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Abstract—Containers are increasingly adopted, because they
simplify the deployment and management of applications. More-
over, the ever increasing presence of IoT devices and Fog com-
puting resources calls for the development of new approaches for
decentralizing the application execution, so to improve the appli-
cation performance. Although several solutions for orchestrating
containers exist, the most of them does not efficiently exploit the
characteristics of the emerging computing environment.

In this paper, we propose Adaptive Container Deployment
(ACD), a general model of the deployment and adaptation
of containerized applications, expressed as an Integer Linear
Programming problem. Besides acquiring and releasing geo-
distributed computing resources, ACD can optimize multiple
run-time deployment goals, by exploiting horizontal and vertical
elasticity of containers. We show the flexibility of the ACD model
and, using it as benchmark, we evaluate the behavior of several
greedy heuristics for determining the container deployment.

I. INTRODUCTION

Supported by Cloud and network providers [1], [2], the
container technology is changing the way Cloud applications
are architected, deployed, and managed, Containers exploit
operating system level virtualization to realize flexibility and
portability of software. They allow to wrap up an application
together with its customized execution environment (i.e., run-
time, libraries, code), and to easily run it on any machine,
whether bare metal or virtual machine (VM). Several solutions
(e.g., Amazon ECS, Google Cloud Platform, Kubernetes)
suggest to run containers as a further level of virtualization
on top of VMs, so to benefit from speed of the former and
isolation of the latter. As a result, an application component
runs within a container (e.g., Docker), which, in turn, runs
on a VM that can be dynamically acquired and released.
The presence of two virtualization layers allows to manage
the application deployment at different levels of abstraction,
thus opening a wide spectrum of adaptation strategies. These
strategies can work in isolation, if they operate on a single
level of abstraction (e.g., by only scaling containers), or can
exploit a multi-level approach, if they jointly optimize the
container deployment as well as the allocation of VMs over
the distributed environment.
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The wide diffusion of IoT sensors, wearable devices, and
single-board computers fosters the development of new perva-
sive and latency-sensitive applications, which aim to improve
our everyday life (e.g., health-care, environment monitoring,
smart traffic lights, and data-driven decision makers — [3], [4],
[5], [6], [7]). Recent trends explore the possibility of running
Big Data and IoT applications (e.g., [5], [8]) over distributed
Cloud and near-edge/Fog computing resources, so to provide
low latency and high throughput [9]. Nevertheless, the use
of a diffused infrastructure poses new challenges that include
network and system heterogeneity, geographic distribution,
and non-negligible network delays among distinct nodes pro-
cessing the distributed application [10]. The emerging scenario
is very challenging, and most of the existing solutions for
orchestrating containers may not efficiently exploit the geo-
distributed computing environment. Indeed, most solutions
operate at a single level of abstraction (e.g., [7], [11]), do
not consider the geographic distribution of Cloud/Fog environ-
ments (e.g., [12]), place containers without jointly considering
their scaling (e.g., [7], [13]) and, most importantly, provide
best-effort approaches (e.g., [3], [14]) that cannot be easily
tuned to optimize different deployment objectives (e.g., im-
prove application availability, reduce response time, network
usage, or cost). Moreover, there is no general formulation of
the container deployment problem, which makes it difficult to
analyze and compare the different existing solutions.

In this paper, we aim to fill this gap by proposing Adaptive
Container Deployment (ACD), a general formulation of the de-
ployment and adaptation problem of containerized applications
over geo-distributed infrastructures. ACD can be equipped
with different optimization objectives, e.g., aimed to minimize
resource load unbalance, network traffic or cost, maximize
application throughput, or a combination thereof; in this paper,
we model the deployment and adaptation costs of running con-
tainers on VMs. ACD considers applications where multiple
software components (e.g., microservices) should be elasti-
cally scaled at run-time, so to efficiently handle the incoming
workload. Differently from existing solutions (e.g., [12], [13],
[15]), ACD allocates the application containers over multi-
ple geo-distributed VMs, so to optimize specific deployment
objectives. Then, to preserve these objectives at run-time, it
can horizontally and vertically scale the application containers,
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while also acquiring and releasing VMs as needed. ACD
explicitly models the presence of two layers of virtualization
and, by providing a general formulation of the deployment
problem, it represents a benchmark against which heuristics
can be evaluated.

