
Decentralized Self-Adaptation for Elastic Data Stream Processing

Valeria Cardellinia, Francesco Lo Prestia, Matteo Nardellia,∗, Gabriele Russo Russoa

aDepartment of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Italy

Abstract

Data Stream Processing (DSP) applications are widely used to develop new pervasive services, which require to seamlessly process
huge amounts of data in a near real-time fashion. To keep up with the high volume of daily produced data, these applications need
to dynamically scale their execution on multiple computing nodes, so to process the incoming data flow in parallel.

In this paper, we present a hierarchical distributed architecture for the autonomous control of elastic DSP applications. It con-
sists of a two-layered hierarchical solution, where a centralized per-application component coordinates the run-time adaptation of
subordinated distributed components, which, in turn, locally control the adaptation of single DSP operators. Thanks to its fea-
tures, the proposed solution can efficiently run in large-scale Fog computing environments. Exploiting this framework, we design
several distributed self-adaptation policies, including a popular threshold-based approach and two reinforcement learning solu-
tions. We integrate the hierarchical architecture and the devised self-adaptation policies in Apache Storm, a popular open-source
DSP framework. Relying on the DEBS 2015 Grand Challenge as a benchmark application, we show the benefits of the presented
self-adaptation policies, and discuss the strengths of reinforcement learning based approaches, which autonomously learn from
experience how to optimize the application performance.

Keywords: Data Stream Processing, Self Adaptive, Hierarchical Control, MAPE, Reinforcement Learning

1. Introduction

The ubiquitous presence of sensing devices, which continu-
ously produce streams of data, creates a fertile ground for the
development of new and pervasive services. An efficient use
of those data can improve the quality of everyday life in many5

cross-concern domains, including health-care, energy manage-
ment, logistic, and transportation. Data Stream Processing
(DSP) represents a prominent approach to elaborate data as
soon as they are generated, thus enabling the design of near
real-time applications.10

A DSP application is represented as a directed acyclic graph
(DAG), with data sources, operators, and final consumers as
vertices, and streams as edges. Each operator can be seen as
a black-box processing element that continuously receives in-
coming streams, applies a transformation, and generates new15

outgoing streams. In modern scenarios, DSP applications are
characterized by strict latency requirements in face of variable
and high data volumes to process. To deal with operator over-
loading, a commonly adopted stream processing optimization
is data parallelism, which enables to process data in parallel on20

multiple computing nodes (given that a single machine cannot
provide enough processing power). Data parallelism consists
in scaling-out or scaling-in the number of parallel instances for

∗Corresponding author
Email addresses: cardellini@ing.uniroma2.it (Valeria Cardellini),

lopresti@info.uniroma2.it (Francesco Lo Presti),
nardelli@ing.uniroma2.it (Matteo Nardelli),
russo.russo@ing.uniroma2.it (Gabriele Russo Russo)

the operators, so that each instance processes a subset of the
incoming data flow (e.g., [1]). As the application workloads25

are typically highly variable, the application parallelism should
elastically self-adapt at run-time to match the workload and pre-
vent resource wastage.

Moreover, since data sources are in general geographically
distributed (e.g., in IoT scenarios), recently we also have wit-30

nessed a paradigm shift with DSP applications being deployed
over distributed Cloud and Fog computing resources. This com-
puting environment de facto brings applications closer to the
data, rather than the other way around, to reduce application
latency and make better use of the ever increasing amount of35

resources at the network edges. Nevertheless, this very idea
makes it challenging to control DSP application performance.
Most of the approaches proposed in literature for the DSP appli-
cation deployment and adaptation have been designed for clus-
ter environments with a centralized control component, that can40

benefit from a global system view. These solutions typically do
not scale well in a highly distributed environment, given the
spatial distribution, heterogeneity, and sheer size of the infras-
tructure itself. In fact, modern DSP systems should be able to
seamlessly deal with a large number of interconnected small45

and medium size devices (e.g., IoT devices), which continu-
ously emit and consume data (e.g., in a smart city). To im-
prove scalability, several decentralized management solutions
have been proposed, e.g., [2, 3, 4]. Devising a decentralized
policy that reconfigures the DSP application deployment ex-50

ploiting only a local system view is, in general, not trivial. In-
deed, the inherent lack of coordination of decentralized solu-

Preprint submitted to Future Generation Computer Systems June 13, 2018

macbook
Casella di testo
This is the accepted version of the following article: "Decentralized self-adaptation for elastic data stream processing", which has been published in final form at https://doi.org/10.1016/j.future.2018.05.025

tions might result in frequent reconfigurations that negatively
affect the application performance (e.g., [5]).

Aiming to exploit the strengths of centralized and decentral-55

ized solutions, in our previous work [6], we proposed a hier-
archical distributed architecture for controlling the elasticity of
DSP applications. The control is organized according to the
Monitor, Analyze, Plan and Execute (MAPE) architectural pat-
tern for self-adaptive systems [7], which has been often adopted60

in Cloud auto-scaling systems [8]. Specifically, the proposed
architecture relies on a two-layered hierarchical solution, where
a high-level centralized MAPE-based Application Manager co-
ordinates the run-time adaptation of subordinated MAPE-based
Operators Managers, which, in turn, locally control the adap-65

tation of single DSP operators. We originally proposed a sim-
ple yet effective hierarchical policy that combines a threshold-
based policy, for locally controlling the adaptation of DSP op-
erators, and a token-bucket policy, for coordinating the overall
application adaptation (see Section 4 for details).70

In this paper, encouraged by the positive preliminary results,
we further explore hierarchical approaches for self-adapting
DSP applications at run-time. Differently from the popular
threshold-based approaches used to drive the operator elastic-
ity (e.g., [1, 9, 10, 11, 12]), we seek to design an adaptive ap-75

proach, able to customize the adaptation policy for each DSP
operator, without the need of manually tuning various configu-
ration knobs. To this end, we resort on machine learning tech-
niques and, in particular, on Reinforcement Learning (RL). RL
refers to a collection of trial-and-error methods by which an80

agent can learn to make good decisions through a sequence
of interactions with a system or environment [13]. As such,
RL allows to express what the user aims to obtain, instead of
how it should be obtained (as required by threshold-based poli-
cies). The adaptive nature of RL makes it very appealing to85

devise auto-scaling policies [8, 14]. Nevertheless, to the best
of our knowledge, only the work by Heinze et al. [12] has so
far exploited RL techniques in DSP systems. In the context
of elasticity, an RL algorithm should learn when and how to
change the number of operator replicas, so to efficiently handle90

the incoming load variations while avoiding resource wastage.
One of the main issues with RL policies is the possibly long
learning phase, which is especially experienced when the al-
gorithm assumes that nothing about the system dynamics is
known a priori (model-free learning). An approach to boost the95

learning process is to provide the learner with basic knowledge
about its environment (model-based learning). In a prelimi-
nary work [15], we started to investigate RL-based elasticity
policies while considering a single DSP operator in isolation.
Motivated by the positive numerical results, in this paper we100

propose two RL based algorithms, that rely on different levels
of system knowledge for controlling elasticity of DSP applica-
tions with many interconnected operators. First, we design a
model-free learning algorithm for controlling elasticity, resort-
ing to the well-known Q-learning algorithm. Then, we present105

a model-based approach that exploits what is known or can be
estimated about the system dynamics, thus making the learner’s
task easier.

The main contributions of this paper are as follows.

• We discuss several design patterns for realizing decentral-110

ized control architectures for DSP systems, and identify
the most suitable approach for Fog-based environments.
Then, we describe in detail Elastic and Distributed DSP
Framework (EDF), our hierarchical distributed architec-
ture for the autonomous control of elastic DSP applica-115

tions (Section 3).

• We design new hierarchical solutions for controlling the
adaptation of DSP operators (local policies) and for co-
ordinating the overall number of reconfigurations (global
policies). As local policies, we propose a threshold-based120

policy and two RL-based policies, which, respectively,
leverage a model-free and a model-based learning ap-
proach. As global policy, we propose a centralized token
bucket based solution that solves conflicts and limits the
number of reconfigurations (Sections from 4 to 7).125

• We present a prototype implementation of EDF in Apache
Storm, a well-known open source DSP framework, where
the deployment of DSP applications is adapted at run-time
using the designed control policies (Section 8).

• We evaluate our solution through experiments based on130

our EDF prototype (Section 9). To this purpose, we use a
DSP application that solves the DEBS 2015 Grand Chal-
lenge [16] and works with real data streams originated
from the New York City taxis.

2. Related Work135

DSP applications are usually long running and expose com-
putational requirements that are usually unknown and, most im-
portantly, can change continuously at runtime. Therefore, in the
last years, research and industrial efforts have investigated the
run-time adaptation of DSP applications achieved through elas-140

tic data parallelism.
System Architecture. Most approaches that enable elastic-

ity are often implicitly architected as self-adaptive software sys-
tems based on the MAPE loop, a well known pattern to design
self-adaptive systems [7]. Following this model, the current ap-145

plication deployment is adapted by scaling-in/out the number
of operator replicas and/or rescheduling the application in re-
sponse to changes, either observed or predicted, in some moni-
tored performance metrics.

Most of the existing system architectures rely on a central-150

ized management solution, where a single coordination entity
uses its knowledge about the entire system state so to plan the
proper adaptation actions (e.g., [9, 17, 18, 19, 20, 21, 22]). Al-
though this approach can potentially achieve a global optimum
adaptation strategy, it may be not suitable for a geo-distributed155

environment, because a central manager represents a bottleneck
in large-scale systems due to monitoring and planning over-
heads. Conversely, other solutions rely on decentralized adap-
tation planners that exploit a limited local view of the system,
thus overcoming the scalability issues. In this case, the vast160

2

majority of the proposed approaches rely on a fully decentral-
ized architecture (e.g., [2, 3, 4, 23]). Although these decentral-
ized solutions appear to be appealing for geo-distributed envi-
ronments (like Fog computing), developing fully decentralized
adaptation policies is a non trivial task. Some works recur to the165

exploitation of mathematical properties of specific deployment
goals [4]. Nevertheless, in general, the lack of coordination
among the decentralized agents may cause frequent reconfig-
uration decisions, which can cause instability that negatively
affects the application performance (as shown in [5]).170

Differently from the above approaches, we propose a hierar-
chical distributed architecture. We believe that the latter can
take the best of centralized and fully decentralized architec-
tures, thus improving performance and scalability without com-
promising stability. In this paper, we build on our previous175

work [6], where we firstly presented the hierarchical decentral-
ized control architecture. Motivated by the positive preliminary
results, we here slightly refactor the proposed architecture and,
above all, develop and evaluate new elasticity control policies.

