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Abstract—The advent of the Big Data era and the diffusion
of Cloud computing have renewed the interest in Data Stream
Processing (DSP) applications, which can timely extract useful in-
formation from distributed data sources. Due to the unpredictable
rate at which the sources may produce data, DSP applications
demand high dynamism. Storm has emerged as a widely adopted
DSP system, which, although having many desirable features,
shows some limitations due to the lack of adaptation capabilities.

In this paper, we extend Storm with two mechanisms that
support the run-time adaptation of DSP applications. Specifically,
we introduce new components that allow automatic elasticity
and stateful migration of the application components. The ex-
perimental results show the benefits of the newly introduced
functionalities that, albeit equipped with proof of concept policies,
allow to properly cope with workload variations while improving
the resource utilization of the underlying infrastructure.

I. INTRODUCTION

Data Stream Processing (DSP) applications are widely used
to process unbounded streams of data and timely extract
valuable information. The key feature of DSP applications is
the ability of processing data on-the-fly (i.e., without storing
them), moving them from an operator to the next one, before
reaching the final consumers of the information. Usually,
these are long-running applications subject to periodic or
unpredictable workload variations, which can exploit the data
parallelism to process great volumes of data. Scaling the
application with data parallelism consists in increasing or
decreasing the number of parallel instances for the operators,
so that each instance can process a subset of the incoming
data flow in parallel (e.g., [1], [2]).

For the execution of DSP applications, users commonly rely
on DSP systems (or frameworks), such as Apache Storm [3],
Spark [4], and Flink!, that offer simple programming in-
terfaces, abstracting away the underlying infrastructure and
complexity of distributing the operators. To date, most of
these systems, although including numerous features, do not
provide automatic scaling capabilities and only support a static
or manual definition of the operator parallelism. Therefore,
they deploy the application on a fixed number of computing
nodes and do not fully exploit the Cloud computing principles,
which promote the elastic usage of on-demand resources.
As a consequence, to support workload fluctuations, the user
determines the number of parallel instances for the operators
on the expected maximal workload, achieving either an aver-
age under-utilization of the system, because load peaks can
rarely occur, or being unable to manage a bursty workload

! Apache Flink: https:/flink.apache.org/

with unexpected fluctuations. Among the open source DSP
systems, Apache Storm has received increasing interest in
the last few years and in the literature different works have
proposed extensions, defined new scheduling policies, and
build applications on top of it (e.g., [5], [6], [7], [8])-

In this paper, we extend Storm by introducing two mech-
anisms that support the run-time adaptation of DSP applica-
tions: automatic elasticity and stateful migration. The elasticity
mechanism implements scaling decisions at the framework
level, i.e., it allows to automatically adapt the number of
parallel instances for each application operator, according to
a scaling policy. Different scaling policies can be defined;
as proof of concept, we propose a simple threshold-based
policy that elastically changes the number of parallel instances
of each operator according to the incoming workload. Once
equipped with elasticity at the framework level, Storm can
be then properly coupled with a lower-level scaling system
that realizes elasticity at the infrastructure level by acquiring
and releasing the computational nodes as needed, therefore
encompassing the on-demand resource principle of Cloud
computing. The stateful migration mechanism supports the
relocation of the operator internal state on a different node
and enables Storm to change the application deployment at
run-time, without compromising the application integrity in
terms of extracted information. This mechanism operates at
fine granularity with respect to the execution model adopted
by Storm and allows multiple and concurrent migrations.

The main contributions of our work are as follows.

o We extend Storm with an automatic elasticity mechanism
that changes the number of parallel instances for the
operators at run-time; we realize, as proof of concept,
a threshold-based scaling policy that aims at maximizing
the system utilization (Section IV).

e We enhance Storm with stateful operator migrations,
which enable the self-adaptation capabilities of DSP
applications in a non-destructive way, preserving the
operators state (Section V).

A set of experiments run with the enhanced Storm shows the
benefits and overhead of the newly introduced mechanisms
(Section VI). Our extension is fully modular and loosely cou-
pled from the existing architecture of Storm, therefore existing
solutions based on or proposed for Storm in the literature can
transparently reuse the new functionalities. To this end, we
publicly release our source code to the community?.