The paper is structured as follows. We model ACD as
an Integer Linear Programming (ILP) problem (Sections II
and III), which can be used to optimize different QoS metrics;
specifically, we formalize the deployment cost and adaptation
cost. We show the flexibility of the proposed solution and,
using ACD as benchmark, we evaluate various well-known
deployment heuristics (Section IV). We discuss related works
in Section V and conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Computing Infrastructure Model. We consider a geo-
graphically distributed computing environment, where multi-
ple Cloud data centers and Fog micro-data centers provide
VMs on-demand (i.e., VMs can be acquired and released at
run-time as needed). A VM offers computing and memory
resources that can be exploited to run containerized appli-
cations. Although in theory unlimited, we assume that the
number of VMs that can be leased in a certain time period
is limited (e.g., at most 50 new VMs can be acquired at
once). Let V be the set of all VMs, including the active
(leased) ones and those turned off but leasable. A VM v ∈ V
has the following characteristics: Cv , the total CPU capacity,
expressed in number of CPU cores; Mv , the total available
memory capacity; DRv , the download data rate from an
external container repository; and Tv , its boot time. As will
be clarified later, the external repository (e.g., Docker Hub
or Docker Store) allows to download, prepare, and launch
application instances by means of containers. Since data
centers are scattered on a geo-distributed environment, distinct
computing resources can communicate with a non-negligible
delay. We model the logical connectivity (u, v) between each
pair of VMs u, v ∈ V , which is characterized by a network
delay du,v . Such a logical connectivity between computing
resources results by the underlying physical network paths and
routing strategies.

Container Model. Following the Docker model, a container
is an instance of a container image (or simply image), which
represents a container snapshot and contains all the data
needed for its execution. When a container has to be instan-
tiated on a VM, the latter needs to download the container
image from an external repository (e.g., Docker Hub), if the
image is not already on the VM. During its execution, a
container accesses resources exposed by the hosting VM and
it can be configured with specific quotas that limit how much
of the available CPU and memory resources it can use. In
Docker, this quota configuration can be scaled at run-time
with (practically) no downtime. Without loss of generality,
we consider that a container can assume one of the quota
configurations belonging to the finite set S. Each configuration
s ∈ S is characterized by the CPU quota cs, expressed

in number of CPU cores, the memory quota ms, and the
container boot time on a reference computing resource, Ts.

Application Model. We consider a very general application
model, where the application consists of a set of compo-
nents, which cooperate in order to accomplish a common
goal (e.g., [4], [6]). An application component (or, simply,
component) is a black-box entity that carries out specific
tasks (e.g., perform computation, store and access data sets)
and can interact with other components. To properly process
increasing incoming workloads, multiple instances of the same
component can be created and executed in parallel. In such a
way, each instance works autonomously and processes a subset
of the incoming requests. From an operational perspective, we
assume that each component instance runs in a software con-
tainer, e.g., by leveraging on Docker. An application A consists
of a set of components a ∈ A that are interconnected by logical
links (a, b), with a, b ∈ A; the latter enable the data exchange
between components. Each application component a ∈ A is
characterized by the following resource requirements: Ca, its
CPU demand, and Ma, its memory demand. The resource
demand usually changes at run-time because of the varying
application workload; it follows from non-functional require-
ments, such as throughput, response time, and size of the data
set to be stored in memory. Other resource requirements (e.g.,
disk capacity, network bandwidth) can be similarly considered.
We assume that the resource requirements of components can
be achieved by aggregating CPU and memory resources from
multiple computing nodes. We rely on containers to easily
deploy, manage, and run multiple instances of the application
components. Therefore, each application component a ∈ A is
associated to a container image (used to launch component
instances), whose size is Ia; if the container image is not
locally available on the computing resource, it can be fetched
from an external repository. To model the logical connectivity
between the application components a, b ∈ A, we resort on a
connectivity matrix R : |A| × |A| → {0, 1}, where Ra,b = 1
if a and b exchange data using the network, and Ra,b = 0
otherwise. Since communicating components can be executed
on distinct computing nodes, the application also exposes, as
requirement, the maximum network delay between any pair of
communicating components’ instances, Rmax.

B. Problem Definition

The application deployment problem consists in determin-
ing how and where to run the application components on the
computing infrastructure. Due to the multiple virtualization
layers, it deals with the identification of the number and type
of containers that will execute the application components, as
well as the placement of containers on the computing infras-
tructure. The overall fleet of containers and their placement
should be determined so to meet the components requirements,
in terms of resource demand (i.e., Ca and Ma) and network
delay (i.e., Rmax).