Policies for Run-time Adaptation. Several elasticity poli-180

cies have been proposed so far in literature. Some works,
e.g., [1, 9, 10, 11, 12], adopt simple decentralized threshold-
based policies that use the utilization level of either the system
nodes or the operator instances. The basic idea is that when the
node or operator utilization exceeds the threshold, the replica-185

tion degree of the involved operators is modified accordingly.
Different approaches can be identified to define the threshold.
A single statically-defined threshold is used, e.g., in [9] to limit
load unbalance among computing nodes. Multiple statically-
defined thresholds can also be used so to customize the be-190

havior of each individual node within the system. A dynami-
cally configured threshold improves the system adaptivity, e.g.,
in [12, 24].

Other works, e.g., [17, 25, 26, 27, 28], use more complex
centralized policies to determine the scaling decisions, exploit-195

ing optimization methods that rely on a global model, such as
integer linear programming [17], control theory [25], queue-
ing theory [26], and fuzzy logic [27]. In [17], we presented
an integer linear programming problem for the runtime elas-
ticity management of DSP applications that minimizes recon-200

figuration costs while satisfying the application QoS require-
ments. Lohrmann et al. [26] proposed a strategy that enforces
latency constraints by relying on a predictive latency model
based on queueing theory. Mencagli et al. [27] presented a
two-level adaptation solution that handles workload variations205

at different time-scales: at a fast time-scale a control-theoretic
approach is used to deal with load imbalance, while at a slower
time-scale a global controller makes operator scaling decisions
employing fuzzy logic. However, their solution is tailored to
sliding-window preference queries executed on multi-core ar-210

chitectures. While the previously mentioned approaches are re-
active and cannot thus provision replicas in advance, De Matteis
and Mencagli [25] proposed a proactive control-based strategy
that takes into account a limited future time horizon to choose
the reconfigurations. Centralized heuristic policies have been215

also proposed in [22, 28, 29]. Liu et al. [22] proposed a step-
wise profiling framework that considers both application fea-

tures and processing power of the computing resources and se-
lectively evaluates the efficiency of several possible configura-
tions of parallelism. Stela [28] relies on a throughput-based220

metric to estimate the impact of each operator towards the ap-
plication throughput and identify those operators that need to be
scaled. Kotto Kombi et al. [29] proposed an approach to pre-
ventively adapt the replication degree of operators according to
stream rate fluctuations. Differently from the above centralized225

policies, Mencagli [23] presented a game-theoretic approach
where the control logic is distributed on each operator; how-
ever, it is not integrated in a DSP system. In [6], we designed
a hierarchical policy where a decentralized threshold-based ap-
proach works in combination with a centralized token-bucket230

solution. The former is in charge of adapting the operator repli-
cation degree in a fully decentralized manner, whereas the latter
controls and limits the number of reconfiguration exploiting the
global view on the application performance.

In this work, we design more sophisticated approaches based235

on RL. While the exploitation of RL for driving the elastic ex-
ecution of DSP applications is considered worth of investiga-
tion [14], to the best of our knowledge, only the work by Heinze
et al. [12] has so far proposed a RL-based elasticity policy. They
rely on a simple model-free RL algorithm that learns when to240

acquire and release computing resources, so to efficiently pro-
cess the incoming workload. Being model-free, the RL algo-
rithm requires no knowledge of the system dynamics; never-
theless, this leads to slow convergence properties, because the
learner also needs to experience ineffective actions (e.g., reduc-245

ing the number of replicas when the system is overloaded). We
started to investigate RL-based elasticity policies in [15]. Dif-
ferently from [12], our preliminary solution is in charge of self-
configuring the number of replicas of just a single DSP operator
(rather than of a DSP application composed of many intercon-250

nected operators, as in this paper). Our numerical evaluation
reveals that, by exploiting some knowledge about the system
dynamics, we can overcome some popular drawbacks of RL-
based solutions and achieve faster convergence rate. This result
motivates us to further explore this research direction. There-255

fore, in this paper we propose two RL-based policies for elastic
DSP applications that aim to limit the application response time
and rely on different levels of system knowledge. We design a
model-free learning algorithm, which uses the well-known Q-
learning algorithm [13] and adopts a cost function driven by260

the operator’s response time violation. Similarly to [12], the
learning is model-free, but our algorithm controls the opera-
tor elasticity driven by the operator response time rather than
scaling the underlying computing nodes driven by their utiliza-
tion. Moreover, we present a full backup model-based approach265

that, by instilling knowledge on the estimated system dynamics,
effectively addresses the slow convergence of the model-free
learning algorithm.

DSP Frameworks. Aside the specific functionalities, the
most popular open-source DSP frameworks (Storm, Spark270

Streaming, Flink, and Heron) provide an abstraction layer to de-
velop DSP applications focusing solely on the application logic.
The tasks related to the application distribution, execution, and
adaptation are managed by the frameworks themselves.

3

As regards the operator elasticity, in most cases these frame-275

works require their users to manually tune the number of repli-
cas per operator. Since the user might over-/under-estimate the
expected load, this approach can lead to sub-optimal applica-
tion performance and operating costs. Therefore, manual tun-
ing of configuration knobs is perceived as a difficult yet crucial280

task by users and developers of DSP applications [14]. Further-
more, most of these frameworks are equipped with elasticity
mechanisms in an embryonic stage; indeed, they dynamically
scale the application in a disruptive manner, because they enact
reconfigurations by killing and restarting the whole application,285

thus introducing a significant downtime.
We provide an overview of Storm in Section 8.1, because

we implement the proposed EDF architecture in it. Several
research efforts have used Storm to evaluate scheduling algo-
rithms or architectural improvements (e.g., [18, 19, 21, 30, 31]290

and, from our research group, [10, 17, 5]). In [10, 17], we ex-
tended Storm to support the elastic run-time adaptation of DSP
applications, by introducing new system components that allow
the elasticity and stateful migration of DSP operators. An ap-
proach to support elastic scaling of DSP applications in Storm295

has been also presented in [31]. Interestingly, their proposal re-
duces the downtime due to the reconfiguration process by keep-
ing the application running while scaling the application oper-
ators (instead of shutting down and restarting them). However,
their improved version of Storm has not been released publicly.300

Developed by Twitter as the successor of Storm, Heron [32]
preserves Storm’s abstraction layer while introducing some im-
provements and a multi-layer architecture. Dhalion [33] is a
framework on top of Heron that provides elastic capabilities to
the underlying streaming system; it also allows to reconfigure at305

run-time the application without introducing downtime. How-
ever, its current elasticity policy simply adjusts the replication
degree of an operator so to satisfy its throughput; anyway, the
investigation of reinforcement learning techniques in Dhalion
is considered as an exciting area for future research [14].310

Spark Streaming [34] is an extension on top of Apache Spark
that enables data stream processing. It is throughput-oriented,
whereas Storm can minimize the application latency and can
thus be preferable in latency-sensitive scenarios. From version
2.0, Spark Streaming supports elastic scaling through the dy-315

namic allocation feature, which uses a simple heuristic where
the number of executors is scaled up when there are pend-
ing tasks and is scaled down when executors have been idle
for a specified time. Another emerging framework is Apache
Flink [35], which provides a unified solution for batch and320

stream processing. Although Flink supports the manual scal-
ing of operators and state management, it does not yet provide
any auto-scaling capability [36].

Despite the recent efforts towards elasticity in some frame-
works, all those cited are not designed to efficiently operate in325

a geo-distributed environment. At this regards, we proposed
Distributed Storm [5], an extension of Apache Storm that in-
troduces self-adaptive and distributed scheduling capabilities.
In [17], we integrated elasticity and stateful migration capa-
bilities in Distributed Storm. SpanEdge [37] is implemented330

in Apache Storm, but it does not support operator migrations.

Saurez et al. [38] proposed a new Fog-specific programming
model supporting the migration of application components.

3. System Architecture

3.1. Problem Definition335

A DSP application can be regarded as a DAG, where data
sources, operators, and sinks are connected by streams. An op-
erator is a self-contained processing element that carries out
a specific operation (e.g., filtering, POS-tagging), whereas a
stream is an unbounded sequence of data (e.g., tuple). We dis-340

tinguish between stateless and stateful operator whether the per-
formed computation involves only the input data or also some
internal state information, respectively.

DSP applications are usually employed in latency-sensitive
domains [16, 25, 26], where reduced response time are re-345

quired. Although multiple definitions of response time exist,
the widely used one defines it as the overall processing and
transmission latency from a data source to a final consumer on
the application DAG. In this work, we will assume that the DSP
application exposes requirements on its response time, in terms350

of target value Rmax which should not be exceeded. To improve
the performance, multiple replicas can be used to run an op-
erator, where each replica processes a subset of the incoming
data flow. By partitioning the stream over multiple replicas,
running on one or more computing nodes, the load per replica355

is reduced, and so is the processing latency. Since the work-
load usually varies over time, the number of replicas should ac-
cordingly change at run-time as to meet the performance target
while avoiding resource wastage.

For the execution, a DSP application needs to be deployed360

on computing resources, which will host and execute the oper-
ators. In particular, we consider computing resources that are
scattered in a geo-distributed environment as the Fog comput-
ing. Since DSP applications are usually long-running, the op-
erators can experience changing working conditions (e.g., fluc-365

tuations of the incoming workload, variations in the execution
environment). To preserve the application performance within
acceptable bounds and avoid costly over-provisioning of system
resources, the deployment of DSP applications must be appro-
priately reconfigured at run-time, through migration and scaling370

operations. A migration moves an operator replica to another
computing resource, so to balance resource utilization or al-
low to relinquish scarcely used resources. A scaling operation
changes the replication degree of an operator: a scale-out deci-
sion increases the number of replicas when the operator needs375

more computing resources to deal with load spikes, whereas
a scale-in decreases the number of replicas when the operator
under-uses its resources. The drawback of reconfigurations is
that they cause application downtime; hence, if applied too of-
ten, they negatively impact the application performance.380

3.2. Architectural Options for Decentralized Control

The MAPE loop represents a prominent and well-know ar-
chitectural pattern to organize the autonomous control of a soft-
ware system, where four components (Monitor, Analyze, Plan,

4

A P

M E M E...

(a) Master-slave Pattern

M EA P M EA P

M EA P M EA P

(b) Coordinated Control Pattern

M EA P

M EA P M EA P

(c) Hierarchical Control Pattern

Figure 1: Different options for decentralizing the MAPE loop

and Execute) are responsible for the primary functions of self-385

adaptation [7]. The Monitor component collects data about the
controlled entity (e.g., application, operator) and about the ex-
ecution environment. Then, the Analyze component processes
the harvested data, so to determine whether adapting the ap-
plication placement can improve performance (or can reduce390

the execution costs with acceptable performance penalties). To
determine whether a reconfiguration is beneficial, the Analyze
component should take into account the adaptation costs; in-
deed, performing a reconfiguration degrades the application
performance in the short term, e.g., by causing a downtime. If395

the adaptation is needed, the Plan component determines which
specific reconfiguration action is beneficial, and how it should
be performed. Finally, the Execute component enacts the adap-
tation actions, thus updating the application deployment.