2Elastic Storm is available on GitHub: http://bit.ly/10UjZAi
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II. APACHE STORM

Storm is an open source, real-time, and scalable DSP system
maintained by the Apache Software Foundation. It provides an
abstraction layer where DSP applications can be executed over
a set of worker nodes interconnected by an overlay network. A
worker node is a generic computing resource (e.g., a physical
host, a virtual machine, a mobile device), whereas the overlay
network comprises the logical links between these nodes.

In Storm, we can distinguish between an abstract application
model, which is defined by the user, and an execution appli-
cation model, which is used by Storm to run the application.
In the abstract model, an application is represented by its
topology q, which is a directed acyclic graph with spouts and
bolts as vertices and streams as edges. A spout is a data
source that feeds the data into the system through one or
more streams. A bolt is either a processing element, which
extracts valuable information from incoming tuples, or a final
information consumer; a bolt can also generate new outgoing
streams, like spouts do. A stream is an unbounded sequence
of tuples, which are key-value pairs. We refer to spouts and
bolts as operators and denote an operator with op € OP(q),
where OP(q) is the set of operators of the topology ¢. In the
execution model, Storm transforms the topology ¢ by replacing
each operator op with its tasks 7'(op). A task is an instance
of an application operator (i.e., spout or bolt) that is in charge
of a share of the operator incoming stream. Therefore, if the
operator has some internal state (i.e., it is a stateful operator),
a task handles a partition of it. In Storm, the number of
tasks for an operator is statically defined. For the execution,
one or more tasks of the same operator op are grouped into
executors E(op). An executor is the smallest schedulable unit,
and Storm can process great volumes of data in a timely
way by launching multiple executors for each operator. The
relationship |E(op)| < |T'(op)| must hold among executors
and tasks of op. From an operational perspective, Storm
implements the executors with threads and also introduces
the worker process, that is a Java process, to run a subset
of executors of the same topology ¢. The resulting execution
model of Storm shows the following hierarchy: a group of
tasks runs sequentially in the executor, which is a thread within
the worker process that serves as container on the worker node.

Besides the computational resources (i.e., worker nodes),
the architecture of Storm includes two components: Nimbus
and ZooKeeper. Nimbus is the centralized entity in charge of
coordinating the topology execution; it uses its scheduler to
define the placement of the application operators on the pool
of available worker nodes. The assignment plan determined
by the scheduler is communicated to all the worker nodes
through ZooKeeper, which is a shared memory service for
managing configuration information and enabling distributed
coordination’. Since each worker node can execute one or
more worker processes, a Supervisor component on the worker
node starts or terminates the worker processes on the basis of
the Nimbus assignments. Each worker node can concurrently

3 Apache ZooKeeper: http://zookeeper.apache.org/
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Fig. 1: Extended Storm architecture.
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run a limited number of worker processes, based on the
number of available worker slots.

III. SOLUTION OVERVIEW

Neither stateful migrations nor elastic scaling decisions are
supported by the current architecture of Storm. However,
Storm provides the rebalance function which allows to
manually change the number of executors for the topology
operators. We extend Storm to support elasticity and stateful
migration, aiming at providing mechanisms that can be reused
by the Storm-based extensions in the literature, including those
focusing on the operator placement policies (e.g., [5], [6], [7],
[8], [9]). Figure 1 illustrates in red the newly introduced com-
ponents, namely the ElasticityManager, the MigrationNotifier,
and the Distributed Data Store (DDS).

The ElasticityManager is located on the centralized compo-
nent Nimbus and is in charge of evaluating scaling decisions
for the topologies managed by Storm. A scaling decision
changes the operator parallelism, i.e., it increases or decreases
the number of executors for an operator, improving resource
utilization in relationship to the incoming data rate. Since the
newly added executors have to be placed on the worker nodes,
the ElasticityManager is executed before the Storm scheduler,
so that the latter can analyze and define the placement of the
newly introduced executors.

The MigrationNotifier is executed after the scheduler; it
initiates the migration by notifying the tasks of the executors
that have changed their placement to save their internal state.
The MigrationNotifier will resume the execution as soon
as all the migrating tasks can be terminated without loss.
Afterwards, the new assignment plan, defined by the scheduler,
will become effective and the migrating tasks can be restored
on the new worker nodes.