At run-time, the application can be subject to varying
workloads, which lead its components to change the demand
of computing Ca and memory Ma resources. To preserve



performance, we should solve the adaptive container de-
ployment problem, which determines whether the application
deployment should be conveniently updated at run-time, while
explicitly taking into account the adaptation costs. Because
of the two virtualization layers, it represents a multi-level
optimization problem. At the first level, it deals with the
elastic adaptation of the number and type of containers used
to run the application components, by leveraging on vertical
and horizontal scaling. At the second level, it oversees the
container placement on a set of VMs that can be elastically
acquired and released on demand.

As regards container scaling, we define the following oper-
ations. A vertical scale changes the container configuration,
thus increasing or reducing the quota of resource that is
granted to the application component. This operation can be
performed with practically no downtime. A horizontal scale
changes the number of containers used to run the applica-
tion components, by adding (scale-out) or removing (scale-
in) a component instance. Differently from vertical scaling
operations, performing a scale-out introduces an adaptation
cost, which considers, e.g., the time needed to launch the new
containers and, if needed, acquire new VMs.

III. ADAPTATION PROBLEM

In this section, we define the QoS metrics that drive the
application deployment and its adaptation. Then, we formulate
the ACD problem.

A. ACD Variables

We model the application deployment with integer variables
xa,s,v ∈ N representing the number of containers of type
s ∈ S deployed on the VM v ∈ Va that run an instance of
the application component a ∈ A. We denote the application
deployment as x = 〈xa,s,v〉, with a ∈ A, s ∈ S, and v ∈ V .

We find convenient to introduce the binary variables zv with
v ∈ V , which define whether the VM v is active, i.e., turned
on (condition expressed as zv = 1). To determine when the
application should be more conveniently redeployed, e.g., in
face of changing incoming workload, we introduce a set of
variables that keep track of the current deployment (if exists).
We define the variables x′a,s,v and z′v , which maintain the value
of xa,s,v and zv , respectively, as computed at the previous
optimization step by ACD. In case of initial deployment, these
variables store an empty deployment, whereas at run-time
they store the application deployment as computed by ACD
during its latest execution. We denote the previous application
deployment as x′ =

〈
x′a,s,v

〉
, with a ∈ A, s ∈ S, v ∈ V .

B. QoS Metrics

We are interested in determining an application deploy-
ment on a geographically distributed computing infrastructure,
which minimizes the deployment cost. Moreover, at run-
time, we want to conveniently reconfigure the application
deployment so to efficiently handle varying workloads.

Deployment cost. We define the deployment cost Z(·) as
the overall number of VMs leased for running all the appli-
cation components in A. Given the application deployment
vector x, the deployment cost can be defined as:

Z(x) =
∑
v∈V

zv (1)

where the variable zv ∈ {0, 1} denotes whether the VM v ∈ V
is turned on (condition expressed as zv = 1). We can readily
determine the value of zv by leveraging on x; indeed, v is
active if it hosts at least one application component. A linear
formulation of this condition can be expressed as follows:∑

a∈A
∑

s∈S xa,s,v

Γ
≤ zv ≤

∑
a∈A

∑
s∈S

xa,s,v (2)

where Γ is a large constant. Note that, although we provide
a simple model of deployment cost, others definitions can be
similarly considered, e.g., so to control the monetary cost for
the allocation of VMs over different billing time units.

Adaptation cost. We define the adaptation cost D(·) as the
time needed to reconfigure the application deployment. This
term takes into account the time needed to spawn new VMs,
retrieve the application container images, and finally start the
containers. Given the deployment vectors x and x′, we have:

D(x,x′) = max
v∈V

(Tv · δv) + max
v∈V

∑
a∈A

(
Ia
DRv

· ba,v · ẋa,v
)

+

+ max
a∈A

max
s∈S

(Ts · δa,s) (3)

where the first term on the right hand side models the longest
boot time of any VM used for A, the second term represents
the time needed to download the container images of the
application components on v, and the third term represents
the longest boot time of any container used for A. The binary
constant ba,v indicates if the component image Ia is not yet
available on v and has to be downloaded from the external
repository (in such a case, ba,v = 1).