When the controlled or managed system is geo-distributed as400

in Fog computing, a fully centralized MAPE loop introduces a
single point of failure and a bottleneck for scalability. Indeed, a
centralized managing system may be able to efficiently control
the adaptation of only a limited number of entities, and its effi-
cacy may be negatively affected by the presence of network la-405

tencies among the managed system components. As described
by Weyns et al. in [39], different patterns to design multiple
MAPE loops have been used in practice by decentralizing the
self-adaptation functions. We here describe some key configu-
rations, aiming to identify the most suitable approach to control410

DSP applications in the geo-distributed execution environment
under investigation.

Master-slave Pattern. In a master-slave pattern, the system
includes a single master component, which runs the Analyze
and Plan phases, and multiple independent worker components,415

which run the Monitor and Execute phases in a decentralized
manner. We represent this pattern in Fig. 1a. Differently from a
fully centralized approach, this design pattern decentralizes the
execution of the Monitor and Execute components, relieving
the burden from the centralized control node. The latter is in420

charge of determining when and how a reconfiguration should
be performed. Having single and centralized Analyze and Plan
components, this pattern can be equipped with self-adaptation
policies that can be more easily designed and, moreover, can

more easily determine globally optimal reconfiguration strate-425

gies, e.g., [17]. Nevertheless, the centralized components of the
MAPE loop can still represent a bottleneck, especially when
they have to control a multitude of entities scattered in a large-
scale geo-distributed system. Moreover, collecting monitoring
data on the master component and dispatching the subsequent430

scaling actions to the decentralized executors may introduce
significant communication overhead.

Coordinated Control Pattern. Sometimes controlling the
elasticity of a system using a single centralized component is
unfeasible, e.g., because of scale, administrative, or privacy is-435

sues. Anyway, we still need to efficiently control the applica-
tion elasticity so to meet certain QoS metrics. As represented
in Fig. 1b, the coordinated control pattern employs multiple
decentralized MAPE loops, where each control loop oversees
one specific part of the system. The control loops may also440

need to coordinate with one another, as peers, in order to reach
joint adaptation decisions. With respect to the degree of coop-
eration, a great variety of inter-node behaviors can be devised,
ranging from a fully uncoordinated to a tightly coordinated one.
Each degree of coordination exhibits pros and cons. As ob-445

served in [5], in the context of distributed scheduling of DSP
applications, the lack of coordination between the distributed
agents may introduce too frequent and uncoordinated decisions
that can be detrimental for the application performance. Con-
versely, a tightly coupled coordination reduces the system abil-450

ity to quickly react to changes. Although this pattern allows
to obtain highly scalable solutions, designing efficient control
policies is, in general, not easy, because of the difficulty of guar-
anteeing convergence properties in a decentralized manner.

Hierarchical Control Pattern. The hierarchical control455

pattern revolves around the idea of a layered architecture,
where each layer works at a different level of abstraction. In this
pattern, multiple MAPE control loops work with time scales
and concerns separation. Lower levels operate on a shorter time
scale and are in charge of performing local adaptation. Exploit-460

ing a broader view on the system, higher levels steer the overall
adaptation by providing guidelines to the lower levels. As rep-
resented in Fig. 1c, each layer usually includes a full MAPE
loop with all the four components.

5

Application
Monitor

Monitor

Global
Reconfiguration

Manager

Analyze + Plan

Global
Actuator

Execute

Application Manager

Operator Manager

Execute
Reconfiguration

Actuator

Analyze
 +
Plan

Local
Reconfiguration

Manager

Monitor
Operator
Monitor

Node Manager

Execute
Reconfiguration

Actuator

Analyze
 +
Plan

Local
Reconfiguration

Manager

Monitor
Resource
Monitor

Figure 2: The EDF conceptual architecture: hierarchical MAPE loops

We believe that this approach is well suited for controlling465

DSP applications in a Fog environment: it promises to exploit
the benefits of both centralized and decentralized architectures,
thus improving performance and scalability without compro-
mising stability. By working at different levels of abstraction,
the system can more efficiently deal with a great number of470

near-edge and Cloud computing resources, which can also ex-
pose very different features. Near-edge resources are usually
characterized by lower computing capacity, are interconnected
by not negligible network latency, and can possibly have limited
energy capacity. Conversely, Cloud resources expose (practi-475

cally) infinite computing capacity and are interconnected with
almost negligible network latency. A hierarchical control al-
lows to rule the complexity by decentralizing as much as possi-
ble the low-level adaptation, while, at the same time, exploiting
the benefit of lightweight higher-level coordination elements,480

which take advantage of a broader view of the system.

3.3. Hierarchical Architecture

To efficiently control the execution of elastic DSP applica-
tions in a Fog environment, we propose Elastic and Distributed
DSP Framework (EDF). It is organized according to the hier-485

archical pattern for decentralized control, where higher-level
MAPE components control subordinate MAPE components.
Specifically, our proposal revolves around a two layered ap-
proach with separation of concerns and time scale between lay-
ers. Figure 2 illustrates the conceptual architecture of EDF,490

highlighting the hierarchy of the multiple MAPE loops and the
system components in charge of the different MAPE phases.

At the lower level and at a faster time scale, EDF executes the
Operator Manager and the Node Manager. The Operator Man-
ager is a per-operator distributed entity in charge of control-495

ling the adaptation of a single DSP application operator using
a local MAPE loop. Through the Operator Monitor, it moni-
tors the performance and the resources usage of the operator.
Then, through the Local Reconfiguration Manager, it analyzes
the monitoring information and determines if any local recon-500

figuration action is needed. The available actions are scale-in
and scale-out, which reduce and increase the number of replicas
per operator, respectively. When the Operator Manager deter-
mines that some adaptation should occur, it issues an operator
adaptation request to the higher layer.505

The Node Manager is a per-node distributed entity that over-
sees the working conditions of a computing resource using a
local MAPE loop. Its goal is to avoid the over-utilization of
the computing resource by migrating some of the hosted op-
erator replicas to neighbor resources when needed. Specifi-510

cally, it uses a Resource Monitor to harvest data regarding the
utilization of the node resources by the application operators
(e.g., CPU utilization, incoming network traffic). Using the Lo-
cal Reconfiguration Manager, it analyzes the monitored data
and determines whether an operator replica should be more515

conveniently migrated to another computing resource. When
the Node Manager determines that a migration should be per-
formed, it issues an adaptation request to the higher layer.

At the higher level and at a slower time scale, EDF exe-
cutes the Application Manager, which is the centralized en-520

tity that coordinates the adaptation of the overall DSP appli-
cation through a global MAPE loop. By means of the Ap-
plication Monitor, it oversees the global application behavior.
Then, using the Global Reconfiguration Manager, it analyzes
the monitored data and the reconfiguration requests received525

by the multiple Operator Managers and Node Managers. The
Application Manager decides which reconfigurations should be
granted. These decisions are then communicated by the Global
Actuator to each Operator Manager and Node Manager, which
can, finally, execute the operator adaptation actions by means530

of their local Reconfiguration Actuator.

The sequence of operations carried out by the Reconfigura-
tion Actuator depends on the reconfiguration protocol in use.
In this work, we assume a pause-and-resume approach [40] and
rely on the stateful migration protocol we presented in [17]. The535

goal of the protocol is to preserve the integrity of the streams,
so that no data is lost, and of the operators internal state (if any),
so that the computation semantics is not altered. To this end, in
the pause-and-resume approach, the operators involved in the
reconfiguration are paused, with their internal state being saved540

to a persistent memory and all the incoming data buffered; af-
ter the deployment is changed, the state is restored and the op-
erators execution is resumed. Therefore, this process causes
application downtime. Moreover, as all the incoming data are
buffered during the downtime period, and must be processed as545

soon as the application is resumed, reconfigurations are expen-
sive in terms of application performance as well.

The EDF architecture is general enough to not limit the spe-
cific internal policies and goals that can be designed for each
component in the two layers. For example, the planning com-550

ponents can be either activated periodically or on event-basis,
can rely on optimization problem formulation or heuristics with
the goal to minimize the application response time, maximize
its availability or a combination of thereof.

6

4. Hierarchical Elasticity Policy555

The hierarchical architecture presented in Section 3 for self-
adaptive DSP elasticity control identifies the different system
macro-components (i.e., Application Manager, Node Manager
and Operator Manager) that, by means of abstraction layers and
separation of concerns, cooperate to adapt the deployment of560

DSP applications at run-time. By properly selecting each com-
ponent internal policy, the proposed solution can address the
needs of different execution contexts, which can comprise ap-
plications with different QoS requirements, infrastructures with
different computing resources, and different user preferences.565

The Operator Manager works at the granularity of a single
DSP operator and implements what we call a local policy. Ex-
ploiting its limited local view of the system (e.g., the utilization
level and the input data rate of its associated operator), and re-
gardless of the reconfiguration needs determined by the other570

managers, the local policy can plan a scaling action for the op-
erator. In this paper we explore two classes of Operator Man-
ager policies, the first based on load thresholds (Section 5.1),
the latter on Reinforcement Learning (Section 5.2).

The Node Manager works at a more coarse-grained level,575

controlling the group of operator replicas that are hosted on
the same computing node. It exploits a node-level view (i.e.,
the utilization level of the node and its network distance from
nodes in the neighborhood), and relying on a sender-initiated
migration policy, described in Section 6, can plan the migration580

of some of the hosted operators to another destination node.
Both the Operator and Node Managers send their reconfigu-

ration request to the Application Manager, which runs periodi-
cally and decides, according to its so called global policy, which
reconfigurations should be enacted. The global policy works at585

the granularity of the whole application. By exploiting a global
view on the application performance and reconfiguration needs
identified by the local managers, it can resolve resource acquisi-
tion conflicts and possibly limit the number of reconfigurations,
as described in Section 7.590

Each reconfiguration request from an Operator or Node Man-
ager specifies the requested action and its associated reconfigu-
ration score. We consider two types of reconfiguration actions:
operator migration and operator scaling. Actions can be of the
form: “move replica α of op from ri to r j”, “add a new replica595

to op on ri”, or “remove replica α of op from ri”, where op
and ri denote an operator and a computing node, respectively.
The reconfiguration score captures the prospective benefit of
the adaptation action according to its proposer. It can express,
for instance, the reduction of the operator’s utilization, the re-600

duction of monetary cost for running the operator, or the im-
provement of some utility function.

5. Operator Manager Policy

The Operator Manager local policy implements the Analyze
and Plan phases of the decentralized MAPE loop, which over-605

sees the execution of a single DSP operator. The Operator Man-
ager relies on the monitoring information collected by the Op-
erator Monitor, which provides several metrics about the oper-

ator’s replicas (e.g., CPU utilization, input data rate, processing
latency). After analyzing this information, the Operator Man-610

ager can possibly plan a reconfiguration of the operator deploy-
ment to adjust its parallelism degree.

