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Abstract—Hybrid nodes containing GPUs are rapidly becom-
ing the norm in parallel machines. We have conducted some
experiments regarding how to plug GPU-enabled computational
kernels into PSBLAS, a MPI-based library specifically geared
towards sparse matrix computations. In this paper, we present
our findings on which strategies are more promising in the quest
for the optimal compromise among raw performance, speedup,
software maintainability, and extensibility. We consider several
solutions to implement the data exchange with the GPU focusing
on the data access and transfer, and present an experimental
evaluation for a cluster system with up to two GPUs per node.
In particular, we compare the pinned memory and the OpenMPI
approaches, which are the two most used alternatives for multi-
GPU communication in a cluster environment. We find that
OpenMPI turns out to be the best solution for large data
transfers, while the pinned memory approach is still a good
solution for small transfers between GPUs.

Keywords—Sparse matrices, GPGPU computing, Message
Passing Interface (MPI)

I. INTRODUCTION

The performance potential of Graphics Processing Units
(GPUs) leads to a fast growing interest in using GPUs for
General Purpose computing (GPGPU). Hybrid nodes contain-
ing GPUs are rapidly becoming the norm in most advanced
clusters [1]–[3], and are even being offered as an infrastruc-
ture service in Cloud computing (e.g., Amazon EC2 GPU
instances).

In scientific applications, many physical problems modeled
by partial differential equations (PDEs) are solved via dis-
cretizations that transform the original equations into a linear
system and/or an eigenvalue problem with a sparse coefficient
matrix. A matrix is sparse when most of its elements are zero;
this fact is exploited in devising a representation that does not
store explicitly the null coefficients. In many applications, such
a scheme pays off nicely and sparse matrices are widely used
in scientific computations. Therefore, the Sparse Matrix-Vector
product (SpMV) is one of the key computational kernels (the
so called “Seven Dwarfs”) and holds a fundamental role in
many scientific and engineering applications [4].

SpMV on GPUs presents new challenges, because many
optimization techniques used in general-purpose architectures
cannot be directly applied on them. Moreover, sparse matrix
structures introduce additional challenges with respect to their

dense counterparts, because operations on them are typically
much less regular in their access patterns. Therefore, in
recent years a significant number of research efforts has been
devoted to the efficient implementation of sparse matrix-vector
multiplication on a single GPU, among them [5]–[10], and
the NVIDIA’s CUSP [11] and cuSPARSE [12] libraries, with
the aim of optimizing memory pattern efficiency, memory
footprint, and fine-grain parallelism.

Parallel Sparse BLAS (PSBLAS)a is a library of Basic
Linear Algebra Subroutines for parallel sparse applications
supporting complex computations on multicomputers [13] and
using MPI for inter-process communication. A Fortran 2003
version of PSBLAS has been recently released and forms the
basis for the experimental results herein presented.

In this paper we discuss how to integrate GPU-enabled
computational kernels for SpMV into the PSBLAS library. We
present our findings in the quest for the optimal compromise
between raw performance, speedup, software maintainability,
and extensibility. We consider various alternative strategies to
realize the data exchange needed by a fully parallel version
of the PSBLAS library with CUDA support, where multi-
ple PSBLAS processes, each one using a GPU device for
the SpMV kernel computation, communicate among them.
Specifically, the alternative strategies for data transfers from
CPU to GPU and vice versa include CUDA Peer-to-Peer,
synchronization, scatter and gather kernels, and static index
in two versions, namely standard and pinned memory. We
also present a strategy which exploits specialized data transfer
support available in OpenMPI. We compare the performance
of the various data exchange approaches when executing the
sparse matrix-vector multiplication in a heterogeneous cluster
environment with different configuration scenarios in terms
of number of nodes and number of GPUs. In particular, our
experimental results demonstrate that OpenMPI turns out to be
the best solution for large data transfers when using multi-GPU
communication in a cluster environment, while the pinned
memory approach is still a good solution for small transfers
between GPUs.