The binary variables δv indicate whether a new VM v ∈ V
should be turned on and used to execute some application
components. We define δv as follows:

zv − z′v ≤ δv ≤
zv + (1− z′v)

2
(4)

The variable ẋa,v ∈ {0, 1} denotes whether at least one
component a ∈ A should be executed on v ∈ V (in such a
case, ẋa,v = 1). Formally, we have:∑

s∈S xa,s,v

Γ
≤ ẋa,v ≤

∑
s∈S

xa,s,v (5)

The binary variable δa,s determine whether a scale-out
operation should be performed for a ∈ A, by adding a new
container of type s ∈ S: δa,s = 1 if exists any v ∈ V such
that xa,s,v−x′a,s,v > 0, δa,s = 0 otherwise. A linear definition
of δa,s can be formulated as Γ · δa,s ≥ xa,s,v − x′a,s,v , which
must hold true ∀v ∈ V .

Vertical scaling operations are implicitly captured by x and
D(x,x′). A component a ∈ A is vertically scaled if, given



v ∈ V , the container configuration of a on v is changed from
r to s, with s 6= r ∈ S (i.e., if ∃s, r ∈ S, with s 6= r, such
that xa,r,v < x′a,r,v and xa,s,v > x′a,s,v). This reconfiguration
does not introduce an adaptation cost in D(x,x′).

Application constraints. Since the application components
can be executed on VMs disseminated over a geo-distributed
environment, the application requires to limit the network
delay between the communicating application components. To
satisfy this requirement while computing the application de-
ployment, we model the network delay between the application
components and require it to be below the upper bound Rmax,
i.e., Ra,b · du,v · y(a,b)(u,v) ≤ Rmax, ∀a, b ∈ A, u, v ∈ V ,
where Ra,b indicates if the components a and b, with a, b ∈ A
exchange data, du,v is the network delay between u, v ∈ V ,
and y(a,b)(u,v) is a binary variables, whose value is 1 if at least
one instance of a should be deployed on u and at least one
instance of b should be deployed on v. By definition, we have
that y(a,b)(u,v) = ẋa,u · ẋb,v , with a, b ∈ A and u, v ∈ V .

C. Adaptation Problem Formulation

The ACD formulation determines the application deploy-
ment on geo-distributed computing resources and, at run-time,
evaluates benefits and costs of its adaptation1. To select the
best deployment among all the feasible ones, ACD uses an
objective function that minimizes the deployment and adapta-
tion cost. We formalize the objective function as follows:

F (x,x′) = wz
Z(x)

Zmax
+ wa

D(x,x′)

Dmax
(6)

where wz, wa ≥ 0, wz +wa = 1, are weights for the different
QoS attributes, and Zmax and Dmax denote respectively the
maximum value for the overall expected deployment and
adaptation cost.

We formulate ACD as an ILP problem as follows:

min F̄ (x,x′)

subject to:
V ≥ Tv · δv ∀v ∈ V (7)

A ≥
∑
a∈A

(
Ia
DRv

· ba,v · ẋa,v
)

∀v ∈ V (8)

S ≥ Ts · δa,s ∀a ∈ A, s ∈ S (9)

Cv ≥
∑
a∈A

∑
s∈S

cs · xa,s,v ∀v ∈ V (10)

Mv ≥
∑
a∈A

∑
s∈S

ms · xa,s,v ∀v ∈ V (11)

Ca ≤
∑
s∈S

∑
v∈V

cs · xa,s,v ∀a ∈ A (12)

Ma ≤
∑
s∈S

∑
v∈V

ms · xa,s,v ∀a ∈ A (13)

Rmax ≥ Ra,b · du,v · y(a,b)(u,v)
∀a, b ∈ A,
∀u, v ∈ V (14)

ẋa,u =
∑
v∈V

y(a,b)(u,v) ∀a, b ∈ A, u ∈ V (15)

1Note that ACD realizes the Plan component within the MAPE reference
model for autonomous systems [16]. Indeed, it is in charge of determining the
adaptation actions with the aim of meeting specific optimization objectives.

ẋb,v =
∑
u∈V

y(a,b)(u,v) ∀a, b ∈ A, v ∈ V (16)

In the problem formulation, we replaced the objective
function F (x,x′), which is not a linear expression in x
due to the maximum operations in D(x,x′), with a linear
function F̄ (x,x′). The latter is obtained from F (x,x′) by
replacing the adaptation cost D(x,x′) with the auxiliary
function D̄(x,x′) = V + A + S, where V , A, and S are
defined in (7), (8), and (9), respectively. To explain why this
formulation works, we consider the term V ≥ Tv · δv . Since V
must be larger or equal than its right-hand side, Tv · δv , and
at the optimum V is minimized, then V = maxv∈V (Tv · δv).
Similar arguments apply also to A and S. The constraints (10)
and (11) limit the placement of application components on a
VM v ∈ V according to its available resources. Equations (12)
and (13) guarantee that the demand of resources by each
application component a ∈ A is satisfied. Constraint (14)
limits the network delay between any pair of component
instances to the upper bound Rmax. Finally, constraints (15)
and (16) model the logical AND between the deployment
variables, that is, y(a,b)(u,v) = ẋa,u · ẋb,v .