Whenever a scale-out decision is taken, the Operator Man-
ager has also to select the node that will host the new replica.
This task is accomplished in two steps. With the help of the615

Node Manager, which has a node-level view, a list of the known
neighbor nodes with available resources (possibly including the
current node) is built, sorted according to their distance in terms
of network delay. Then, the Operator Manager selects the new
replica location using a randomized approach: the closer the620

node, the higher the probability of being selected. Similarly,
in the case of a scale-in decision, the Operator Manager has to
determine which replica will be terminated: again with the help
of the Node Manager, it selects the replica hosted on the node
with highest utilization.625

The proposed reconfiguration request is then communicated
to the centralized Application Manager which, based on all the
reconfiguration requests it has received and the global policy,
determines which requests can be accepted and which not. If
the request is finally accepted, the reconfiguration protocol is630

activated. If the operator is stateless, a scaling operation im-
plies only to start or stop a replica. Conversely, if the operator
is stateful, we also need to reallocate its internal state among the
new set of replicas. We assume that each replica can work on a
well-defined state partition [1]. So, a scale-out operation redis-635

tributes equally the partitions among replicas, whereas a scale-
in operation aggregates the partitions from the merged replicas.

We consider two types of scaling policies for the Oper-
ator Manager. The first is a simple threshold-based policy
whereby scaling decisions are based on the replicas CPU uti-640

lization compared to predefined threshold values. We inves-
tigate the threshold-based approach since most of the exist-
ing auto-scaling solutions rely on this kind of policy. We ob-
serve that identifying effective thresholds may require a com-
plete characterization of the operator behavior (i.e., the rela-645

tionship between the operator utilization and its response time),
which can be cumbersome to obtain, as also shown in Section 9.
Therefore, the choice of these threshold is usually based on em-
pirical experience. The second approach is based on reinforce-
ment leaning whereby the scaling policy is learned over time650

by direct interaction with the system. In this case, we exploit
a relation between the global application performance and the
local operator response time.

5.1. Threshold-Based Scaling Policy
In the threshold-based scaling policy, the Operator Manager655

monitors the CPU utilization of the operator replicas. Let us
denote by Ur the utilization of replica r, which measures the
fraction of CPU time used by r. When the replica utilization
exceeds the target utilization level Us-out ∈ [0, 1], the Operator
Manager proposes to add a new replica. Conversely, the Op-660

erator Manager proposes a scale-in operation, which removes
one of the n running replicas, when the average utilization of
the remaining replicas would not exceed a fraction of the target
utilization, i.e., when

∑n
r=1 Ur/(n− 1) < cUs-out, c ∈ (0, 1). This

7

avoids system oscillations with the Operator Manager execut-665

ing a scale-out operation just after a scale-in.
A possible disadvantage of this policy is that it requires the

user to set appropriate values for the threshold Us−out and for the
coefficient c, which drive the scaling decisions. In particular,
the task of determining a (near) optimal value for the scale-out670

threshold may be challenging, especially if the operator perfor-
mance is not well characterized by its CPU utilization (e.g., it
is I/O-bound, or it is subject to a bursty workload).

Reconfiguration Score. For the threshold-based scaling pol-
icy, the reconfiguration score set by the Operator Manager in-675

dicates the severity of the replicas overload/underload when
making a reconfiguration request. The score is then used by
the Application Manager global policy to rank the different
requests. For scale-out requests, we set the reconfiguration
score equal to the excess utilization level and normalize it680

between the lowest value 0 and the highest value 1, that is
scores-out = (Ur − Us-out)/(1 − Us-out). Similarly, in case of
scale-in request, we set the reconfiguration score equal to the
degree of underloading and normalize it, that is scores-in =[
cUs-out −

∑n
r=1 Ur/(n − 1)

]
/cUs-out.685

5.2. Reinforcement Learning Scaling Policy
Reinforcement learning approaches aim to learn the optimal

strategy — in our scenario the Operator Manager scaling strat-
egy — through experience and direct interaction with the sys-
tem [13]. A RL task basically considers an agent who aims690

to minimize a long-term cost. Considering a sequence of dis-
crete time steps, which models the periodical activation of the
local policy, at each step the agent performs an action, looking
at the current state of its environment (i.e., the operator). The
chosen action causes the payment of an immediate cost, and695

the transition to a new state. Both the paid cost and the next
state transition usually depend on external unknown factors as
well, hence are stochastic. In order to minimize the expected
long-term (discounted) cost, the agent keeps estimates Q(s, a),
which represent the expected long-run cost that follows the ex-700

ecution of action a in state s. These estimates constitute the
so-called Q-function, and are used by the Operator Manager to
take scaling decisions. By observing the actual incurred costs,
the Operator Manager updates these estimates over time, and
by so doing, also improves its scaling policy.705

We define the state of an operator at the beginning of the i-th
time interval as the pair si = (ki, λi), where ki is the number
of running replicas, and λi the measured average tuple arrival
rate at the operator. Even though the tuple arrival rate is a real
number, for the sake of analysis we discretize it by assuming710

that λi ∈ {0, λ̄, . . . , Lλ̄}where λ̄ is a suitable quantum (measured
in tuple/s). We also assume that ki ∈ {1, . . . ,Kmax}. We will
denote by S the set of all the possible operator states.

For each state s ∈ S, we have a set of scaling decisions repre-
sented by a set of actionsA(s) = {+1,−1, 0}, where a = +1 de-715

notes a scale-out decision, a = −1 a scale-in decision, and a = 0
is the do nothing decision. Obviously, not all of the above men-
tioned actions are available in those states with k = 1, where
A(s) = {+1, 0} (at least one replica is always running), or with

k = Kmax, whereA(s) = {−1, 0} (we cannot add replicas beyond720

the maximum allowed level).
To each triple (s, a, s′) we also associate an immediate cost

function c(s, a, s′), which captures the cost of carrying out ac-
tion a when the system is in state s and transitions into s′. In
our RL model we consider three different costs:725

• the reconfiguration cost crc f . Whenever the system carries
out scale-out or a scale-in operation, the operator suffers a
downtime period during which no tuple is processed. For
the purpose of learning the reconfiguration policy, it suf-
fices to consider a simplified cost model that introduces a730

constant penalty for scaling actions1;

• the performance penalty cper f , paid whenever the operator
response time exceeds a per-operator bound Rmax,op;

• the resource cost cres, that accounts for the cost of the com-
puting resources used to run the operator replicas. For sim-735

plicity, we assume that we have a constant cost per replica.

We combine the different costs into a single cost function us-
ing the Simple Additive Weighting (SAW) technique [41]. Ac-
cording to SAW, we define the cost function c(s, a, s′) as the
weighted sum of the costs (normalized in the interval [0, 1]):740

c(s, a, s′) = wrcf
1{a,0}crc f

crc f
+ wperf

1{R(k+a,λ′)>Rmax,op}cper f

cper f
+

+wres
(k + a)cres

Kmaxcres

= wrcf1{a,0} + wperf1{R(k+a,λ′)>Rmax,op} + wres
k + a
Kmax

(1)

where 1{·} is the indicator function, wrcf , wperf and wres, wrcf +

wperf +wres = 1, are non negative weights for the different costs,
and R(k, λ) the average response time when the operator has k
replicas and an input tuple rate of λ tuple/s.

Intuitively, the cost function allows us to instruct the Opera-745

tor Manager to discriminate between the good system configu-
rations and actions and the bad configurations and actions (the
larger the cost, the worse the configuration). As the Operator
Manager aims at minimizing the incurred cost, it is encouraged
by the cost function to (i) reduce the number of requested recon-750

figurations, (ii) keep the response time within the given bound,
and (iii) limit the resource usage. The different weights allows
us to express the relative importance of each cost term. Differ-
ently from the threshold-based solution, this policy directly op-
timizes the response time, without relying on system-dependent755

metrics, such as the CPU utilization. Indeed, as the application
response time results from a combination of the single operators
response time, with an adequate choice of Rmax,op for each op-
erator, the local cost function guides the agent towards meeting
the global performance target in a fully decentralized way.760

1We observe that a detailed model of the reconfiguration cost, that results
by performing specific actions in specific system states (e.g., to migrate the op-
erator with state size α from node u to node v, where u and v are interconnected
with network delay β), would lead to a significantly larger state-action space,
whose analysis could be too computationally demanding.

8

As regards the definition of the bounds Rmax,op, we observe
that they grant a share of the global bound Rmax to each oper-
ator accordingly to their computational weight. They could be
set either statically after preliminary profiling, or dynamically
estimated and adapted at run-time by the Application Manager.765

In Section 9, we describe the simple criteria we followed for
setting the bounds for our reference application during the ex-
perimental session.

Algorithm 1 illustrates the general RL scheme: the Q func-
tions are first initialized (setting all to 0 will often suffices)770

(line 1); then, by direct interaction with the system, the Op-
erator Manager at each step t chooses an action at (based on
current estimates of Q) (line 3), observes the incurred cost ct

and the next state st+1 (line 4), and then updates the Q function
based on what it just experienced during step t, that is the tuple775

(si, ai, ci, si+1) (line 5). The different solutions differ for the ac-
tual learning algorithm adopted and on the assumptions about
the system.

In this paper we consider two RL algorithms at the extremes
of the spectrum. For its simplicity, we first consider the well-780

known Q-learning algorithm. Q-learning is a model-free learn-
ing algorithm which requires no knowledge of the system dy-
namics. Then, we present a model-based approach, which basi-
cally improves its estimates of the entire system dynamic over
time and accordingly updates the Q function.785

Algorithm 1 RL-based Operator Elastic Control Algorithm
1: Initialize the Q functions
2: loop
3: choose a scaling action ai (based on current estimates of Q)
4: observe the next state si+1 and the incurred cost ci

5: update the Q(si, ai) functions based on the experience
6: end loop

5.2.1. Q-learning
Q-learning is an off-policy learning method that estimates the

optimal action value function Q∗ by its sample averages [13].
At any decision step (line 3 of Algorithm 1), Q-learning either:
1) exploits its knowledge about the system, that is, the current790

estimates Q, by greedily selecting the action that minimizes the
estimated future costs, i.e., ai =argmina′∈A(si)Q(si, a′); or 2) ex-
plores by selecting a random action to improve its knowledge
of the system. Here we consider the simple ε-greedy action
selection method, which chooses either a random action with795

probability ε or the greedy action with probability 1 − ε.
The algorithm performs simple one-step updates at the end

of each time slot (line 5), as follows:

Q (si, ai)← (1−α)Q (si, ai)+α

[
ci + γ min

a′∈A(si+1)
Q(si+1, a′)

]
(2)

where α ∈ [0, 1] is the learning rate parameter and γ ∈ [0, 1)
is the discount factor. Observe that (2) simply updates the old
estimate for Q(s, a) with the just observed cost ci plus the dis-
counted expected cost of following the greedy policy onward,800

that is mina′∈A Q(si+1, a′).