The Distributed Data Store (DDS) is introduced on each
worker node and allows the migrating tasks to save their
internal state before terminating their execution. This data
store acts as a repository for the migrating tasks, which can
retrieve and restore their state as soon as they are instantiated
on the new worker nodes. The presence of a locally available
data store allows us to minimize the amount of state moved
across the network during a migration.

IV. ELASTICITY

The ElasticityManager dynamically reconfigures a topology
by scaling horizontally (i.e., scaling out and in) the number of



executors for an operator. A scale-out decision increases the
number of executors when the operator needs more computing
resources. A scale-in decreases the number of executors when
the operator under-uses its resources. Recalling the execution
model of Storm (Section II), a scaling operation changes how
tasks are grouped into executors, thus leading to a possible
relocation of the operator state on a different worker node.

A. Design Overview

The ElasticityManager is designed as a loosely coupled
component of Storm, which works independently from the
scheduling policy. Periodically, every T),;s, Nimbus activates
the ElasticityManager; the latter analyzes each of the topolo-
gies running in Storm by possibly taking scaling decisions
for at most a single topology at a time. This limitation
allows to evaluate the effects of scaling decisions on the other
running topologies. We describe the simple yet effective policy
adopted by the FElasticityManager to compute the scaling
decisions in Section IV-B. The resulting decisions are then
implemented exploiting the rebalance function provided
by Storm, which allows to change the set of executors for
the operators of a topology and to adapt the Storm execution
environment. As side effect, rebalance suspends the exe-
cution of the topology spouts until the scheduler defines a new
placement for the topology. To avoid stressing a topology with
frequent scaling decisions that may lead to instability, after a
rebalance we let the topology enter in a cooldown state
for the next EM.;4 invocations of the ElasticityManager.

B. Scaling Policy

We design a reactive and threshold-based policy: the Elastic-
ityManager takes scaling decisions comparing the fraction of
CPU time utilized by each executor against some thresholds.
Specifically, U, measures the fraction of CPU time used by
the executor ¢ € E(op) of the operator op € OP(q) in the
topology ¢*. That is, U, is the CPU utilization per executor e.
The ElasticityManager considers a single topology ¢ at a time
and decides first the scale-out actions, then the scale-in ones.

Scale-out. It adds a new executor for each one in overload.
Formally, for each e € E(op), with op € OP(q), such that

U, > ScaleOutThr

where ScaleOutThr is the upper usage threshold, one new
executor is added to F(op). According to this policy, the
number of executors for op can be at most doubled in a run of
the ElasticityManager. All the operators subject to a scale-out
operation compose the set OP*¢(q).

Scale-in. It halves the number of executors of an operator,
if all those existing are underloaded. Scale-in decisions are
evaluated for all the operators not already under a scaling-out
operation. Formally, for each operator op € OP(q)\OP*°(q)
such that

U, < ScaleInThr Ve € E(op)

4Since an executor is a Java thread, the CPU time for the thread can be
obtained relying on the ThreadMXBean class.

where ScaleInThr is the lower usage threshold, the number
of executors is halved or set to minExec(op), which is the
configurable minimum for operator op.

This scaling strategy doubles or halves the number
of executors for an operator. Therefore, we conveniently
define the scaling thresholds in a such a way that
ScaleOutThr, ScaleInThr € [0,1] and we can guaran-
tee a stability gap S € [0,1] between them such that
ScaleOutThr > 2 x ScaleInThr + S. The higher the values
for S, the more conservative are the scaling decisions.

C. Elasticity and Placement

When a topology is subject to a scaling decision, the
ElasticityManager conveniently marks it with a special label.
The Storm scheduler can thus adopt a specific placement
policy, which assigns only the added or changed executors
by minimizing, for example, the amount of relocated operator
state. Since in Storm the number of tasks for each operator is
defined a-priori and cannot change at run-time (see Section II),
the elasticity changes how the tasks are grouped into executors.
If the operator is stateful, a scaling decision leads to the
relocation of a partition of the operator state, which could
be costly or negatively impact the application performance.
Therefore, we implement a simple placement policy for those
topologies subject to scaling decisions, which places the new
or updated executors by minimizing the number of tasks that
should be relocated with respect to the previous configuration.
This strategy assumes that the operator state is uniformly
distributed across its partitions (i.e., tasks); if this condition
does not hold true, more sophisticated strategies can perform
better. Furthermore, this strategy consolidates the application
executors on fewer worker nodes.