Most research efforts that propose application optimizations
on heterogeneous systems with GPUs (e.g. [2], [8], [14])
typically rely on the overlapping of the MPI communication,
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the CPU-GPU communication, and the CPU-GPU computa-
tion. In particular, in [8] Kreutzer et al. focused on sparse
matrix-vector multiplication on GPGPU clusters and consid-
ered three alternatives for communication and computation:
no overlap of communication and computation, naive overlap
of communication and computation by nonblocking MPI,
and the use of dedicated host threads for asynchronous MPI
communication. The latter approach achieves the best results
in their experimental setting, which however differ from ours
both in terms of GPU cluster architecture and set of matrices
and therefore the performance results are not comparable.

The rest of the paper is organized as follows. In Section II
we provide some background on PSBLAS, GPGPU, and
CUDA. In Section III we describe our efforts in developing a
serial version of the PSBLAS library with GPU computation
support, which has been presented in a previous work [15]. In
Section IV we discuss how to enable the MPI communication
layer to produce a fully parallel version of PSBLAS with
CUDA support. In Section V we analyze alternative solutions
to realize the needed data exchange and compare their perfor-
mance in Section VI through a set of experiments conducted
on two different platforms. Finally, we conclude in Section VII
and give hints for future work.

II. BACKGROUND SOFTWARE

The PSBLAS library has been developed to facilitate the
parallelization of applications using iterative solvers for sparse
linear systems at the heart of many scientific applications,
through the distributed memory paradigm [13], [16], [17]. The
current version 3 of the library is implemented in Fortran 2003;
its object-oriented model gives effective usability, maintain-
ability and extensibility while at the same time maintaining
a good level of performance. PSBLAS employs a distributed
memory paradigm based on MPI; every process involved in
the computation will produce some data and will share some
results with its “neighbours” in order to complete the whole
computation.

General Purpose computing on GPUs (or GPGPU) deals
with usage of GPUs for purposes different from more conven-
tional graphics applications and has recently seen a dramatic
increase in popularity. CUDA is a parallel computing platform
and programming model proposed by NVIDIA for its hard-
ware products.

GPUs are throughput-oriented architectures; therefore, they
represent an efficient approach to deal with problems charac-
terized by a highly parallelizable solution. PSBLAS is geared
towards implementation of iterative solvers; hence we are
interested in the performance of the sparse matrix-vector
product, since it is the crucial kernel in the given context of
scientific and engineering applications.

A key component of CUDA is the GPU memory hierarchy,
which contains various levels that differ by speed, size, and
scope. They comprise registers, local memory, shared memory,
constant memory, texture and surface memory, global memory,

and mapped memory. The shared memory has a size of 16 KB
or 48 KB for each SM and is arranged in 32 banks, each of
which 32 bits wide. A programmer can use shared memory by
applying the qualifier __shared__ to a variable declaration;
shared memory is useful because it attains a good compromise
between size and access speed. These characteristics have
made shared memory widely used in tiles techniques, which
allow to increase the performance by recycling the data used
in the threads block. The global memory is the largest and
slowest memory on a GPU and can be accessed from both
device and host; the mapped memory exploits the direct
mapping access on (locked) host memory.

The most important problem in using GPUs on sparse
matrix computations is the large overhead imposed by the PCIe
bus which connects the CPU to the GPU, whose bandwidth
typically becomes the performance bottleneck. In fact, for each
iteration of our iterative solver, every process will exchange
data with its neighbors in order to complete the computation.
This means that, for every iteration a transfer from GPU
to CPU is required in order to proceed to the next step.
When performing a copy from host to GPU, the CUDA driver
uses direct memory access (DMA). This operation causes a
double copy: the first from the pageable system buffer to a
temporary page-locked buffer, and the second from the page-
locked buffer to the GPU. Thus, the copy speed is bounded
by the slowest between the PCI-E and the system front-side
bus. Furthermore, a pageable memory copy involves the CPU,
adding further overhead. CUDA provides special functions to
allocate host-locked memory, also called pinned memory: the
operating system guarantees that it will not be paged out [18].
A copy with pinned memory does not need the double access
step; moreover, it enables direct use of the host memory inside
the CUDA kernels, a working mode called zero-copy.