5.2.2. Model-Based Reinforcement Learning
At the other extreme of the RL strategies, we now consider

the full backup model-based RL approach (see [13]). In the full
backup approach, we rely on a possibly approximated system
model, and directly use the Bellman equation [13, 42] to com-
pute the Q-functions:

Q(s, a) =
∑
s′∈S

p(s′|s, a)
[
c(s, a, s′) + γmin

a′∈A
Q(s′, a′)

]
∀s∈S,
∀a∈A(s)

We replace the unknown transition probabilities p(s′|s, a) =

P[si+1 = s′|si = s, ai = a], and the unknown cost function
c(s, a, s′), ∀s, s′ ∈ S and a ∈ A(s) by their empirical estimates.
In order to estimate the transition probabilities p(s′|s, a), we ob-
serve that:

p(s′|s, a) = P[si+1 = (k′, λ′)|si = (k, λ), ai = a] =

=

{
P[λi+1 = λ′|λi = λ] k′ = k + a
0 otherwise

(3)

It follows that to estimate the state transition probabilities, it
suffices to estimate the tuple arrival rate transition probabilities
P[λi+1 = λ′|λi = λ]. Hereafter, since λ takes value in a discrete
set, we will write P j, j′ = P[λi+1 = j′λ̄|λi = jλ̄], j, j′ ∈ {0, . . . , L}
for short. Let ni, j j′ the number of times the arrival rate changes
from state jλ̄ to j′λ̄, in the interval {1, . . . , i}, j, j′ ∈ {1, . . . , L}.
At time i the transition probabilities estimates are then

P̂ j, j′ =
ni, j j′∑L
l=0 ni, jl

from which we derive the estimates p̂(s′|s, a) via (3).
In order to estimate the immediate cost c(s, a, s′), we first

split it into two terms, respectively named the known and the
unknown costs:

c(s, a, s′) = ck(s, a) + cu(s′) (4)

Comparing the expression above with (1), we observe that the
known cost ck(s, a) accounts for the reconfiguration and re-
sources costs, and only depends on the current state and action.
On the other hand, the unknown cost cu(s′) accounts for the per-
formance penalty, which depends on the replication level and
input tuple rate in the next time interval, i.e., on the next state
s′. As we assume that neither the input rate transition model nor
the operator response time model are known, we have to esti-
mate cu(s′) online. To this end, the agent observes the incurred
cost ci at the end of each time interval i. Given this information
collected from experience, it can determine cu,i, the “unknown”
cost paid in the i-th time slot, as:

cu,i = ci − ck(s, a)

by simply applying (4). Then, the unknown cost estimate is
updated using a simple exponential weighted average:

ĉu(s′)← (1 − α)ĉu(s′) + αcu,i (5)

We must note that the cost estimation rule above does not ex-
ploit all the a priori knowledge about the system. Indeed, we

9

can heuristically assume that the expected cost due to response
time violation is not lower when the parallelism degree is re-
duced and/or the input rate increases, and it is not higher with
more parallel instances and/or a lower data rate. Therefore, af-
ter applying (5) to s = (k, λ), we always enforce the following
constraints adjusting the estimates for states s′ = (k′, λ′):

ĉu,i(s) ≤ ĉu,i(s′) ∀k ≥ k′, λ ≤ λ′

ĉu,i(s) ≥ ĉu,i(s′) ∀k ≤ k′, λ ≥ λ′

The resulting Q function update step (line 5 of Algorithm 1)
is summarized in Algorithm 2. Given the current estimates805

Q(s, a), at any step the Operator Manager just chooses the
greedy action, that is the action with the minimum long term
estimated cost, i.e., arg mina∈A(si) Q(si, a). Therefore, differently
from the model-free scenario, we do not need a mechanism for
forcing exploration any more.810

Algorithm 2 Full Backup Model-Based Learning Update

1: Update estimates P̂ j, j′ and ĉu,i(si)
2: for all s ∈ S do
3: for all a ∈ A(s) do
4: Q(s, a)←

∑
s′∈S p̂(s′|s, a)

[
ĉ(s, a, s′) + γmina′∈A Q(s′, a′)

]
5: end for
6: end for

Reconfiguration Score. For the RL scaling policy, we base the
reconfiguration score on the expected gain in taking the pro-
posed action. Since the estimated cost associated to not taking
any action is Q(si, 0), the normalized reconfiguration score for
a scaling action is then:

score(a) =
Q(si, 0) − Q(si, a)

max∀h={1,...,i};∀a∈A(sh){1,Q(sh, 0) − Q(sh, a)}

It is worth observing that differently from the threshold-based
policy, where the score takes into account the current utilization
level, the reconfiguration score for the RL policy accounts for
the expected long-term impact of taking the proposed action.

6. Node Manager Policy815

The Node Manager policy implements the Analyze and Plan
phases of the local MAPE loop (see Fig. 2). Its goal is avoid-
ing to run the application components on an overloaded node.
A computing node can host replicas of one or more operators.
When the computing node is overloaded, the hosted replicas820

can experience a performance degradation. To overcome this
issue, the Node Manager proposes to move some of the opera-
tor replicas away from the node using a sender-initiated policy.

The Node Manager exploits a partial knowledge of the sys-
tem provided by the Resource Monitor: the utilization level of825

the node, and the network delays to a restricted suitable set of
computing nodes (i.e., located in its neighborhood). Using such
information, the Node Manager can plan a migration of some of
the operator replicas deployed on its node to another comput-
ing node. As for the scaling actions proposed by the Operator830

Manager, such a migration request has to be communicated to
the centralized Application Manager which, based on the other
reconfiguration requests and the global policy, determines if the
migration can be granted, and possibly activates the migration
protocol.835

We adopt a sender-initiated, reactive and threshold-based
policy in order to decide when and how to perform the migra-
tion. We denote with Uh the overall CPU utilization of the node
h. When Uh exceeds the target utilization value Umig ∈ [0, 1],
the policy plans to migrate one operator replica, randomly se-840

lected, to a new location. The latter is identified in two steps
using the same randomized policy we already presented in Sec-
tion 5 to determine the target node in case of operator scale-out.
The only difference is that the policy does not consider the over-
loaded resources, included the current one, in the list of possible845

target nodes.

Reconfiguration Score. For the migration policy, the reconfig-
uration score set by the Node Manager indicates the severity
of the node overload when making a reconfiguration request.
Specifically, we set the migration score equal to the excess uti-850

lization level and normalize it between the lowest value 0 and
the highest value 1, that is, scoremig = (Uh − Umig)/(1 − Umig).
Such a score is then used by the Application Manager global
policy to rank the different requests.

7. Application Manager Policy855

The Application Manager global policy implements the An-
alyze and Plan steps of the centralized MAPE loop. Its main
goal is to achieve satisfying application performance, by coor-
dinating the adaptation actions proposed by the decentralized
managers (i.e., Operator Manager, Node Manager). Ideally,860

the global policy should encourage the local policies to per-
form reconfigurations, when the application is not performing
well, and should promote a settling period, when the applica-
tion is not subject to changing working conditions. To avoid
over complicating the hierarchical policy design, we resort on a865

simple global policy that coordinates reconfigurations, prevents
the enactment of conflicting reconfigurations (e.g., two opera-
tors requesting a new replica on the same computing resource),
and eventually limit the overall number of granted reconfigu-
rations. It proceeds in three steps: 1) reconfiguration request870

prioritization; 2) conflict prevention; 3) acceptance of requests.
In the reconfiguration request prioritization step, the global

policy determines which are the most worthy reconfiguration
requests that should be applied. To solve this task, it resorts on
the reconfiguration score included by the decentralized man-875

agers in the reconfiguration request. For each type of reconfig-
uration action (i.e., migration, scale-in, scale-out), it sorts the
requests by decreasing reconfiguration score, so that requests
with higher score receive higher priority.

In the conflict prevention step, the global policy goes through880

the received reconfiguration requests sorted by priority, detect
the conflicting requests and remove those having the lower
score. We consider two reconfigurations as conflicting if they

10

want to use the same computing resource to allocate a new
replica or to migrate an existing one.885

In the last step, acceptance of requests, the global policy de-
cides which reconfiguration requests should be granted. Note
that, at this point, these requests are not in conflict one another.
The choice ranges from simply accepting all the proposed re-
quests to limit somehow their number.890

Token bucket based granting policy. In our previous
work [6], we designed a granting policy based on a token
bucket. Here, we propose a revised version, which overcomes
few limitations of the previous solution. The token bucket aims
to determine the number of reconfiguration requests, proposed895

by the decentralized Operator Managers and Node Managers,
that should be enacted as to improve application performance or
reduce deployment costs, while controlling the number of ap-
plication reconfigurations (which cause application downtime).

We resort on a simple token bucket policy, where two types of900

tokens are available: the H-token, which grants either a scale-
out operation or a migration, and the L-token, which grants a
scale-in operation. These tokens are accumulated in a token
bucket that has a finite capacity Cτ: when the bucket is full,
new tokens pop out oldest ones from the bucket. Furthermore,905

we assume that the token bucket can host a single type of tokens
(i.e., either H- or L-tokens) at any given time: e.g., the inser-
tion of a H-token pops out all the L-tokens stored in the bucket.
Since the number of granted reconfigurations is thus limited by
the number of available tokens, a key role is played by the to-910

ken generation rate. Ideally, when the application response time
is within acceptable bounds, reconfigurations should be limited
since performance is guaranteed and the possibly sub-optimal
behavior is preferable to the downtime caused by reconfigura-
tions. On the other hand, should the performance degrade or be915

good enough to signal potential resource under-utilization, the
system should be more prone to reconfigure itself. Periodically,
every Tτ, if the application response time is above a high thresh-
old τH , a new token H is generated and stored in the bucket;
alternatively, if the response time is below a low threshold τL, a920

new token L is generated and stored. If the application response
time is in between the two thresholds, no token is generated.

8. Storm Integration

To manage DSP applications relying on the hierarchical con-
trol approach, we have integrated the designed EDF architec-925

ture in Apache Storm. In this section, we first briefly provide
an overview of Storm; then, we present the prototype design.

8.1. Apache Storm

Storm is an open source, real-time, and scalable DSP system
maintained by the Apache Software Foundation. It manages the930

execution of DSP applications over a set of worker nodes inter-
connected in an overlay network. A worker node is a generic
computing resource (i.e., physical or virtual machine).

In Storm, we can distinguish between an abstract applica-
tion model and an execution application model. In the abstract935

model, a DSP application is represented by its topology, which

is a DAG with spouts and bolts as vertices and streams as edges.
A spout is a data source that feeds data into the system through
one or more streams. A bolt is either a processing element,
which generates new outgoing streams, or a final information940

consumer. A stream is an unbounded sequence of tuples, which
are key-value pairs. We refer to spouts and bolts as operators.