We can demonstrate that ACD is an NP-hard problem;
indeed, it is a generalization of the Partition problem, which
is known to be NP-hard. Due to space limitations, we omit
the proof.

IV. EXPERIMENTS

We evaluate the ACD model through a set of numerical ex-
periments that aim at demonstrating the formulation flexibility.
In Section IV-B, we analyze how ACD allows us to optimize
different QoS metrics, such as deployment cost, adaptation
cost, and a combination thereof. Then, in Section IV-C, we
use ACD as a benchmark against which we compare three
greedy heuristics.

A. Experimental Setup

We run the experiments on an Amazon EC2 VM (c4.xlarge:
4 vCPU and 7.5 GB RAM). To solve ACD, we use CPLEX c©

(version 12.6.3), the state-of-the-art solver for ILP problems.
We consider an application with 5 components a ∈

{0, · · · , 4} that exchange traffic on bidirectional links; the
resulting non-zero values of the connectivity matrix R are
R0,1 = R0,2 = R2,3 = R3,4 = 1. Due to the lack of reference
workloads for geo-distributed containerized applications, we
generate a synthetic resource demand for each application
component as follows. At time t, the demand of computing
Ca and memory Ma resources by a ∈ A is defined as
fa(t) = fa(t − ∆a) ± ra, where ∆a and ra are stochastic
variables. We extract ra from a Poisson distribution (P , with
parameter λ) and limit the resulting fa(t) in [fmin

a , fmax
a ].

The rate at which the resource demand changes, ∆a, can
be extracted from either an exponential distribution (EXP,
with parameter µ) or a lognormal distribution (LGN, with
parameters µ and σ). Table I reports the parameters used for
each component. The resulting resource demand is represented
in Figure 1; we readily see that the application includes 3
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Fig. 1. Periodic workload generated for each application component a ∈ A.

CPU-intensive and 2 memory-intensive components. Each
component a ∈ A defines a container image whose size is
330 MB (value obtained as the average size of 25 popular
Docker images). Moreover, the application requires that the
maximum network delay between any two components that
exchange data is Rmax = 80 ms.

We define four different container configurations in S, with
quota (cs,ms) = {(1, 1), (2, 4), (2, 8), (4, 4)}, respectively,
where cs is expressed in CPU cores and ms in GB. The
container boot time, Ts, is selected uniformly in [8.5, 11.5] s.
The computing infrastructure includes two different types of
VMs, where one type is twice the other: specifically, type A
with Cv = 4 vCPU and Mv = 16 GB RAM, and type B
with Cv = 8 vCPU and 32 GB RAM. Each VM has a boot
time Tv extracted with a uniform probability in [85, 115] s,
i.e., one order of magnitude greater than the container boot
time. We also consider that the VM v has a download data
rate from the container repository, DRv , equal to 100 Mbps.
We consider a geographically distributed infrastructure, where
VMs are interconnected with a non-negligible network delay
uniformly distributed in [10, 100] ms.

To adapt the application deployment at run-time, aiming to
satisfy the varying resource demand, we periodically solve the
ACD model, every 5 minutes of simulated time.

B. Optimizing QoS Metrics

The ACD model allows us to compute the application
deployment while optimizing different QoS metrics, whose
importance depends on the utilization scenario. In this exper-
iment, we show the effect of different optimization objectives
on the application run-time performance, expressed in terms
of deployment cost and adaptation cost (defined in (1) and (3),
respectively). We first solve ACD by optimizing a single QoS
metric. For example, to optimize the deployment cost, we
set the weights as wz = 1 and wa = 0 in (6). Then, we
optimize the multi-objective function by uniformly weighting
each metric contribution (i.e., wz = wa = 0.5); from previous
experiments, we obtain the following normalization factors,
that we use in (6): Dmax = 152.90 s and Zmax = 12.

Figure 2 reports the application performance in terms of
different QoS metrics: the deployment cost measures the
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Fig. 2. Impact of different optimization objectives on the application QoS
metrics.

number of active VMs; the cumulative adaptation cost2 rep-
resents the overall time spent for adapting the application
deployment, since t = 0 s; and max delay is the maximum
network delay experienced between any two communicating
application components, whose value should be lower than
Rmax (the latter is represented as a horizontal red line).