III. PSBLAS WITH NVIDIA GPUS SUPPORT

The latest release of the PSBLAS library (version 3.1.2)
is a reimplementation in the Fortran 2003 language; the new
internals have a full object-oriented (OO) design as described
in [17]. The availability of the OO infrastructure enables an
easy implementation of a CUDA “serial” plugin [15]; here
“serial” refers to the use of just one PSBLAS process invoking
kernels on a single GPU. In this mode, we can test how
performant the computational kernels are without the burden
of communication among processes.

spGPUb is a set of custom matrix storages and CUDA
kernels for sparse linear algebra computing on GPU we
implemented and includes a new GPU-friendly storage format,
named ELL-G [15]. It is a variation of the standard ELLPACK
(or ELL) format [19] and aims at reducing the memory
overhead of the padding zeros that occurs in ELL. Indeed,
the ELL format introduces padding with zero coefficients to
fill unused locations of the elements array, but its efficiency
highly depends on the distribution of nonzero elements. When
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the number of nonzeros per row varies considerably, the ELL
performance degrades due to the overhead of the padding
zeros. Since in the GPU implementation it is not necessary
to execute arithmetic operations on these padding entries, a
better solution is to create an additional array of row lengths,
so that each thread will only execute on the actual number of
nonzero coefficients within the row, at the cost of one more
memory access. Other researchers have used a similar solution,
for instance in the ELLPACK-R format described in [10].

The PSBLAS object model enables an easy translation
among different sparse matrix formats [15] as well as easy
extensibility in user code; it is thus possible to wrap the ELL-
G format and use it in the PSBLAS context with the following
class (in the code, we refer to ELL-G as elg because PSBLAS
matrix format names are 3 characters long):

type , e x t e n d s ( p s b d e l l s p a r s e m a t ) &
& : : p s b d e l g s p a r s e m a t

# i f d e f HAVE GPU
type ( c p t r ) : : dev iceMat = c n u l l p t r

c o n t a i n s
p r o c e d u r e , p a s s ( a ) : : &

& d sp mv => psb d e lg vec t mv
p r o c e d u r e , p a s s ( a ) : : &

& d csmm => psb d elg csmm
g e n e r i c , p u b l i c : : &

& cp from => psb d e lg cp f rom
p r o c e d u r e , p a s s ( a ) : : psb d elg mv from
g e n e r i c , p u b l i c : : &

& mv from => psb d elg mv from
p r o c e d u r e , p a s s ( a ) : : &

&to gpu => p s b d e l g t o g p u
# e n d i f
end type p s b d e l g s p a r s e m a t

The deviceMat attribute holds a pointer to a shadow
image of the matrix data structure which resides in the GPU
memory space. A similar encapsulation is applied for vectors.

A. spGPU

spGPU is a library which implements the computational
kernels in CUDA C language as well as the data move-
ment operators invoked from PSBLAS when dealing with
the shadow-memory copies of matrices and vectors. Once
the data is in the GPU memory, it is possible to invoke the
computational kernel, such as that for the sparse matrix-vector
product y ← αAx+ βy shown below:

g l o b a l void Dspmvm gpu krn ( double ∗y ,
double a lpha , double∗ cM, i n t ∗ rP , i n t ∗ rS ,
i n t n , i n t p i t c h , double ∗x ,
double be ta , i n t f i r s t I n d e x ) {

i n t i = t h r e a d I d x . x + b l o c k I d x . x ∗ (THREAD BLOCK ) ;
i f ( i >= n ) re turn ;
double y prod = 0 . 0 ; i n t r o w s i z e = rS [ i ] ;
rP += i ; cM += i ;
f o r ( i n t j = 0 ; j < r o w s i z e ; j ++){

i n t p o i n t e r = rP [ 0 ] − f i r s t I n d e x ;
double v a l u e = cM [ 0 ] ;
rP += p i t c h ; cM += p i t c h ;
y prod += dmul rn ( va lue , x [ p o i n t e r ] ) ;

}
i f ( b e t a == 0 . 0 )

y [ i ] = ( a l p h a ∗ y prod ) ;
e l s e

y [ i ] = dmul rn ( be t a , y [ i ] ) +
dmul rn ( a lpha , y prod ) ;

}

In the matrix-vector product code above, each row of the
product is dispatched to a separate CUDA thread.