In the execution model, Storm transforms the topology by re-
placing each operator with its tasks. A task is an instance of an
application operator (i.e., spout or bolt), and it is in charge of a945

share of the incoming operator stream. For the execution, one
or more tasks of the same operator are grouped into executors,
implemented as threads. An executor is the smallest schedula-
ble unit; Storm can process large data volumes in parallel by
launching multiple executors for each operator. The framework950

also introduces the worker process, that is basically a Java pro-
cess acting as a container for a subset of the executors of the
same topology. The maximum parallelism degree for an oper-
ator is achieved when each task is assigned its own executor;
in other words, the number of executors of an operator must955

always be less than or equal to its number of tasks.
Besides the computing resources (i.e., the worker nodes),

the architecture of Storm includes two additional components:
Nimbus and ZooKeeper. Nimbus is a centralized component in
charge of coordinating the topology execution; it uses its sched-960

uler to define the placement of the application operators on the
pool of available worker nodes. The assignment plan deter-
mined by the scheduler is communicated to the worker nodes
through ZooKeeper2, that is a shared in-memory service for
managing configuration information and enabling distributed965

coordination. Since each worker node can execute one or more
worker processes, a Supervisor component, running on each
node, starts or terminates worker processes according to the
Nimbus assignments. A worker node can concurrently run a
limited number of worker processes, based on the number of970

available worker slots.

8.2. Distributed Storm

To elastically adapt the applications deployment in Storm,
we resort on Distributed Storm, which is our extension of Storm
that was initially developed to enable the QoS awareness of the975

scheduler [5] and then further extended with mechanisms to
support run-time stateful operator scaling and migration [17].
Furthermore, Distributed Storm introduces an infrastructure-
level and application-level monitoring system. The monitor-
ing system provides intra-node and inter-node information, in-980

cluding network latencies among nodes, CPU utilization (per
node and per executor), and exchanged data rate among execu-
tors. Network latencies are estimated using a network coordi-
nate system, which is built using Vivaldi [43], a decentralized
algorithm having linear complexity with respect to the num-985

ber of network locations. As regards the support for run-time
adaptation, Distributed Storm provides mechanisms for pursu-
ing elasticity while preserving the application integrity. To this
end, our extension handles stateful operators by conveniently

2http://zookeeper.apache.org/

11

http://zookeeper.apache.org/

Supervisor

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
sl

o
t

Supervisor

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
p

ro
ce

ss

w
o

rk
e

r
sl

o
t

Network

Nimbus
Application Manager

Node Manager Node Manager
...

OM

ZooKeeper

Figure 3: Storm architecture with the new EDF components: Application Man-
ager, Operator Manager (for short, OM), and Node Manager.

relocating and distributing their internal state, using the stateful990

migration protocol outlined in Section 3.3.

8.3. Integration of EDF in Storm

The implementation of EDF in Distributed Storm is straight-
forward. As represented in Fig. 3, we introduce the EDF com-
ponents, described in Section 3, into the existing Storm archi-995

tecture. More precisely, the newly introduced components are
the Application Manager, the Operator Managers, and the Node
Managers. These components use the shared in-memory ser-
vice provided by ZooKeeper in order to exchange information
regarding the proposed, accepted, and denied reconfiguration1000

requests.
The Application Manager is created by Nimbus when a new

application is submitted to Storm, and it runs for the whole ap-
plication lifetime. As soon as the Application Manager is cre-
ated, it determines the initial application placement on the set1005

of worker nodes. Being interested in investigating the run-time
adaptation policies, we determine the initial placement leverag-
ing on the decentralized placement heuristic proposed in [2] and
implemented in Distributed Storm [5]. The placement policy
assigns the operators so to minimize the application response1010

time, taking the network latency into consideration.
At run-time, Nimbus periodically executes the Application

Manager every TAM . This manager first analyzes the monitored
application response time, acquired from Distributed Storm,
and collects the reconfiguration requests coming from the de-1015

centralized managers. Then, the global policy is executed so to
coordinate and grant the reconfiguration actions (see Section 7).
After this planning phase, the Application Manager runs the
Global Actuator to enact the deployment changes. To this end,
the latter relies on the rebalance command of Storm, which1020

accordingly updates the topology executors, and on the state-
ful migration mechanisms of Distributed Storm, which allow to
preserve the operators internal state.

When a new application is submitted to Storm, Nimbus also
creates multiple Operator Managers (one per operator). They1025

are assigned to the available worker nodes by the Storm sched-
uler, and run for the whole application lifetime. At run-time,
each Operator Manager collects the amount of resources used
by the managed operator, relying on the monitoring system pro-
vided by Distributed Storm. In particular, we measure the uti-1030

lization for each replica (i.e., executor) retrieving the CPU us-
age information for the corresponding thread, the rate at which
operators exchange tuples, and the average operator response
time. The Operator Manager’s local policy is periodically ex-
ecuted (every TOM), so to identify beneficial reconfigurations1035

and to propose them to the global Application Manager (see
Section 5). Should a reconfiguration be performed, the Recon-
figuration Actuator of the Operator Manager adapts the opera-
tor deployment (e.g., by changing its replication degree), while
safely preserving the operator internal state. To this end, this1040

component relies on the internal mechanisms of Storm and on
the stateful migration mechanisms of Distributed Storm. After
a reconfiguration is performed, the locale MAPE loop is sus-
pended for a short period, in order to prevent the monitoring
component to propagate measures heavily impacted by the re-1045

configuration process itself.
The Node Manager is implemented within the Supervisor

and runs periodically (every TNM) as long as the worker node
is alive. It retrieves monitoring information about CPU utiliza-
tion, exchanged inter-node traffic, and network latencies, from1050

the monitoring components of Distributed Storm. Afterwards,
it runs the local policy to determine whether migrating an op-
erator replica can relieve the worker node overload, and possi-
bly forwards the request to the Application Manager. Should
a reconfiguration be performed, the Reconfiguration Actuator1055

of the Node Manager adapts the operator deployment by ex-
ploiting mechanisms provided by Storm and, for the stateful
migration, by Distributed Storm.

We observe that these components are not tied to a specific
local or global policy, but support the execution of custom poli-1060

cies. In our experiments, we will use and evaluate different
combinations of global and local policies.

9. Experimental Results

We evaluate EDF and the proposed policies using our ex-
tended version of Apache Storm 1.1.0. We deploy EDF on a1065

cluster made of 4 worker nodes and one further node to host
Nimbus and ZooKeeper. Each worker node is configured to
host up to 8 operator replicas (i.e., executors), and is equipped
with a dual CPU Intel Xeon E5504 (8 cores at 2 GHz) and
16 GB of RAM.1070

For the experiments, we use the reference application that
solves a query of the DEBS 2015 Grand Challenge [16], where
data streams originated from the New York City taxis are pro-
cessed to find the top-10 most frequent routes during the last
30 minutes. Figure 4 shows the application DAG. Data source1075

reads the dataset from Redis; parser filters out irrelevant and in-
valid data. Then, filterByCoordinates forwards only the events
related to a specific area to computeRouteID, which identifies

12

the routes covered by taxis. So, countByWindow computes the
route frequency in the last 30 minutes, supported by metronome1080

that defines the passing of time. Finally, partialRank and glob-
alRank compute the top-10 most frequent routes.

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome

lterByCoordinates countByWindow globalRankdatasource parser partialRank

Figure 4: Reference DSP application

We feed the application with a sample dataset provided by
DEBS for the challenge, containing real data collected over one
year. The taxi service utilization significantly changes during1085

the day, thus the application input rate is variable as well. In or-
der to obtain a more resource demanding workload, we acceler-
ate and amplify the original dataset. In particular, we reduce the
events inter-arrival time by a factor of 10, so that in a 12-hour
experiment we process data collected during 5 days. Then, we1090

amplify the DEBS dataset with new surrogate events, while pre-
serving the original statistical properties in terms of taxi routes
distribution. The resulting data set is 5 times larger than the
original one, with a tuple emission rate that ranges from about
20 to 500 tuples per second. The faster workload variations1095

make the run-time adaptation even more challenging.
We run the experiments using all the proposed Operator

Manager policies, namely the threshold-based policy and the
two RL-based ones. As regards the threshold-based policy, we
set the under-utilization parameter c = 0.75 and try different1100

values for the threshold Us-out. For the RL model-based lo-
cal policy, we use two configurations of the cost weights: (i)
wperf = wres = 0.4, wrcf = 0.2, and (ii) wperf = wrcf = 0.4,
wres = 0.2. During preliminary simulations, these configura-
tions turned out to well represent different trade-offs for QoS1105

metrics optimization. For input rate discretization, we use
λ̄ = 50 tuples/s.

We consider Rmax = 250 ms as the target application response
time. To set the target response time Rmax,op for each operator,
we performed some preliminary experiments. First, we identi-1110

fied a configuration of the operators parallelism in which none
of the operators was overloaded (i.e., their monitored utiliza-
tion was below 70%). To this end, it was enough to run just
one replica for all the operators except for partialRank, whose
parallelism was set to 2. Then, keeping the parallelism fixed,1115

we monitored the response time of the single operators and the
whole application. Using this information, we observed how
much time was spent at each operator when the application re-
sponse time was close to Rmax, and consequently set Rmax,op to
those values. In particular, we set 5 ms for parser, filterByCo-1120

ordinates, computeRouteID, and countByWindow, and 210 ms
for partialRank, which represents a bottleneck3. As regards the

3Observe that metronome and globalRank cannot be replicated; therefore,
although they may influence the definition of Rmax,op for the other operators,
we cannot enforce response time bounds for these components.

maximum parallelism degree, we set Kmax = 3 for each oper-
ator, except for metronome and globalRank, which cannot be
replicated (i.e., Kmax = 1), and for partialRank, which is a po-1125

tential bottleneck and can run up to 6 replicas.
The planning phase of the Operator Managers and Applica-

tion Manager is executed twice per minute (i.e., TAM = TOM =

30s). The global policy uses a token bucket that stores at most
Cτ = 1 token at any time. We also set Tτ = 60 s, τL = 125 ms1130

(i.e., 1
2 Rmax) and τH = 225 ms (i.e., 9

10 Rmax). To evaluate the
impact of the token bucket, in the first experiments we use a
baseline global policy that grants all the requested reconfigura-
tions (except for the conflicting ones). The RL algorithms use
the following parameters: discount factor γ = 0.99, learning1135

rate α = 0.1 and, for Q-learning, ε = 0.05.
In the experiments, we focus on the scaling policies. To this

end, we disable the migration policy in the Node Managers.
Anyway, we verify that, with the above settings, none of the
worker nodes is overloaded during the experiments.1140

In the rest of this section, we present the results of our eval-
uation with different combinations of local and global policies.
As regards the local policy, we consider all the solutions de-
scribed in Section 5, namely threshold-based, Q-learning, and
model-based RL. We combine them with two different settings1145

for the global policy, that is with and without the token bucket
mechanism (which limits the number of reconfigurations by ex-
ploiting the global view of the application). When the token
bucket is not used, the global policy only solves conflicting re-
configuration requests.1150

Table 1 summarizes the results of our experiments. For se-
lected configurations, we also plot the dynamics of the relevant
statistics over time in Fig. 5. These graphs highlight the nega-
tive effects of the reconfigurations in Storm, with evident peaks
in the application response time and source data rate caused by1155

the tuple buffering mechanisms used by the reconfiguration pro-
tocol to preserve the application integrity. Therefore, to neglect
transient behaviors due to the initial system setup and the run-
time reconfigurations, we exclude, for each metric monitored
during the experiments, the initial 30 minutes and 2 minutes1160

after each reconfiguration.
Threshold-based local policy. We first analyze the behavior

of the system when the Operator Manager adopts the threshold-
based local policy (TH in Table 1). To determine a good choice
for the scale-out threshold Us−out, we evaluated the policy using1165

different threshold values. When we set Us−out = 0.7, EDF uses
only 8.7 replicas on average4, with the mean response time be-
ing 363 ms, and violating Rmax for 82% of the time. We achieve
similar results setting Us−out equal to 0.6 and 0.5. In order to
achieve acceptable response times for the considered applica-1170

tion, we need a CPU threshold not higher than 0.45. Therefore,

4For the reference application, the minimum number of running replicas is
8 (one per component).