When ACD optimizes the deployment cost (namely, ACD-
Z), it always uses as few VMs as possible. Therefore, when-
ever possible, ACD reconfigures the application deployment so
to consolidate its containers on a reduced number of nodes.
Since ACD-Z continuously starts containers and VMs (as the
incoming workload increases), it obtains a rather high cumu-
lative adaptation cost. Table II reports different percentiles of
the adaptation cost during the whole experiment. We can see
that, on average, the adaptation cost of ACD-Z is 115 s.

When ACD optimizes the adaptation cost (namely, ACD-
A), the latter QoS metric is reduced of about 91%. Since
ACD-A does not consolidate containers on fewer VMs, we
can see from Figure 2 that it uses up to 10 VMs (on average,
3 VMs more than ACD-Z). As expected, ACD-A under-uses
the resources available on the active VMs, down to 76.4% at
400 minutes (the lowest value).

When ACD optimizes both the QoS metrics (labeled as
ACD), the application experiences deployment and adaptation
costs that are very close to the values obtained for the single-
objective optimization (see Figure 2). Observe that, soon
after 700 minutes, ACD uses a slightly higher number of
VMs than ACD-Z, because it prefers to not reconfigure the
application deployment so as to consolidate it on fewer VMs.
Indeed, this operation would introduce an adaptation cost.
As regards network delay, we can see from Figure 2 that,
independently from the optimization objective, ACD always
meets the application requirement.

2In Figures 2 and 3, we represent the cumulative adaptation cost instead
of the adaptation cost so to better show the overall resulting performance.



TABLE I
PARAMETERS USED TO DEFINE Ca AND Ma FOR EACH APPLICATION COMPONENT a ∈ A.

Component ra Cmin
a Cmax

a ra Mmin
a Mmax

a ∆a distribution

0 P(1) 2 16 P(1) 1 8 EXP(0.001)
1 P(1) 2 6 P(2) 8 32 EXP(0.080)
2 P(1) 8 14 P(1) 2 7 EXP(0.060)
3 P(1) 1 8 P(2) 8 32 LGN(5.70, 1.00)
4 P(1) 8 14 P(1) 1 7 LGN(7.50, 1.00)

TABLE II
AVERAGE AND PERCENTILE VALUES OF THE APPLICATION QOS METRICS: DEPLOYMENT COST Z(x), I.E., NUMBER OF ACTIVE VMS; ADAPTATION COST

D(x,x′), EXPRESSED IN SECONDS.

Z(x) D(x,x′)
avg min 50th 75th 95th max avg min 50th 75th 95th max

ACD-Z 5.99 4 6 7 7 7 115.26 10.91 117.77 123.4 124.03 124.11
ACD-A 8.30 4 8 9 10 10 10.09 0 0 9.73 104.92 125.11

ACD 6.01 4 6 7 7 8 15.22 0 0 9.80 103.64 116.70
Greedy 8.61 6 8 10 11 11 10.88 0 0 9.22 106.75 123.46

Greedy H 10.74 5 11 12 12 12 9.21 0 0 9.73 10.91 124.06
Greedy V 6.76 6 7 7 7 7 2.87 0 0 0 10.02 123.46
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Fig. 3. Comparison of Greedy First-fit heuristics against ACD.

C. Evaluating Greedy Heuristics

In this experiment, we use ACD as a benchmark against
which we evaluate different heuristics. We consider Greedy
First-fit, i.e., one of the most popular heuristics used to
solve the bin-packing problem and often adopted by open-
source products to address the placement problem.When new
resources are needed, Greedy First-fit first scales vertically and
then, if needed, scales horizontally the component containers.
Conversely, when resources should be released, Greedy First-
fit first scales-in horizontally and then, if possible, vertically
on the running containers. We also consider other two greedy
heuristics, namely Greedy H and Greedy V that perform
only horizontal and vertical scaling operations, respectively.
Figure 3 reports the application QoS metrics. We use ACD that
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Fig. 4. Overall amount of CPU resource, in number of cores, demanded by
the application components and allocated by the different deployment policies.

optimizes the multi-objective function as benchmark; note that
ACD adapts the application deployment by means of vertical
and horizontal scaling operations.