V. STATEFUL MIGRATION

After either a scaling operation or the definition of a new
application placement, some executors may be relocated on the
worker nodes. If the executor is stateless (i.e., it contains tasks
of a stateless operator), the relocation can be easily performed
by terminating the executor on the old location, moving its
code to the new location, and restarting it. On the other hand,
if the executor is stateful (i.e., it contains tasks of a stateful
operator), we also need to efficiently migrate its internal state,
so to preserve the integrity and consistency of the outputted
streams. As a consequence, this kind of migration can involve
a sophisticated cooperation among several components.

A. Overview

We propose a stateful migration solution that uses a pause-
and-resume approach [10], which extracts the current state
from the old instance and replays it within the new instance.
To this end, the executor needs to be paused to ensure a se-
mantically correct migration. Since in Storm a task represents
the smallest entity that handles a partition of the operator
state, we extend Storm to support fask-level, or fine-grained,
migrations. Note that this kind of migration covers the needs



not only of scaling decisions, which define a new tasks-to-
executors mapping, but also of replacement decisions, which
move already existing executors. Furthermore, thanks to the
fine granularity, we can parallelize the migrations towards
different computing locations, for example when an executor
is split in tasks that will be relocated in different locations.

B. Extended Architecture

The design of the migration protocol aims at satisfying the
following requirements: (1) to be transparent to and reusable
by the other existing Storm components; (2) to preserve the
operator semantics by avoiding tuple loss and tuple reordering;
and (3) to minimize the amount of data transferred using the
network. Our intent is also to minimize the impact on the
existing Storm architecture, reducing the amount of new code
and reusing properly the Storm functionalities. The key idea is
to enhance the tasks with the ability of exporting the operator
state from the old worker node and of importing it to the
new one. We realize this idea thanks to the cooperation of the
following new components of Storm (see Figure 1):

e a Distributed Data Store (DDS) which enables to decou-
ple the operator state from the related task during the
migration;

o an extension of the Storm API that allows to define
the code of spouts (i.e., data sources) and bolts (i.e.,
operators and final consumers). Specifically, we introduce
the StatefulSpout and StatefulBolt classes, which enrich
the tasks with the ability of storing and retrieving the
partition of the operator state from the DDS in a user-
transparent way;

o a centralized MigrationNotifier that orchestrates the mi-
gration and prevents Storm from propagating new place-
ment decisions until all the tasks involved in a migration
have saved their state to DDS. Indeed, in the official
release of Storm, after a new placement decision the ex-
ecutors that have changed location are restarted, making
the tasks loose their state.

The proposed solution also exploits ZooKeeper, which pro-
vides a coordination and synchronization service that simpli-
fies the cooperation among the distributed components.
DDS. Each worker node is equipped with a data store,
which is accessible to all the other worker nodes. This allows
a migrating task to save its state on a local storage, so to
minimize the amount of data transferred on the network. The
data store is implemented as an in-memory caching system
with Hazelcast>. We do not use ZooKeeper for this purpose,
because it is not designed to hold large data values.
StatefulSpout and StatefulBolt. These classes support and
execute the stateful migration protocol presented in the next
section and should be used when the topology has at least
one stateful operator. That is, also stateless operators should
be defined leveraging on these new classes. Differently from
the default implementation of spouts and bolts, these new
classes are enhanced to: (1) provide a common interface that

SHazelcast: https://hazelcast.com/

defines the task state and allows to export and import it with
getState () and setState (), respectively; and (2) define
two execution modes for the task, namely the operational
mode and the migration mode. The former represents the
traditional execution mode of the task, which runs the operator
logic that is defined by the user. The latter is used when
the task or a neighbor (i.e., upstream, downstream) task is
migrating; it allows to safely stop the task execution, save
and restore the internal state, and avoid tuple loss and tuple
reordering — thus preserving the operator integrity. Moreover,
since the coordination among tasks relies on ZooKeeper, the
StatefulSpout and StatefulBolt classes include a Watcher com-
ponent that asynchronously observes and retrieves information
published by the MigrationNotifier or by other tasks.