IV. FROM SERIAL TO PARALLEL VERSION

The integration of spGPU with PSBLAS as so far described
provides a working serial version of PSBLAS with NVIDIA
GPU support; its main design issues and some performance
results have been discussed in [15], [20].

To produce a fully parallel version of PSBLAS with CUDA
support (which we refer to as PSBLAS-GPU in the following),
we need to enable the MPI communication layer among the
various PSBLAS processes, each employing a GPU for the
serial part of the computation. The essential communication
step is a “halo exchange” [13]. Every sparse matrix can be
viewed as a graph representation; for matrices arising from the
PDE discretization, this graph has a natural isomorphism with
that describing the topology of the discretized computational
domain. When a domain is partitioned into subdomains, each
one assigned to a process, the nodes of the graph lying at
the boundary of a subdomain are involved in data exchange
with the adjacent nodes lying just across the boundary; those
adjacent nodes from other subdomains are the “halo” of a
given domain, and they correspond to the data items to be
exchanged. Note that in a normal situation, the number of
boundary nodes will be much smaller than the total number
of nodes in the subdomain, i.e., we have a surface-to-volume
effect. To perform the data exchange, each process has to
loop through the set of all adjacent subdomains and for each
subdomain it has to collect and send the values at the boundary
nodes, as well as to receive from the other processes the values
corresponding to the halo nodes.

Therefore, each communication phase has a packing step,
a network send, a network receive, and an unpacking step.
The packing and unpacking steps, which we call gather and
scatter, are quite poor in terms of coalesced memory accesses
on GPU due to their irregular access pattern.

• A gather operation packs various elements from a source
vector into a contiguous target vector:
for(i=0;i<n;i++)

y[i] = x[index[i]];

This is a typical operation that is used in PSBLAS to
prepare a buffer y to be sent in the data exchange that is
inherent in the parallel sparse matrix-vector product.

• The scatter operation is the inverse of the gather one: we
use a received buffer to update a set of vector elements
in predefined locations as in the example below:
for(i=0;i<n;i++)



x[index[i]] = y[i] +
beta*x[index[i]];

The main problem is the bandwidth bottleneck in moving data
between CPU and GPU; the irregular access pattern worsens
the situation since it precludes an effective use of coalescent
accesses; if all data resides in global memory we are in the
worst-case scenario. Some help comes from the L2 cache in
the NVIDIA’s Fermi and Tesla architectures, which aims to
mitigate the effect of irregular memory accesses and can bring
up to one order of magnitude of performance improvement
when the random accesses are localized by sorting. In any
case, it is essential to somehow minimize the amount of
required data transfers.

V. PARALLEL PSBLAS-GPU ALTERNATIVES

In this section we analyze the possible approaches to
implement the data exchange needed for PSBLAS-GPU, high-
lighting advantages and drawbacks of each alternative.

A. CUDA Peer-to-Peer

Unified Virtual Address (UVA) [21] is a new feature in-
troduced from CUDA 4.1. It allows CPU and GPU to see the
same Virtual Address Space; this means that, within a process,
the CPU can access/manage the memory allocated on every
GPU installed on the node. Another improvement brought
by CUDA 4.1 is the Peer-to-Peer access. This mechanism
allows two GPUs, installed on the same node, to communicate
directly without requiring the CPU’s intervention.

Since our programming model uses different processes,
Peer-to-Peer cannot be directly used. In our software archi-
tecture, the CPU acts as a front-end for the various compu-
tation and we use it to control the scatter/gather operations.
Thus, the usage of multiple GPUs with Peer-to-Peer access
would require a specialized storage format that extends across
multiple GPUs, which we have not implemented so far.

B. Sync: Brute Force Solution

The simplest solution is to use a sync operation to move
the vector data between device and host for each scatter/-
gather operation. The sync method is normally intended to
seed the device version upon start of a computation, and
to recover the results at the end of a (possibly long) chain
of operations carried out within the GPU. Since the parallel
halo communication is handled by existing CPU-side code,
this implementation does not require any specific GPU code
beyond the serial data movement. It is clear that such solution
is not optimal, since at each step we will be moving around a
much larger set of data than necessary; therefore, this strategy
will only establish a minimum baseline performance to be
improved upon.