Greedy V performs only vertical scaling, meaning that it
cannot add new containers to run the application; however,
it can migrate the existing ones on other VMs, where more
resources can be exploited. From Figure 3 we can see that
Greedy V obtains the lowest possible adaptation costs (on
average, 2.9 s) and uses at most only 7 VMs to run 12 contain-
ers. Nevertheless, since Greedy V cannot run in parallel more
than 12 containers, it often fails to accommodate the resource
demand by all the application containers. For this heuristic,
determining the initial number of containers is crucial to
accommodate run-time workload fluctuations. Figure 4 allows
to better visualize this limitation; due to space limitations, the
figure reports only the overall demand and allocated quota of
CPU cores by each deployment strategy.

Greedy H can change the number of application containers



at run-time. Therefore, as represented in Figure 3, it results
in higher values of deployment and adaptation costs: on
average, it uses 11 VMs and imposes an average adaptation
cost of 9.2 s. Differently from Greedy V, Greedy H properly
allocates the CPU demand (see Figure 4), even though it
reserves more resources than needed. This depends on the
criteria used to select the container configuration: when the
application component has heterogeneous requirements (e.g.,
CPU and memory resources), determining the best container
configuration to be used is not trivial.

Greedy First-fit (referred as Greedy in Figure 3) exploits the
strengths of Greedy H and Greedy V: it scales horizontally
containers to satisfy the resource demand (see Figure 4), and
recurs to vertical scaling to better exploit the available re-
sources. Greedy First-fit uses on average 85% of the available
resources on each VM, whereas Greedy H and Greedy V use
77% and 78%, respectively. Note that Greedy First-fit uses
about 43% more computing resources than ACD (44% more
than ACD-Z). This happens because Greedy First-fit does not
consolidate the application containers on fewer VMs.

Most importantly, the Greedy heuristics are not network-
aware. Hence, as represented in Figure 3, they cannot satisfy
the application requirement on the maximum network delay
Rmax between its communicating components. We believe that
ACD can be used to devise new deployment policies that can
overcome the limitations of the Greedy First-fit heuristics and
that can better exploit the available computing resources while
satisfying the application requirements.

On Resolution Time. We briefly discuss the resolution
time of the different deployment strategies. The Greedy First-
fit heuristics are very fast, determining the application de-
ployment in 3 ms on average. Nevertheless, they do not
explicitly optimize the deployment objectives and cannot meet
the application requirements on network delays. These feature
are of crucial importance on distributed Cloud/Fog computing
environments. The single-objective strategies that solve the
ILP formulation, i.e., ACD-Z and ACD-A, experienced on
average resolution time of 954 ms and 714 ms, respectively.
Computing the deployment while optimizing a multi-objective
function is harder, and ACD spent on average 17.26 s to
determine the best solution. Note that, although higher than the
other approaches, this is still a reasonable amount of time for
our medium-size experimental setting. Although ACD suffers
from scalability issues (being NP-hard), it provides interesting
insights that can be help to design new and efficient heuristics
that can overcome the limitations of the existing approaches.

V. RELATED WORK

The fast increasing adoption of container technologies and
the decentralization of computation away from Cloud data
centers call for effective deployment and management strate-
gies for containerized applications, also addressing their run-
time adaptation [17]. We can classify existing research works
that focus on container deployment according to the following
main directions: (1) the deployment goals, (2) the span of
control, (3) the actions and methodologies that can be used

for determining or adapting the deployment, and (4) the
distribution of the managed computing resources.

The optimization goals pursued by container deployment
and management solutions include the improvement of ap-
plication performance (e.g., [3]), load balance and resource
utilization (e.g., [13], [18], [19]), energy efficiency [8], and
the reduction of deployment cost (e.g., [15]). In some cases,
a combination of deployment objectives is considered (e.g., to
improve data locality and load balance [7]).

As regards the span of control, some works deal with the
initial placement (e.g., [7], [12], [19]), while the majority
addresses the deployment run-time adaptation (e.g., [3], [11],
[19]), so to enable the containerized application to preserve
its performance in face of changing working conditions.

The actions that control the deployment of containerized
applications include the container placement on the underlying
computing nodes (either physical or virtual), the container
scaling (horizontal, vertical, or a combination thereof), and
the container migration. When containers are placed on VMs,
a second level of deployment can entail the VM allocation
over the distributed environment. Most of the works consider
a single level of deployment (e.g., [7], [11], [13], [14], [15]);
in this paper, we consider a multi-level deployment, as also
done in [3], [20].