MigrationNotifier. This component executes on the central-
ized entity Nimbus. Basically, the MigrationNotifier intercepts
the scheduler assignment plan, notifies the tasks that should
export their internal state, and waits until each of them has
correctly completed this operation (i.e., it reaches the first
synchronization barrier, as presented next). When the Migra-
tionNotifier resumes the execution, Nimbus can disseminate
the new placement decisions to the worker nodes; the latter
will terminate and launch the worker processes (and related
executors) according to the new placement.

C. Migration Mode and Migration Protocol

When the MigrationNotifier communicates, through
ZooKeeper, the set of tasks involved in a migration, these
tasks, as well as the tasks that precede and follow them in
the topology, enter in the migration mode. Each task relies
on the Watcher component to asynchronously check for this
kind of notifications. The migration mode runs the migration
protocol, which specializes the task behaviour with respect to
the role played during the migration. We identify three roles:
the task precedes a migrating task in the topology, the task
itself is migrating, and the task follows a migrating task in
the topology. For short, we refer to them as upstream task,
migrating task, and downstream task, respectively.

To avoid tuple loss or their reordering, we need to pause
the streams directed to a migrating task and save the tuples in
transit, so to replay them as soon as the migration is completed.
To this end, we introduce an OutputBuffer that resides on the
upstream task and allows to temporary store the tuples directed
towards a migrating task that could change its location. The
upstream task explicitly notifies the last tuple sent on a stream,
leveraging a special end-of-stream (EOS) message. For sake
of efficiency, we introduce also an InputBuffer, which resides
on the migrating task and on the downstream ones. Using this
buffer, the migration protocol can stop the execution of the
operator logic and rapidly retrieve the incoming tuples from
the communication link.

We now present the migration protocol according to the
role played by a task during a migration: upstream task
(of a migrating one), downstream task (of a migrating one),
and migrating task. If a task plays different roles during a
migration (e.g., upstream and downstream task), the following
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Fig. 2: Sequence of operations performed by a migrating task.

procedures are combined. As depicted in Figure 2, the migra-
tion protocol is characterized by two synchronization barriers,
which indicate respectively that a task has correctly saved its
state and has completely recovered it.

Upstream Task. Entering the migration mode, the upstream
task stops (only) the streams directed to the migrating task: it
emits the EOS message and stores the subsequently produced
tuples for that stream on the OutputBuffer. As soon as all the
downstream migrating tasks reach the second synchronization
barrier, i.e., they complete the migration, the upstream task
emits the tuples stored within the OutputBuffer and switches
back to the operational mode.

Downstream Task. Entering the migration mode, the down-
stream task stops the computation and rapidly downloads the
streams coming from the migrating task; all the received tuples
that precede the EOS message are stored into the InputBuffer.
Afterwards, it switches back to the operational mode and
resumes the computation.

Migrating Task. Although logically sequential, the execu-
tion of the migration mode of the migrating task is divided in
two parts, namely save state and restore state, which can be
executed on two different computing locations.

a) Save State. Entering the migration mode, the migrat-
ing task stops the computation, emits the EOS message to
its downstream tasks, and buffers the incoming tuples on
the InputBuffer until the EOS message is received from its
upstream tasks. As soon as these operations are completed,
the task pushes on the local DDS the operator state and
the InputBuffer. The operator state is extracted relying on
the getState () function that the user implements. Since
computation is stopped, the OutputBuffer is always empty. At
this point, the task is ready to be safely terminated, reaches the
first synchronization buffer, and disseminates this information
to the other tasks using ZooKeeper.

b) Restore State. When a new task is launched, it automat-
ically enters the migration mode and checks on ZooKeeper if
it is involved in a migration. If so, it contacts the DDS on
the old worker node and recovers the operator state together
with the InputBuffer. The operator state is imported using the
setState () function that the user implements. Afterwards,
the migration is considered as completed, the task reaches the
second synchronization barrier and spreads this information to
the other tasks using ZooKeeper. When all the tasks involved
in a migration reach the second synchronization barrier, the
paused streams will be resumed and the application will
continue the execution. In the meanwhile, the task retrieves
and processes the tuples from the InputBuffer and, then,
switches to the operational mode.
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Fig. 3: Frequent Pattern Detection topology.