C. Scatter and Gather Kernels

A better solution is to implement the gather/scatter methods
inside the GPU, so as to only transfer the boundary data
between host and device. This solution is fairly simple but
presents two drawbacks: the irregularity of the memory access
patterns and the need to handle arrays of indices. Indeed,
the indirect addressing is based on a data structure that is
built on the host side. Therefore, to execute the gather/scatter
operations we need to have a copy of the indices on the device
side, and this requires the invocation of the cudaMalloc(),
cudaMemcpy(), and cudaFree() kernels.

D. Pinned Memory Version

To avoid the data traffic associated with the indices and the
buffers needed for packing/unpacking, one possible strategy
is to use the mapped memory. The latter is a particular page-
lock host memory allocation provided by CUDA, which can
be accessed directly by CUDA kernels.

Using the mapped memory for the indices and the
source/destination buffers we can avoid the time spent on
allocating, copying, and deallocating; furthermore, there is
a significant improvement of the PCI-E bus utilization.
CUDA provides a memory management function called
cudaHostRegister() which transforms a normal host
memory area into a pinned memory area; previous restrictions
on its usage have been lifted from CUDA 4.1. On the library
side, the use of pinned memory requires to store a couple of
new fields in the data structures and to register/deregister them
as needed during the application lifetime.

E. Static Index on GPU (Standard and Pinned Version)

As already seen, a well-known best practice for optimizing
codes on NVIDIA GPUs and other accelerators is “send data
on GPU and keep it there”.Since the index lists in the commu-
nication are based on the topology of the discretization mesh,
they are quite stable during the application life; the lifetime
of a communication descriptor is tied to the lifetime of a
discretization mesh, and certainly this covers multiple matrix-
vector products, i.e., data exchanges. It is therefore clear that a
viable solution would be to keep a copy of the indices in the
device memory throughout the life of the descriptor object.
An alternative is to keep the indices in pinned memory. In
the rest of the paper, we will refer to the two alternatives as
IndexStandard and IndexPinned, respectively.

F. Open MPI with CUDA Support

A completely different solution can be implemented through
the use of MPI derived data types, specifically using the
MPI_Type_indexed function, which allows the creation
of a data type with irregular stride(s) among the components.
We can then use a specific derived data type to describe the
boundary elements taking part in a data exchange. The upshot



would be that the packing and unpacking operations would be
performed directly by the MPI library.

This approach becomes interesting when coupled with the
support provided by Open MPI [22] for the UVA usage [23],
so that all pointers within a program have unique addresses,
and a new API that allows to check if a pointer is either a
CUDA device pointer or a host memory pointer (used by the
library to detect if the memory area used in a send/receive
is a device area or not). Furthermore, CUDA 4.1 adds the
CUDA IPC (InterProcess Communication), which allows a fast
communication between GPUs on the same node, also between
different processes. In addition, CUDA 4.1 provides the ability
to register host memory with the CUDA driver which can
improve performance.

In other words, it is possible to delegate both packing
and movement between host and device memory to the MPI
implementation. At the time of this writing, the OpenMPI
CUDA-aware support is approaching full maturity. It now fully
exploits the capabilities of the newer CUDA versions, such as
GPUDirect RDMA available from CUDA 6.0 in Kepler-class
GPUs, and is quite stable.

VI. EXPERIMENTAL RESULTS

The experimental results presented in this section are orga-
nized in two different sets. We first analyze in Section VI-A
a comparison among the “CUDA native” approaches, which
include: Sync, Scatter/Gather (for short, SG), Pinned, and
the two variants of Static Index, namely IndexPinned and
IndexStandard, which have been described from Section V-B
to Section V-E. Then, in Section VI-B we present a comparison
between the best solution coming from the CUDA native
comparison and the OpenMPI with CUDA support approach.