To determine or adapt the deployment on the underlying
infrastructure, the approaches proposed so far recur to two
main methodologies: mathematical programming and heuris-
tics. Mathematical programming approaches consider the ini-
tial placement of containers (e.g., [7], [19]) as well as their
run-time deployment adaptation (e.g., [12], [15], [18]). C-
Port [18] is the first example of orchestrator that deploys and
manages containers across multiple Clouds using a constraint-
programming model for resource selection. Since the model
details are not provided, a comparison with our approach is
not possible. Mao et al. [19] present an IP formulation of the
initial container placement aiming to maximize the available
resources in each node. To fulfill this objective at run-time, an
heuristic conveniently migrates the resource-intensive contain-
ers to another node. Guan et al. [15] also consider the container
scaling. They propose a LP formulation that determines the
number of containers and their placement on a static pool
of physical machines; however, vertical scaling operations are
not considered. Nardelli et al. [12] propose an ILP formulation
of the elastic provisioning of VMs for container deployment,
taking explicitly into account the heterogeneity of container
requirements and VMs. Comparing to them, we consider an
enhanced geo-distributed model of the application deployment
as well as the action of scaling vertically the containers.
Furthermore, differently from our work, all these approaches
do not take into account the adaptation costs.

The mostly used heuristics range from well-known ap-
proaches for solving the bin-packing problem (e.g., greedy
first-fit and best-fit), to meta-heuristics [13], to specifically
designed solutions [7], [19], to threshold-based heuristics [3],
[11], [14], [20]. In particular, the latter are exploited to
determine at run-time the elastic scaling of containers and



represent the most popular scaling methodology as for the
Cloud infrastructure layer [21]. Kaewkasi et al. [13] propose
an ant colony optimization algorithm that schedules containers
on a static pool of resources; nevertheless, they do not consider
scaling actions. Orchestration frameworks that support the
container placement, such as Kubernetes and Docker Swarm,
use simple heuristics (e.g., to pack or spread containers)
and allow to specify placement constraints (e.g., only on
a subset of nodes) and preferences (e.g., co-location). As
regards container scaling, most solutions, including Kuber-
netes, Docker Swarm, and Amazon ECS, provide best-effort
threshold-based policies based on some load metrics. Barna et
al. [3] estimate performance metrics by leveraging on a layered
queuing network model of the system. Casalicchio et al. [14]
aim to improve the resource allocation and fulfill application
response time constraints. Khazaei et al. [20] compare some
thresholds against a combination of CPU, memory, and net-
work usage so to horizontally scale both containers and VMs.
ELASTICDOCKER [11] also employs a threshold-based policy
that, differently from our solution, only scales vertically both
the CPU and memory resources assigned to each container.
Such a policy is similar to the Greedy V heuristic, so it may
suffer from the same problems in accommodating the resource
demand. Vertical scaling can also be used to reduce resource
consumption in IoT scenarios [8].

As last classification factor, we consider the distribution of
the computing resources on which the deployment takes place.
Most solutions cited so far are designed for a single cluster or
data center; therefore, they neglect to consider communication
delays that may affect the performance of multi-container
applications deployed on geo-distributed infrastructures (e.g.,
federated and distributed Clouds, Fog systems). Network traf-
fic as a driver for scaling is considered by Zhao et al. [7].
They study how to allocate local I/O-intensive and network-
intensive containerized applications over a Cloud infrastruc-
ture. Interestingly, their solution tries to grasp the effect
on resource contention by multiple concurrent applications.
Nevertheless, it only addresses the initial placement problem.
Nathan et al. [22] propose to reduce the deployment time
by exploiting a cooperative management of Docker images.
Hoque et al. [10] assess how container orchestration tools
meet Fog requirements for IoT applications and propose an
architecture for a Fog-based container orchestrator.

VI. CONCLUSIONS

We have presented ACD, a formulation of the deployment
and adaptation problem for containerized applications over
geo-distributed environments. ACD is a flexible formulation
that can be conveniently configured to optimize different QoS
metrics; in this paper, we have considered the deployment
cost and the adaptation cost. By leveraging on numerical
experiments, we have validated our solution and shown the
model flexibility, which can optimize single- and multi-
objective functions. We have also shown that ACD can be
used as a benchmark framework against which to compare
other allocation strategies.

As future work, we plan to extend the proposed formulation
of ACD so to model other QoS metrics (e.g., response time,
availability) and adaptation actions (i.e., migration). ACD
solves an NP-hard problem, so it suffers from scalability
issues. Therefore, starting from the drawbacks of existing
heuristics, we plan to develop efficient heuristics to deal with
large problem instances.
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