
number voted in phase 1, to the acceptors. When an acceptor
receives this message, it can accept and therefore broadcast
the value to all learners, if it has not already received another
message (phase 1 or 2) with a higher round number. When
a majority of the acceptors has voted the value, consensus is
reached and the value is permanently bounded to the instance,
completing phase 2.

B. FlowBlaze

FlowBlaze [27] is an open abstraction for building stateful
packet processing functions, which can be executed either
in hardware (on a NetFPGA SUME SmartNIC [20]) or in
software (on a DPDK-based implementation [29]). This ab-
straction is based on Extended Finite State Machines (XFSMs)
[30] and allows explicit definition of per-flow state, obtaining
flow-level parallelism. FlowBlaze hides the low-level details
of the underlying platform from the programmer, allowing
to concentrate only on the logic of the network function
to implement, obtaining with the hardware implementation
very low latency (few microseconds), low power consumption,

high throughput, and holding per-flow state for hundreds of
thousands of flows.

FlowBlaze is an extension of the OpenFlow Match Action
Table (MAT) pipeline, for processing packet headers through
a pipeline made up of many stateless or stateful elements.
A stateless element is a MAT, similar to those of OpenFlow.
Stateful elements implement an XFSM. The architecture of
a stateful element is composed by: i) Flow Context Table,
linking incoming packets to the corresponding set of state
variables, ii) XFSM Table which evaluates the state transitions,
iii) Update Functions, which update the state variables using
arithmetic logic instructions, and iv) Action, which applies
actions on the packet header. Since FlowBlaze is an ab-
straction that implements multiple XFSMs in hardware, it
is programmed using a Domain Specific Language named
XL (XFSM Lang) [31], [32]. In summary, FlowBlaze allows
implementing stateless and stateful network functions at high
speed without requiring any hardware design expertise.

III. THE XFSM BASED ABSTRACTION

Starting from the beginning of the research in distributed
computing [33], FSMs have been used to describe consensus
protocols such as [5], [28], due to their natural ability of
representing the behaviour of stateful processes reacting to
asynchronous events (e.g., packet arrival, timer expiration).
FSMs permit to abstract the behavioural description of the
desired protocol logic, namely how the state attributed to an
entity evolves in time, from the set of the specific events
(input “symbols”) which cause such evolution, and the specific
actions (output “symbols”) which are triggered by such state
transition. This abstraction gives a neat and upfront separation
between the “stateful logic” (the behaviour of the protocol)
and the “stateless bricks” (the implementation of actions and
the definition of the events), obtaining a flexible modeling
tool, adaptable to the specific needs of a desired application’s
domain (it is sufficient to identify and provide the domain-
specific building blocks).

More specifically, since many consensus protocols need to
store and update some state (e.g., last ballot number seen), the
generalization of the FSMs, i.e., XFSMs, is more suitable for
this domain, because it does not suffer from state explosion
[30]. Moreover, since XFSMs transform the protocol into a
list of “if-then” statements, they can be executed in hardware
with very few clock cycles per each state transition, using
TCAMs and ALUs [27], [31]. This can address the problem
of mismatching between the high level abstraction describing
the protocol and the platform executing it.

The XFSM based abstraction, shown in Figure 1, makes
a clear separation between the platform independent engine
(everything contained in the grey box) and the platform
dependent implementation of events and actions. The idea is
to have a modular engine which can be supported by different
platforms (it is sufficient to implement the required actions
and specify the possible events), and can be easily extended
by implementing new actions or specifying new events. The
XFSM abstraction considers the events and the actions as



“labels” used for the entries in the table, and it is agnostic
to their actual implementation.
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Fig. 1. The XFSM based abstraction. The instance lookup block receives the
events from different sources (i.e., network, timers, failure detectors and the
SDN controller) and extracts the instance ID. This ID is used to retrieve the
volatile state stored in the per-instance memory. This information is used by
the rule engine to execute the relevant actions (packet forwarding, memory
update, timer scheduling and commands to the SDN controller).

This abstraction divides the state between volatile state and
stable storage. The volatile state is the per-instance memory
used by a protocol in absence of failure (e.g., the register
containing the last ballot number seen), and can be accessed
using the fast update actions which are part of the platform
independent XFSM engine. The stable storage is external to
the XFSM engine, and is used to persistently store the state
for recovery in case of failure. It is accessed using the slow
update operations and its presence is not mandatory for the
target platform, since some protocols use other form of fault
tolerance rather than a stable storage [5], [15], [25]. While the
fast update operations are executed before the next state tran-
sition, the slow update operations have a semantic dependency
on the actual implementation of the target platform.
This abstraction supports also other actions such as operations
for the platform dependent calendar module, packet actions
and communication with the SDN controller. The events are
specified by the target platform and can be partitioned in four
classes: (i) network events, such as the arrival of a packet,
(ii) timer expiration, (iii) command from the SDN controller,
and (iv) a signal from a failure detector module (this is
needed from some class of consensus algorithms such as [34]).
Again the presence of these events on the platform is not
mandatory, since not every protocol needs them. The signals
from the SDN controller can be used to manage operations,
such as (re)initialization of the engine, parameters change,
new XFSM specification. The commands from and to the
SDN controller, form the interface between the control plane
and the XFSM based abstraction. It is worth to remark that
the programmer does not need to know how a specific event
or action is internally implemented; the list of events and
actions supported by a given platform and (when applicable)
the relevant parameters, is all the programmer needs.