5Since the taxi route statistics are periodically refreshed, the ranking op-
erators of the application are subject to a bursty workload. This periodic and
frequent load bursts are not well captured by the average CPU utilization, which
is computed by the Operator Manager every TOM seconds.

13

Table 1: Results of the experiments with different local policies (TH: threshold-based, QL: Q-learning, MB: Model-based RL), with and without the token bucket
mechanism at the global policy level. P50 and P95 denote the median and 95th percentile of the application response time.

Local Policy Token
Bucket

Response Time (ms) Avg.
Replicas

Downtime
(%)

Rmax Violation
(%)Mean P50 P95

TH Us−out = 0.7 363.0 320.6 686.8 8.69 1.25 82.17
TH Us−out = 0.6 324.6 300.0 507.7 8.75 0.97 77.76
TH Us−out = 0.5 295.0 279.7 457.9 8.87 1.48 69.25
TH Us−out = 0.4 230.0 229.9 334.0 9.61 3.38 35.68
TH Us−out = 0.4 X 211.4 209.8 302.3 9.50 1.23 25.19
TH Us−out = 0.3 161.6 152.3 274.6 12.40 6.12 7.48
TH Us−out = 0.3 X 164.1 158.3 239.4 10.51 3.18 3.62
QL wperf = wres = 2wrcf 474.9 145.9 691.7 13.78 10.96 17.99
QL wperf = wres = 2wrcf X 144.0 137.8 216.9 11.46 1.56 1.31
QL wperf = wrcf = 2wres 492.5 138.5 789.8 13.89 10.84 14.97
QL wperf = wrcf = 2wres X 138.1 133.4 205.0 12.21 1.16 0.81
MB wperf = wres = 2wrcf 176.4 154.7 271.9 10.13 3.20 6.92
MB wperf = wres = 2wrcf X 168.4 161.9 240.4 9.87 1.40 3.06
MB wperf = wrcf = 2wres 94.0 89.3 138.9 12.00 0.00 0.01
MB wperf = wrcf = 2wres X 93.8 89.3 137.8 12.00 0.00 0.00

for this application, the average utilization does not well de-
scribe the operator performance. Using the very low threshold
Us−out = 0.3, EDF runs more than 12 replicas on average, still
violating the target response time 7% of the time. As shown in1175

Fig. 5a, the number of replicas is frequently adjusted, keeping
the application down for about 6% of the time.

In order to verify whether we could reduce the number of re-
configurations performed, we combine the threshold-based lo-
cal policy with the global policy that relies on the token bucket1180

mechanism. We focused on the configuration with Us−out ∈

{0.3, 0.4}, since they are the only ones that achieve acceptable
response time. Figure 5b shows how the token bucket clearly
limits the number of enacted reconfigurations when the scaling
threshold is Us−out = 0.3. In this setting, the application per-1185

formance is similar to the base case without the token bucket;
nevertheless, EDF runs about 2 less replicas on average, and
the application experiences half the downtime throughout the
experiment. Although a scale-out threshold equal to 0.3 (or
0.4) is far from the load thresholds usually adopted, we identi-1190

fied these values by means of successive empirical experiments.
Such low thresholds depend on the specific application logic,
thus showing that, in some cases, determining the best scaling
thresholds can be cumbersome.

Q-learning local policy. RL based policies are very appeal-1195

ing, because they promise to obtain desirable behavior with
limited knowledge about the system dynamics and, in partic-
ular, about how to optimize the deployment objectives. We first
evaluate our simple solution based on Q-learning. When the
Operator Manager uses this policy (QL in Table 1), the overall1200

performance is poor, with the application being continuously
reconfigured (see Fig. 5c). In fact, Q-learning is well known
for its simplicity, provided at the cost of extremely slow con-
vergence to the optimal strategy. Indeed, even varying the cost
weights we cannot see significant changes in the policy behav-1205

ior throughout our 12-hour experiment, at the end of which Q-

learning is still far from converging to good results.

Interestingly, when coupled with the token bucket, the over-
all results for the Q-learning policy dramatically improve. Al-
though the Application Manager has not the power to turn sub-1210

optimal decisions into smarter ones, it can at least avoid unnec-
essary reconfigurations. As shown in Fig. 5d, in this setting the
token bucket mechanism avoids scaling actions whenever the
application performance is acceptable, limiting both the Rmax
violations and the downtime length. By conveniently selecting1215

the reconfigurations to be applied, the token bucket allows to
meet the application requirements most of the time. However,
to obtain this goal, we observe that the Application Manager
only accepts less than 1% of the proposed reconfigurations, and
runs more than 11 replicas on average. This behavior confirms1220

that, in our case, Q-learning would require much more time to
learn a suitable policy. During its learning process, it needs
to gain knowledge on the system behavior at the price of per-
forming exploratory counter-intuitive adaptation actions (e.g.,
scale-in when the operator exceeds its response time bound).1225

Model-based RL local policy. We now evaluate the model-
based RL local policy (MB in Table 1), which exploits the (par-
tially) available knowledge in order to speedup the learning
process. We first consider a cost function configuration with
wperf = wres = 0.4 and wrcf = 0.2, without the token bucket at1230

the global policy level. This fully decentralized solution man-
ages to keep the application response time within Rmax, except
for less than 7% of the time. It runs about 10 replicas on av-
erage, and the overall application downtime is significantly re-
duced with respect to the previously described approaches that1235

use no token bucket. From Fig. 5e, we can also observe that
the model-based RL algorithm is very sensitive to fluctuations
of the measured incoming data rate; in the current experiment,
they generate occasional oscillations in the number of running
replicas (e.g, a scale-out immediately followed by a scale-in for1240

the same operator).

14

 0

 100

 200

 300

 400

 500

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 8

 12

 16

 20

 0 100 200 300 400 500 600 700

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (minutes)

(a) Threshold-based, Us−out = 0.3

 0

 100

 200

 300

 400

 500

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 8

 12

 16

 20

 0 100 200 300 400 500 600 700

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (minutes)

(b) Threshold-based, Us−out = 0.3, with token bucket

 0

 100

 200

 300

 400

 500

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 8

 12

 16

 20

 0 100 200 300 400 500 600 700

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (minutes)

(c) Q-learning

 0

 100

 200

 300

 400

 500
S

o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 8

 12

 16

 20

 0 100 200 300 400 500 600 700

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (minutes)

(d) Q-learning, with token bucket

 0

 100

 200

 300

 400

 500

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 8

 12

 16

 20

 0 100 200 300 400 500 600 700

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (minutes)

(e) Model-based RL

 0

 100

 200

 300

 400

 500

S
o
u
rc

e
 d

a
ta

 r
a
te

 (
tu

p
le

s
/s

)

 0

 100

 200

 300

 400

R
e
s
p
o
n
s
e

ti
m

e
 (

m
s
)

 8

 12

 16

 20

 0 100 200 300 400 500 600 700

T
o
ta

l
n
u
m

b
e
r

o
f
re

p
lic

a
s

Time (minutes)

(f) Model-based RL, with token bucket

Figure 5: Response time and number of replicas using different policies for both the OperatorManager and the ApplicationManager.

15

To further improve the behavior of this fully decentralized
solution, we combine the model-based RL local policy with the
token bucket. We plot the resulting behavior in Fig. 5f, where
we note that the token bucket solves the occasional oscillations1245

issue of the fully decentralized approach (shown in Fig. 5e). In
this setting, the 95th percentile of the application response time
is within Rmax, running not more than 9.9 replicas on average.
The downtime is limited to 1.4%.

We now show that the model-based RL policy can exploit1250

different trade-offs between the considered QoS metrics. We
set wperf = wrcf = 0.4 and wres = 0.2, thus privileging the per-
formance and reconfiguration related metrics over the resource
usage cost. In this scenario, at the beginning of the experiment
EDF determines a good parallelism degree that avoids response1255

time violations, and then never changes the deployment. As
we could expect, in this configuration the presence of the token
bucket at the global layer does not practically have any impact,
since no scaling actions are requested after the initial ones.

This experiment shows that the model-based RL policy over-1260

comes the limitation of the Q-learning approach. Indeed, by
efficiently exploiting the knowledge of the system dynamics,
the model-based RL policy achieves faster convergence than Q-
learning (as appears from Fig. 5e). Moreover, the model-based
RL solution benefits from the strengths of RL approaches,1265

which allow to express what the user aims to obtain, instead of
how it should be obtained (as required by the threshold-based
policy). It is true that, according to our model, the user needs
also to define some policy parameters (i.e., the cost function
weights). However, we believe that — for a user — it is way1270

easier to express the relative importance of utility factors (e.g.,
avoid violations, reduce resource cost) rather than tune system-
dependent metrics (e.g., scale-out threshold on the average CPU
utilization). Last but not least, by comparing Fig. 5f against
Fig. 5e, we readily note that our hierarchical control solution1275

can be effectively adopted in distributed environments. Indeed,
while the Operator Managers optimize a local cost function, the
global view of the system exploited by the Application Man-
ager allows to guide and adapt the overall system behavior in a
lightweight manner.1280

10. Conclusions

In this paper, we have presented Elastic and Distributed DSP
Framework (EDF), a hierarchical autonomous control for elas-
tic DSP applications. Designed according to the decentralized
hierarchical control pattern, our proposal revolves around a two1285

layered approach with separation of concerns and time scale
between layers. At the lower level, distributed components use
a local policy to control the adaptation of DSP operators by
means of scaling and migration actions. At the higher level,
a per-application centralized component oversees the overall1290

DSP application performance. It uses a global policy to solve
possible reconfiguration conflicts and conveniently limit the
number of performed reconfigurations, aiming to reduce the ap-
plication downtime.