The CUDA native experiments have been executed on the
Jazz GPU cluster provided by CINECAc; its nodes are based
on dual-socket esa-core Intel Xeon X5650 processors (for a
total of 12 cores), with 48 GB RAM; each node has two
NVIDIA Fermi S2050 devices and is interconnected with a
QDR InfiniBand (40 Gbit/s). The second set of experiments
has been executed on Amazon Web Service (AWS) EC2 GPU
instances of type CG1; each node is equipped with 2 x Intel
Xeon X5570, quad-core with hyperthread plus 2 NVIDIA
Tesla M2050 GPUs. Each AWS CG1 instance is intercon-
nected with a low latency 10 Gbit/s network. Furthermore,
a scalability test has been executed on several AWS EC2
G2 instances; each node has an Intel Xeon E5-2670 (Sandy
Bridge), 15GB RAM plus one NVIDIA GRID Kepler GK104.
Note that both CG1 and G2 instances do not not have an
Infiniband network.

To evaluate the PSBLAS-GPU performance, we used a
relatively simple main program which iterates the sparse
matrix-vector multiplication for a specified number of times;
the performance metric of interest is the global throughput
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expressed in GFLOPS. The sparse matrix is generated from an
advection-diffusion equation on the unit cube. The equation is
discretized with a simple centered differences strategy, giving
rise to a matrix with at most 7 nonzeros per row: the matrix
size is expressed in terms of the length of the cube edge, so
that the case pde10 corresponds to a 1000× 1000 matrix. We
already used this sparse matrix collection in [15].

The availability of two GPUs per node enables different
configurations with the same number of processes. However,
switching from single to dual occupancy per node is by no
means neutral in terms of performance, because with double
occupancy, contention for the PCI-E bus becomes the main
performance bottleneck.

A. CUDA Native Experiments

During a preliminary testing phase, the Sync approach
obtained, as expected, the lowest throughput; therefore, it has
been switched off at large memory sizes.

1) 1 Node with 2 GPUs (1-2): With 1 node and 2 GPUs
(for brevity, 1-2 scenario) the interconnection network is not
involved; Figure 1(a) shows the corresponding performance
comparison.

Figure 1. Throughput (a) and elapsed time in CUDA functions (b) for the
(1-2) scenario on CINECA platform

The poor performance obtained by the Sync approach is
evident and expected because of the involved memory bottle-



neck. The performance dips exhibited by the Scatter/Gather
(SG) and IndexStandard approaches are slightly surprising;
they have been found to be reproducible and are ultimately
caused by the behavior of the memory management routines
cudaMalloc(), cudaMemcpy() and cudaFree(). The
SG approach uses them on both indices array and MPI
buffer, while indexStandard uses them only on the MPI buffer;
thus, IndexStandard has a similar trend to SG but better
performance. This explanation is confirmed by the pinned
alternatives, showing a much smoother performance curve.

To confirm our explanations we collected detailed timings
with the same number of repetitions as in the matrix-vector
case; Figure 1(b) shows the results, clearly indicating that the
memory management overhead has a rather complex behav-
ior, probably related to internal algorithmic and/or hardware
thresholds. The sharp rises and falls in Figure 1(b) match
nicely those reported in Figure 1(a).

2) 2 Nodes with 1 GPU (2-1): In the 2 nodes with 1 GPU
scenario (for brevity, 2-1) we use only one core and one GPU
from each node; the results shown in Figure 2(a) indicate a
better performance obtained by all the approaches with respect
to the 1-2 scenario, because of the absence of contention on
the PCI-E bus.

Figure 2. Throughput for 2-1 scenario and 4-2 scenario on CINECA platform

This is substantiated by a simple memory bandwidth test,

measuring the time needed to transfer a fixed amount of data
from CPU to GPU for both pageable and pinned memory.
Using 1 node with 2 GPUs and pageable memory we reach
3034.9287 MB/s, whereas using pinned memory we reach
3614.0933 MB/s. When we employ 2 nodes with 1 GPU, with
pageable memory we obtain a throughput of 3457.4 MB/s, and
with pinned memory we reach 5510.7 MB/s.

In the larger scenario with 4 nodes and 2 GPUs per
node of Figure 2(b), we see that the IndexStandard approach
overtakes the Pinned and IndexPinned ones for matrix sizes
over pde300; as in the 1-2 case, the pinned alternatives suffer
from contention on the bus.