IV. PAXOS IMPLEMENTATION

In order to accelerate Paxos leveraging programmable net-
work devices, we had to implement its logic using the XFSM

based abstraction, which it is then executed using an hardware
XFSM engine like FlowBlaze. It is important to note that,
even if FlowBlaze does not implement all the blocks defined
by the XFSM abstraction, it provides all the primitives needed
by Paxos.

The first issue we had to solve, was the proper partitioning
of functionalities between hardware and software, in order
to obtain the best performance with the lowest amount of
resources. Considering CPU utilization of the four Paxos roles
in a software implementation (libpaxos [7]), the most critical
ones are the leader and the acceptors, since they constitute
the primary system performance bottleneck [25]. Therefore,
we decided to offload these two roles in hardware (FlowBlaze
SmartNICs), and to implement the proposers and the learners
as simple Python scripts on commodity servers. Figure 2
depicts the deployment of the system, considering a scenario
with a Fat Tree network topology [35]. In this prototype
there is a single logical coordinator, which can be physically
replicated, so in the case some participants in the protocol
suspect that the coordinator is faulty, an election protocol can
be used to appoint a new coordinator from its replicas.

Acceptor AcceptorAcceptor

LearnerProposer LearnerLearner

Core

Aggregation

TOR

Coordinator

LearnerLearner

Fig. 2. The architecture of the system deployed in a Fat Tree network. In grey
the agents implemented in hardware, in white those that are implemented as
Python scripts on commodity servers.

After having partitioned the responsibilities between hard-
ware and software, we had to implement the leader and the
acceptors using the XFSM based API. Previous works, such as
[36], have shown that the Paxos protocol can be translated to a
series of match-action rules, obtaining in practice a switching
function. In this paper we generalize this approach, realizing
an implementation compatible with SmartNICs rather than
programmable switches, which can be more flexible in terms
of possible deployments, since it is not bound to specific
switches.

Each agent in the system exchanges messages containing the
information required by the protocol: (i) inst is the instance
ID; (ii) src and dst are the source and destination addresses
of the message; (iii) type is the message type (can be 1A,
1B, 2A or 2B); (iv) rnd is the round number proposed or
the one on which the acceptor has to vote; (v) value can
be the value proposed or the value associated to the highest
numbered accepted proposal; (vi) vrnd is the round number
of the highest numbered accepted proposal.

Table I presents the acceptor and leader implementation
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TABLE I
ACCEPTOR AND LEADER LOGIC IMPLEMENTED USING THE XFSM BASED

ABSTRACTION. 6 MEANS DO NOT CARE.

using the XFSM based API. The table represents the behaviour
of a specific protocol instance, namely of an XFSM with its
per-instance volatile state (i.e., the current state label and the
registers used). In order to distinguish between the different
instances, each agent uses the inst field, which has to
contain a different ID for each instance. We decided to use
the logically centralized coordinator, in order to generate a
monotonically increasing counter as unique identifier in the
system. The last row of the table describes this behaviour:
regardless of the state and the conditions, the coordinator puts
the counter in the inst field and increases it.

Let us now consider the acceptors: when the acceptor
receives a PAXOS_1A message, if the round number contained
is greater than the one stored in the volatile state (as stated
in the conditions column), it replies sending in the message
the highest numbered proposal which has been accepted, and
updates the round number stored in the volatile storage. If the
acceptor receives a PAXOS_2A message, if the round number
contained is greater than equal than the one stored in the
volatile storage, it replies to all the learners (MULTICAST
address) sending a message with the voted value. In all the
other cases the message is simply dropped.

The protocol described in Table I is then executed using
the FlowBlaze engine on a NetFPGA SUME SmartNIC [20],
clocked at 133 MHz and designed to forward 64 B minimum
size packets at line rate, synthetized using the standard Xilinx
design flow.

V. EVALUATION

Our evaluation can be divided into: (i) a microbenchmarking
phase, for evaluating the performance of a single agent de-
ployed on a SmartNIC, and (ii) a macrobenchmarking phase,
for assessing the end-to-end performances of a deployment as

in Figure 2. The main goal for the macrobenchmarking, is to
study the impact on the system of two critical parameters: the
number of the acceptors and the rate at which the proposer
issues the proposals.

A. Microbenchmarking

Offloading stateful processing to an I/O peripheral can
significantly reduce latency eliminating the transfers over the
PCIe, therefore the microbenchmarking aims to quantify the
per-packet processing latency for a single agent implemented
on a SmartNIC.