Within this framework, we have considered different ap-1295

proaches for defining hierarchical control policies. As regards

the local scaling policy, a first baseline solution relies on the
simple threshold-based approach, which is widely used in liter-
ature. Aiming to design a more flexible self-adaptation strategy,
we have investigated reinforcement learning based approaches,1300

where distributed agents learn which are the most valuable re-
configuration actions to perform. Specifically, we have pre-
sented and evaluated a model-free and a model-based RL al-
gorithm, which exploit different levels of available knowledge
about the system dynamics. As regards the global policy, we1305

have described a lightweight token bucket mechanism to con-
trol the application reconfigurations performed.

Relying on a reference application that processes real-time
data generated by taxis in New York City, we conducted an ex-
perimental evaluation of the different policies. The results have1310

shown that a simple threshold-based policy cannot guarantee
good performance whenever the application behavior is not eas-
ily predictable. While the Q-learning based policy suffers from
the slow convergence velocity of the underlying model-free
learning algorithm, our model-based RL policy clearly outper-1315

forms the other solutions. Differently from the simple thresh-
old based approach, the RL based solution can also account for
other QoS metrics (e.g., the number of reconfigurations per-
formed), providing the user with the flexibility for weighting
the relative importance of each metric. Furthermore, the exper-1320

iments have also demonstrated that a lightweight yet effective
global policy can improve the overall performance of the sys-
tem, with respect to a fully decentralized control solution.

As future work, we plan to further investigate RL approaches
for elasticity. We will investigate more sophisticated techniques1325

for improving the convergence speed of the learning process
(e.g., by leveraging Bayesian Decision Trees, Function Approx-
imation). Moreover, we plan to extend our model by explicitly
considering network latencies within the self-adaptive policies.
To this end, we plan to investigate the challenges of scaling1330

DSP operators in a network-aware manner, where the presence
of network latencies influences the scaling decisions. As re-
gards the global policy, we plan to design more complex solu-
tions that can pro-actively guide the local components behav-
ior by providing more informative feedback. For example, the1335

global policy could adjust the parameters of the local policies
so to more efficiently operate under different working condi-
tions (e.g., stable or critical application performance).

References

[1] B. Gedik, S. Schneider, M. Hirzel, K.-L. Wu, Elastic scaling for data1340

stream processing, IEEE Trans. Parallel Distrib. Syst. 25 (6) (2014) 1447–
1463.

[2] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, et al., Network-
aware operator placement for stream-processing systems, in: Proc. of
IEEE ICDE ’06, 2006.1345

[3] C. Hochreiner, M. Vögler, S. Schulte, S. Dustdar, Elastic stream process-
ing for the Internet of Things, in: Proc. of IEEE Cloud 2016, 2016, pp.
100–107.

[4] S. Rizou, F. Durr, K. Rothermel, Solving the multi-operator placement
problem in large-scale operator networks, in: Proc. of ICCCN ’10, 2010,1350

pp. 1–6.
[5] V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Distributed QoS-aware

scheduling in Storm, in: Proc. of ACM DEBS ’15, 2015, pp. 344–347.

16

[6] V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Towards hierar-
chical autonomous control for elastic data stream processing in the fog,1355

in: Proc. of Euro-Par 2017: Parallel Processing Workshops, Vol. 7475 of
LNCS, 2018, pp. 106–117.

[7] J. Kephart, D. Chess, The vision of autonomic computing, IEEE Com-
puter 36 (1) (2003) 41–50.

[8] T. Chen, R. Bahsoon, X. Yao, A survey and taxonomy of self-aware and1360

self-adaptive cloud autoscaling systems, ACM Comput. Surv. (2018).
[9] V. Gulisano, R. Jiménez-Peris, M. Patiño Martínez, C. Soriente, P. Val-

duriez, StreamCloud: An elastic and scalable data streaming system,
IEEE Trans. Parallel Distrib. Syst. 23 (12) (2012) 2351–2365.

[10] V. Cardellini, M. Nardelli, D. Luzi, Elastic stateful stream processing in1365

Storm, in: Proc. of HPCS ’16, IEEE, 2016, pp. 583–590.
[11] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Integrating

scale out and fault tolerance in stream processing using operator state
management, in: Proc. of ACM SIGMOD ’13, 2013, pp. 725–736.

[12] T. Heinze, V. Pappalardo, Z. Jerzak, C. Fetzer, Auto-scaling techniques1370

for elastic data stream processing, in: Proc. of IEEE ICDEW ’14, 2014,
pp. 296–302.

[13] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT
Press, Cambridge, 1998.

[14] A. Floratou, A. Agrawal, Self-regulating streaming systems: Challenges1375

and opportunities, in: Proc. of Int’l Workshop on Real-Time Business
Intelligence and Analytics, BIRTE ’17, ACM, 2017, pp. 1:1–1:5.

[15] V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Auto-scaling in
data stream processing applications: A model based reinforcement learn-
ing approach, in: InfQ 2017 – New Frontiers in Quantitative Methods in1380

Informatics, Vol. 825 of CCIS, 2018.
[16] Z. Jerzak, H. Ziekow, The DEBS 2015 grand challenge, in: Proc. of ACM

DEBS ’15, 2015, pp. 266–268.
[17] V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Optimal operator

deployment and replication for elastic distributed data stream processing,1385

Concurr. Comput.: Pract. Exper. 30 (9) (2018) e4334.
[18] L. Aniello, R. Baldoni, L. Querzoni, Adaptive online scheduling in Storm,

in: Proc. of ACM DEBS ’13, 2013, pp. 207–218.
[19] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, et al., DRS: Auto-scaling

for real-time stream analytics, IEEE/ACM Trans. Netw. (2017) 1–15.1390

[20] K. G. S. Madsen, Y. Zhou, J. Cao, Integrative dynamic reconfiguration in
a parallel stream processing engine, in: Proc. of IEEE ICDE ’17, 2017,
pp. 227–230.

[21] J. Xu, Z. Chen, J. Tang, S. Su, T-Storm: traffic-aware online scheduling
in Storm, in: Proc. of IEEE ICDCS ’14, 2014, pp. 535–544.1395

[22] X. Liu, A. V. Dastjerdi, R. N. Calheiros, C. Qu, R. Buyya, A stepwise
auto-profiling method for performance optimization of streaming appli-
cations, ACM Trans. Auton. Adapt. Syst. 12 (4) (2018) 24:1–24:33.

[23] G. Mencagli, A game-theoretic approach for elastic distributed data
stream processing, ACM Trans. Auton. Adapt. Syst. 11 (2) (2016) 13:1–1400

13:34.
[24] F. Lombardi, L. Aniello, S. Bonomi, L. Querzoni, Elastic symbiotic scal-

ing of operators and resources in stream processing systems, IEEE Trans.
Parallel Distrib. Syst. 29 (3) (2018) 572–585.

[25] T. De Matteis, G. Mencagli, Elastic scaling for distributed latency-1405

sensitive data stream operators, in: Proc. of PDP ’17, 2017, pp. 61–68.
[26] B. Lohrmann, P. Janacik, O. Kao, Elastic stream processing with latency

guarantees, in: Proc. of IEEE ICDCS ’15, 2015, pp. 399–410.
[27] G. Mencagli, M. Torquati, M. Danelutto, Elastic-PPQ: A two-level auto-

nomic system for spatial preference query processing over dynamic data1410

streams, Future Gener Comput. Syst. 79 (2018) 862–77.
[28] L. Xu, B. Peng, I. Gupta, Stela: Enabling stream processing systems to

scale-in and scale-out on-demand, in: Proc. of IEEE IC2E ’16, 2016, pp.
22–31.

[29] R. K. Kombi, N. Lumineau, P. Lamarre, A preventive auto-parallelization1415

approach for elastic stream processing, in: Proc. of IEEE ICDCS ’17,
2017, pp. 1532–1542.

[30] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, et al., Storm@Twitter,
in: Proc. of ACM SIGMOD ’14, 2014, pp. 147–156.

[31] J. Li, C. Pu, Y. Chen, D. Gmach, D. Milojicic, Enabling elastic stream1420

processing in shared clusters, in: Proc. of IEEE CLOUD ’16, 2016, pp.
108–115.

[32] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, et al., Twitter Heron:
Stream processing at scale, in: Proc. of ACM SIGMOD ’15, 2015, pp.

239–250.1425

[33] A. Floratou, A. Agrawal, B. Graham, S. Rao, K. Ramasamy, Dhalion:
self-regulating stream processing in Heron, Proc. VLDB Endow. 10 (12)
(2017) 1825–1836.

[34] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized
streams: Fault-tolerant streaming computation at scale, in: Proc. of ACM1430

SOSP’13, 2013, pp. 423–438.
[35] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, et al., Apache Flink:

Stream and batch processing in a single engine, Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering 36 (4)
(2015) 28–38.1435

[36] P. Carbone, S. Ewen, G. Fóra, S. Haridi, et al., State management in
Apache Flink: Consistent stateful distributed stream processing, Proc. of
VLDB Endow. 10 (12) (2017) 1718–1729.

[37] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, V. Vlassov, SpanEdge:
Towards unifying stream processing over central and near-the-edge data1440

centers, in: Proc. of 2016 IEEE/ACM Symp. on Edge Computing, 2016,
pp. 168–178.

[38] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, et al., Incremental
deployment and migration of geo-distributed situation awareness applica-
tions in the fog, in: Proc. of ACM DEBS ’16, 2016, pp. 258–269.1445

[39] D. Weyns, B. Schmerl, V. Grassi, S. Malek, et al., On patterns for de-
centralized control in self-adaptive systems, in: Software Engineering for
Self-Adaptive Systems II, Vol. 7475 of LNCS, Springer, 2013, pp. 76–
107.

[40] T. Heinze, L. Aniello, L. Querzoni, Z. Jerzak, Cloud-based data stream1450

processing, in: Proc. of ACM DEBS ’14, 2014, pp. 238–245.
[41] K. P. Yoon, C.-L. Hwang, Multiple Attribute Decision Making: An Intro-

duction, Vol. 104, Sage Publications, 1995.
[42] R. Bellman, Dynamic Programming, 1st Edition, Princeton University

Press, Princeton, NJ, USA, 1957.1455

[43] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: A decentralized
network coordinate system, SIGCOMM Comput. Commun. Rev. 34 (4)
(2004) 15–26.

17

	Introduction
	Related Work
	System Architecture
	Problem Definition
	Architectural Options for Decentralized Control
	Hierarchical Architecture

	Hierarchical Elasticity Policy
	Operator Manager Policy
	Threshold-Based Scaling Policy
	Reinforcement Learning Scaling Policy
	Q-learning
	Model-Based Reinforcement Learning

	Node Manager Policy
	Application Manager Policy
	Storm Integration
	Apache Storm
	Distributed Storm
	Integration of EDF in Storm

	Experimental Results
	Conclusions