The proposed protocol supports concurrent migrations, be-
cause each task can autonomously relocate its state.

VI. EXPERIMENTAL RESULTS

To analyze the benefits and overhead introduced by the new
elastic scaling and stateful migration mechanisms, we run a set
of experiments executing a stateful DSP application on Storm,
by first enabling and then disabling the new mechanisms.

A. Experimental Setup

We run the experiments using Storm 0.9.3 on a cluster of 5
worker nodes and one further node for Nimbus and ZooKeeper.
Each node is a m4.xlarge AWS EC2 virtual machine with 4
vCPUs on Intel Xeon E5-2676 and 16 GB of RAM.

In our experiments, Storm determines the operators place-
ment using the scheduler designed by Xu et al. [8], which
assigns the operators on the worker nodes in descending
order of incoming and outgoing traffic exchanged using the
network so to minimize the inter-node traffic. Differently from
the default round-robin scheduling policy, this one triggers
executor reassignments if it finds a new configuration that
reduces the inter-node traffic. Moreover, the policy ensures
an even distribution of the executors on all the worker nodes,
because a node can run at most £//N executors, where F is the
total number of executors and N the number of worker nodes.
To avoid inter-process communication overhead, the scheduler
by Xu et al. uses only a worker slot per node. Since its source
code is not publicly available, we implement the scheduler
according to the description in [8] and integrate it with the
special placement policy for the new or updated executors that
we presented in Section IV-C.

The ElasticityManager is executed together with the sched-
uler every T}, = 10 s, and ScaleOutThr and ScalelnThr are
set to 0.7 and 0.2, respectively. After a scaling decision, the
topology enters in a cooldown state for the next EM 4 = 12
invocations of the ElasticityManager (i.e., for 120 s), where
no new scaling decision can be applied. In preliminary experi-
ments, not reported for space limits, we found that this setting
ensures a stable behavior of the system.

As testing application we implement the Frequent Pattern
Detection (FPD) [11], which analyzes tweets from Twitter and
retrieves the most frequent patterns (i.e., those that occur more
than 20 times) on a sliding window of 60 s. Figure 3 shows
the FPD topology and Table I reports the configuration of its
operators. The topology spout reads input data from Redis, a
shared memory, and emits them according to an exponential
distribution with parameter \.

Each experiment comprises five sequential phases, each last-
ing 900 s, and with input data rate according to the sequence
A = {120, 350, 900, 250, 120} tweets/s. This workload stresses



TABLE I: Number of executors and tasks, and minimum
number of executors for each operator of the FPD application.

Operator op  |[E(op)] [T(op)] minExzec(op)
Input 1 1 1
Generator 2 2 1
Detector 5 20 1
Reporter 1 1 1

the infrastructure of Storm, which has to repeatedly evaluate
the application placement at run-time. In the following figures,
the beginning of each phase is represented with a vertical
dotted line with a rhombus on the extremities. A scaling
decision, which changes the number of executors for the
topology, is represented with a vertical dash line, whereas
a scheduling decision, which changes the placement of the
executors, is represented with a vertical dot-dash line and a
symbol “+” on top. The performance metrics are collected
through the Storm metric system, which every 5 s provides an
average value computed on a sliding window of 600 s, made
of samples harvested every 5 s. Since this metric system is
stateless, after a migration the samples are lost and thus the
following figures will show some zero values.

B. On the Elastic Scaling Mechanism

Figure 4 shows the application latency, i.e., the average
latency experienced to traverse the entire FPD topology. When
the elastic scaling mechanism is deactivated (referred to as
“w/o E+SM” in Figure 4), the application ability of handling
the incoming data rate depends on the parallelism that is
statically defined by the user at design time. In this case, the
application can manage the data source with A = 120 tweets/s,
but cannot keep the pace when the data rate reaches A =
350 tweets/s; the system becomes unstable, as confirmed by
the continuous increase of the application latency after 1500 s.
When the input data rate reaches 900 tweets/s, the application
latency grows up to 1500 ms. When the source reduces its
data rate to A = 250 tweet/s, the system can properly handle
the buffered elements, until 3300 s, when all the buffers
are empty, and the experienced application latency is below
90 ms. The elastic scaling and stateful migration mechanisms
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Fig. 4: Application latency with and without elasticity and
stateful migration.