B. CUDA Native vs. MPI-Based Experiments

For the second set of experiments executed on the AWS
EC2 GPU cluster, we select the IndexPinned approach as the
best performing one from the previous comparison and we
name it as Pinned in the corresponding performance curves.

1) 1 Node with 2 GPUs MPI (1-2): With 1 node and 2
GPUs the results reported in Figure 3 show that the OpenMPI
support for CUDA IPC works pretty well for sparse matrices
having more than 1 million rows.
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Figure 3. Throughput for (1-2) scenario on AWS platform

2) 2 Nodes with 1 GPU MPI (2-1): In the 2 nodes with 1
GPU scenario, we have to consider the impact of the network
overhead. Since we use two nodes interconnected by a 10
Gbit/s network, as shown in Figure 4 we see an expected
performance decrease when compared to the 1-2 scenario
reported in Figure 3. Also in this scenario the OpenMPI-
based implementation works well for matrix sizes larger than
1 million rows.

3) 2 Nodes with 2 GPUs MPI (2-2): In the 2 nodes with 2
GPUs setting shown in Figure 5, we found that the OpenMPI
approach shows great instability with respect to the Pinned
one. There are two possible motivations for such a strange
behavior. The first one is related to the data partition algorithm:
for every test we use a block partition algorithm which
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Figure 4. Throughput for (2-1) scenario on AWS platform

operates in a “data blind” way. The quick jumps between
high and low performance appear to be related with load
imbalance. Indeed every matrix with a size non divisible
for 4 (number of processes in the scenario) is affected by
low performance. During the scalability test executed on the
G2 instances we observed the same unstable behavior. This
means that the CUDA IPC are not directly related with such
instability (CUDA IPC is used only on multi-GPU nodes).
However, the same partition algorithm has been applied to the
Pinned approach which does not show the unstable behavior;
thus we believe that the OpenMPI CUDA support is more
sensitive to load imbalance, although this will require further
investigation.
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Figure 5. Throughput in (2-2) scenario on AWS platform

In order to figure out where the instability comes, we
applied the TAU Performance System on our application.
For matrices with size not exactly divisible for the number
of processes we pay a penalty during the MPI_Send()
execution.

4) Scalability Test: In order to find out which data exchange
approach achieves the best scalability performance, we ran
a scalability test on up to 8 EC2 G2 instances, where each
instance has only one GPU. In Figure 6 the y-axis represents
the weak scalability efficiency. As regards the matrices used
for the scalability test, for the single node execution we used
the pde160 matrix and we doubled the memory occupation
every time we doubled the number of nodes.
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Figure 6. Scalability on AWS platform using EC2 G2 instances

Figure 6 shows that without any support for the OpenMPI
features the IndexPinned approach performs better than the
OpenMPI one. This is reasonable because OpenMPI adds the
overhead needed to “understand” which kind of memory (CPU
or GPU) it handles.

VII. CONCLUSIONS

In this paper, we have analyzed how to integrate GPU-
enabled computational kernels into PSBLAS and we have
considered several solutions to implement the data exchange
with the GPUs. In particular, we have presented a com-
parison between the two most used alternatives for multi-
GPU communication in a cluster environment. The pinned
memory approach is still a good solution for small transfers
between GPUs. The great improvement of OpenMPI compared
to a couple of years ago brings an unexpected performance
enhancement: it turns out to be the best solution for large
data transfers in every experiment. However, on a bare cluster
without any support for the OpenMPI features, we have that
the Pinned version performs better than the OpenMPI version.

We also tested the alternative data exchange approaches
using a different set of sparse matrices taken by the Tim
Davis’s collection. The results do not differ from those shown
and therefore for space reason we have not reported them.

In future work we plan to implement a data aware partition
algorithm in order to optimize the load balance among the
processes. Furthermore, we plan to test a version which
uses the GPUDirect support provided by OpenMPI. We will



also consider the recently proposed GPU-Aware MPI [24],
which supports data communication from GPU to GPU using
standard MPI and has been incorporated into MVAPICH2. We
have already run some preliminary tests about MVAPICH2
with CUDA-aware support and the results are very promising.
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