The experimental setup consists of (i) a Ubuntu server with
a 16 physical cores (32 threads) Intel Xeon CPU E5-2620 v4
clocked at 3.00 GHz, 128 GB of 2400 MHz DDR4 RAM and
four Intel X520 10 Gbps NICs and (ii) two SUME NetFPGA
SmartNICs. The server is used for generating the traffic and
for dumping the packets. While one SmartNIC implements
the Paxos agent to evaluate, the other is used to mark the
packets with a timestamp at the ingress and the egress from the
SmartNIC implementing the Paxos agent, since the resolution
needed for the latency is very fine (order of µs), and it was
not feasible to use a software for measuring it.

The traffic is generated using Moongen [37] in order to
produce 64 B packets at different rates. For each rate we took
100k samples. Figure 3 shows the end-to-end latency with
respect to the ingress rate. The results are in accordance with
[27], and it is worth to note that the latency is minimally
affected by the incoming rate (from 105.14 mpbs to line-rate
it varies of less than 0.0264 µs) and the latency at line-rate is
just 3.0544 µs.
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Fig. 3. Processing latency of a single agent deployed on the SmartNIC, for
different throughput rates, with its linear and quadratic fit.

B. Macrobenchmarking

We realized the macrobenchmarking phase, developing a
discrete event simulator of the system using NS3 (Net-
work Simulator 3) [38]. The Paxos logic is implemented
in the class FlowBlazeNetDevice which extends a
BridgeNetDevice, hooking the ReceiveFromDevice
method (i.e. the method called upon packet reception). When
this method is called it performs the logic of our Paxos
implementation, and for simulating the processing latency it



schedules on the simulation calendar the call of the method
which forwards the packet. The latency is generated from the
distribution obtained by the microbenchmarking distribution,
using PCG [39] as pseudo random number generator.

The topology is realized by connecting with differ-
ent CsmaChannel many BridgeNetDevice (for the
switches) and FlowBlazeNetDevice (for the Paxos
agents) in order to obtain the topology of Figure 2. There
is a single proposer which sends requests to the system with
different rates. There is one acceptor for each aggregation
switch, and two learners for each edge switch.

The metrics are referred to the system in steady-state, and
it was sufficient to simulate 5000 requests to get a stable
estimation of the metrics, without having an excessively long
simulation.

The metrics are computed via batch means, using 100
batches of 50 values for the end-to-end latency and 1000
batches of 5 values for the throughput, obtaining an autocor-
relation of ±0.2 for the first and ±0.0632 for the latter. The
autocorrelation tends also to decrease very rapidly with the
gap.

The experiments were conducted by varying the number
of the acceptors (and therefore of the aggregation switches)
and sending requests with different rates. The CSMA channels
were set to a rate of 10 Gbps with a one-way latency of 2 µs,
in line with the current cloud technologies [40], [41].
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Fig. 4. Number of messages sent by all the agents in a protocol instance and
maximum achieved throughput (with 99.9 % confidence), in respect to the
number of acceptors.

In Figure 4, is depicted the total number of messages
exchanged by an instance of the protocol and the maximum
achieved throughput (number of requests accepted per second),
varying the number of acceptors in the system. The throughput
is heavily affected by this parameter, since it determines the
size of the quorum. It is important to note that this metric is
dependent on the Paxos protocol logic itself, rather than this
specific implementation.

Regarding the number of exchanged messages, it linearly
increases with the number of acceptors, since in this topology
it determines the size of the learners’ multicast group (2· num-
ber of acceptors). It can be reduced sacrificing the reliability
of the system, sending the message to only a subset of learners
or to a distinguished learner [28].
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Fig. 5. Time to complete an instance of the protocol, varying the rate of
requests and the number of acceptors (n).

Figure 5 shows the 99.9 percentile of the end-to-end latency
(defined as the the period of time from the moment of the
proposals until the moment the last learner learns the value),
varying the rate of the requests issued to the system and the
number of acceptors. From the plot is possible to note that the
latency is not very affected by the rate (which was expected
given the results of the microbenchmarks), but it is heavily
affected by the number of acceptors in the system.

VI. CONCLUSIONS & FUTURE WORK

Consensus protocols are a fundamental block for building
fault tolerant distributed services. Unfortunately, they have
been widely recognized as performance bottlenecks for the
system, leading to the necessity of expensive re-engineering
of systems or the adoption of more relaxed forms of con-
sistency. Many attempts have been proposed in literature
in order to improve their performance, often strengthening
basic assumptions about the network behaviour. The advent
of programmable network devices offers the opportunity to
execute some application-specific computations in hardware
at line rate.

In this paper we have studied the possibility to offload con-
sensus protocols to programmable network devices, defining a
high-level abstraction which can be used to describe consensus
protocols. The feasibility of this approach is assessed with an
implementation of Paxos on FlowBlaze, a programmable data
plane. The implementation, even if it is far from production
ready, has good performance and highlights some important
key points for In-Net Computation, such as the proper place-
ment of the computation into the network topology.

Future work includes the implementation of other con-
sensus protocols such as Raft [5] as well as the study of
target platforms different from FlowBlaze. We also plan to
further evaluate the proposed solution, exploiting a test-bed
and comparing its performance with that of a software-based
implementation such as libpaxos [7].
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