(referred to as “with E+SM” in Figure 4) improves signif-
icantly the application performance. When the data source
emits 350 tweets/s, a scaling decision allows to efficiently
handle the incoming load by doubling the number of executors
for the Detector operator. Similarly, when the input data
rate reaches 900 tweets/s, three reassignments and a scaling
decision lead to an application latency lower than 900 ms.
Soon after the occurrence of either a scaling or scheduling
decision, we observe a transient period, where the application
latency increases due to the processing of the collected buffers
and the overhead imposed by the extended Storm to restart the
executors on the new worker nodes.
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Fig. 5: Effects of the elasticity on the number of executors.

Figure 5 shows how the ElasticityManager scales in or out
the number of running executors during the experiment. In the
first phase, the unneeded executors are terminated, ensuring
that the utilization of the running executors is higher than the
ScaleInThr threshold. When the load imposed to the system
increases, new executors are launched up to the third phase,
when 23 executors run concurrently. As the incoming load
starts decreasing, the number of executors decreases as well
and, at the end of the experiment, only 8 executors are running.
Except for the Generator operator whose parallelism is halved
in the first phase, only the Detector operator is scaled out and
in, since it constitutes the bottleneck of the FPD application.
The ElasticityManager changes the Detector parallelism de-
gree in the following sequence: {20, 10,5, 10,20, 10,5}.

When the elastic scaling and stateful migration mechanisms
are both active, the application can better exploit the available
resources. Figure 6a represents the average and maximum
node utilization by the application executors. We can observe
that the benefits of the scaling and scheduling decisions
are complementary. The former allow to change the set of
executors in order to better exploit the available computing
resources, whereas the latter allow to balance the load among
the worker nodes, enabling a more efficient usage of the
available resources. When the elasticity and stateful migration
mechanisms are both disabled, as results from Figure 6b, the
system utilization is low and the application cannot process the
increasing load in a timely way. This happens because the fixed
number of executors overloads a subset of the computing re-
sources, whereas the remaining subset of computing resources
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Fig. 6: Node utilization by executors.

is free and not utilized. For example, with A = 900 tweets/s,
on the worker node with the maximum utilization (of about
50%), the half of the CPU cores with running executors is
overloaded, whereas the other half is almost idle.

C. On the Stateful Migration Mechanism

We now analyze in detail the stateful migrations occurred
during the experiments, with a special focus on two character-
istics: the amount of state transferred using the network and
the overhead introduced by the stateful migration.

The system has performed 9 migrations, 6 of which are
related to a scaling decisions and 3 to placement decisions. In
the following, we refer to each of them using the migration
index, a progressive number that reflects the chronological
order when the migration has been performed. We first analyze
the amount of state transferred using the network. Figures 7a
and 7b illustrate the operator state and the InputBuffer that
a migrating task saves on the DDS. As expected, Figure 7a
shows that there is a general tendency which links the size
of the migrating operator with the incoming data rate: the
higher the load, the larger the saved state. From Figure 7b,
we can clearly see that the InputBuffers are always empty
after the scaling decisions; this happens because the time
elapsed between the rebalance command, that suspends
the spouts activity, and the beginning of the migration is
enough to consume the tuples already emitted. Figure 7c
shows the percentage of saved state that is relocated during
each migration. Specifically, after a scheduling decision on
average 65% of the state is migrated. For the scaling decisions,
the placement policy proposed in Section IV-C reduces this
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Fig. 7: Analysis of stateful migration.

percentage and obtains a relocation of only 37.5% and 0% for
the scale-in and scale-out decisions, respectively. To analyze
the overhead introduced by the stateful migration, we run
again the same experiment by enabling the elastic scaling
mechanism but disabling the stateful migration. The result
is shown in Figure 7d, where we compare the time elapsed
to perform the stateful migration with the time needed to
reassign the executors in Storm (i.e., stateless reassignment).
On average the stateful migration introduces an overhead of
about 10 s comprising: (1) the time to save the state on the
DDS; (2) the time to retrieve and replay the state from the
DDS; and (3) the time waited on the synchronization barriers.
In this experiment, the third component dominates on the
others, while the size of the operators state (from 2 to 16 MB,
see Figure 7a) does not affect the migration overhead.

VII. RELATED WORK

Elasticity and stateful migration for DSP systems are two
features that have recently received an increasing attention. We
first review the approaches that enable elasticity by reacting
to changes observed in some monitored performance metric.
Some works, e.g., [12], [13], [14], exploit a threshold-based
elastic policy based on the measured CPU utilization of the
system nodes. Gulisano et al. [12] define an upper threshold
for the load variance among all the nodes, while Fernandez et
al. [13] define upper and lower thresholds for each individual
host. Heinze et al. [14] propose to adapt the thresholds
using a reinforcement learning approach, which allows to
gain in adaptivity. Other works, e.g., [1], [2], [15], [16], use
more complex policies to determine the scaling decisions.
Lohrmann et al. [16] propose a strategy that enforces latency
constraints by relying on a predictive latency model based
on queueing theory; nevertheless, their solution manages only
stateless DSP applications. Heinze et al. [15] propose a model



to estimate the latency spike created by a set of operator
movements and use it to define an elastic operator placement
algorithm that minimizes the latency violations. This work is
further extended in [2] with an online parameter optimization
approach that avoids the manual tuning of the used thresholds.
Similarly to the approaches in [2], [14], [16], our scaling
policy is reactive and threshold-based; however, we decouple
the elasticity mechanism from the corresponding policy, which
can be easily changed. De Matteis and Mencagli [17] present
an interesting elasticity policy, which relies on a proactive
and control-theoretic method that takes into account a limited
future time horizon to choose the reconfigurations to execute.
The most popular open-source DSP frameworks, i.e., Storm,
Spark Streaming, and Flink, do not support elasticity. Yang
and Ma [18] investigate the internal architecture of Storm and
propose different strategies for relocating stateless executors,
achieving a reduction of the application latency degradation.
Since we introduce the new mechanisms on top of the existing
architecture of Storm, enhancements on its internal compo-
nents are beneficial also for our extension.

While scaling out stateless operators can be achieved by just
starting a new operator instance with a blank “memory”, elas-
ticity of stateful operators requires state migration to preserve
the consistency of the operations [1]. Operator state migra-
tion is a challenging task, because it should be application-
transparent and with a minimal footprint (i.e., amount of
migrated state). The most common solutions, as seen in [10],
are the pause-and-resume approach (that we adopt in this
paper) and the parallel track approach, where the old and the
new operator instances run concurrently until the state of both
is synchronized. To identify the portion of state to migrate,
Fernandez et al. expose an API to let the user manually man-
age the state [13], while Gedik et al. automatically determine,
on the basis of a partitioning key, the optimal number of state
partitions to be used and to migrate [1]. In our approach,
the minimum unit of migratable state is defined by the
user through the Storm execution model. ChronoStream [19]
natively supports stateful migrations and uses a lightweight
protocol that leverage on distributed checkpoints to minimize
the amount of state relocated during a migration. Conversely,
our work is driven by the existing Storm architecture. Storm
also includes Trident, which provides high-level processing
abstractions such as joins, aggregations, and filters. Differently
from our extension, Trident can persist a state which is
obtained by applying a sequence of Trident transformations
on the input data. However, this approach requires to play
the stream as a sequence of micro-batches, processed in a
commit-like fashion, thus causing a constant latency overhead.
Finally, Flink, although checkpointing stateful operators for
fault tolerance, does not yet support stateful migrations.

VIII. CONCLUSIONS

In this paper, we designed and implemented two mecha-
nisms, i.e., elasticity and stateful task migration, that allow
Storm to address at runtime the highly dynamic nature of DSP
applications. The proposed solution is modular and loosely

coupled with the existing Storm architecture as well as trans-
parent and fully reusable by other Storm-based solutions in
literature. The experimental results show that Storm can elas-
tically increase or decrease the number of operator executors
as needed, improving resource utilization of the underlying
infrastructure and properly processing the incoming workload.
As future work, we plan to design proactive and adaptive
scaling policies and integrate in Storm a cross-layer scaling
solution that exploits elasticity also at the infrastructure level
so to enable Storm to effectively run in a distributed Cloud.
We also plan to further investigate the stateful migration
mechanism in order to reduce its overhead and the negative
impact on performance of the synchronization barriers.
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