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Abstract. We discuss object-oriented software design patterns in the
context of scientific computations on sparse matrices. Design patterns
arise when multiple independent development efforts produce very sim-
ilar designs, yielding an evolutionary convergence onto a good solution:
a flexible, maintainable, high-performance design. We demonstrate how
to engender these traits by implementing an interface for sparse matrix
computations on NVIDIA GPUs starting from an existing sparse matrix
library. We also present initial performance results.

1 Introduction

Computational scientists concern themselves chiefly with producing science, even
when a significant percentage of their time goes to engineering software. The ma-
jority of professional software engineers, by contrast, concern themselves with
non-scientific software. In this paper, we demonstrate the fruitful results of bring-
ing these two fields together by applying a branch of modern software engineering
design to the development of scientific programs.

Our meeting ground is the field of sparse matrices and related computations,
one of the centerpieces of scientific computing. This paper covers how to han-
dle certain kinds of design requirements, and illustrates what can be done by
consciously applying certain design techniques. Specifically, we discuss the ben-
efits accrued by the application of the widely used software engineering concept
of design patterns in the context of scientific computation on sparse matrices.
We choose as a case study the implementation of an interface for sparse matrix
computations on NVIDIA GPUs starting from an existing sparse library.

A number of related projects provide libraries for constructing and using
sparse (and dense) matrices and vectors, as well as provide solver libraries for
linear, nonlinear, time-dependent, and eigenvalue problems. These projects in-
clude Trilinos [11], PETSc [1], and PSBLAS [8, 7].

Trilinos focuses on the development of algorithms and enabling technologies
within an object-oriented software framework for the solution of large-scale, com-
plex multi-physics engineering and scientific problems. PETSc is the Portable,
Extensible Toolkit for Scientific Computation. Many of the algorithms in PETSc



and Trilinos can be interchanged via abstract interfaces without impacting appli-
cation code. Both projects employ MPI to exploit distributed-memory, parallel
computers and provide sparse matrix solvers for linear, nonlinear, and eigen-
value problems. They differ in implementation language: PETSc is written in C
whereas Trilinos is written in C++. Language differences ultimately influence
the programming paradigm and architectural style, with C supporting procedu-
ral programming and C++ explicitly enabling an object-oriented programming
(OOP) style that facilitates the adoption of the architectural design patterns
that comprise the focus of the current paper.

Parallel Sparse BLAS (PSBLAS) is a library of Basic Linear Algebra Subrou-
tines for parallel sparse applications that facilitates the porting of complex com-
putations on multicomputers. PSBLAS includes routines for multiplying sparse
matrices by dense matrices, solving sparse triangular systems, and preprocess-
ing sparse matrices; the library is mostly implemented in Fortran 95, with some
additions of Fortran 77 and C. A Fortran 2003 version is currently under de-
velopment, and forms the basis for the examples in this paper, because of the
language support that we are going to describe.

Sparse matrices are widely used in scientific computations; most physical
problems modeled by partial differential equations (PDEs) are solved via dis-
cretizations that transform the original equations into a linear system and/or
an eigenvalue problem with a sparse coefficient matrix. A matrix is sparse when
most of its elements are zero; this fact is exploited in devising a representation
that does not store explicitly the null coefficients. This means abandoning the
language’s native array type along with the underlying assumption that one can
infer the indices (i, j) associated with an element aij from the element’s position
in memory and vice versa. Any viable replacement for these assumptions must
involve storing the indices explicitly. Despite the resulting overhead, in the vast
majority of applications the scheme pays off nicely due to the small number of
nonzero elements per row.

Variations on this concept abound in the COOrdinate, Compressed Sparse
Rows, Compressed Sparse Columns, ELLpack, JAgged Diagonals, and other for-
mats. Each storage format offers different efficiencies with respect to the mathe-
matical operator or data transformation to be implemented (both typically map
into an object “method”), and the underlying platform (including the hardware
architecture and the compiler).

Sect. 2 of the current paper presents three design patterns: State, Builder,
and Prototype, leveraging the newly available OOP constructs of Fortran 2003 in
scientific applications. Sect. 3 presents interfaces for sparse matrix computations
on GPUs starting from PSBLAS. Sect. 4 concludes.

2 Design Patterns

Many professionals will confirm that, when confronted with design patterns, their
colleagues will often have a “recognition” moment in which they declare they
have been doing things “the right way” all along, without knowing their fancy



names. Applying design patterns in a conscious way can be highly beneficial.
Evidence from the literature suggests that these benefits have been reaped in
the context of scientific applications only recently [10, 14], the timing being due
in part to the arrival of compilers that support the OOP constructs in Fortran
2003, the only language for which the international standards body has scientific
programmers as its target audience. With this paper, we discuss implementations
of design patterns not previously demonstrated in Fortran 2003.

2.1 “STATE” Is Your Friend

The State pattern allows the encapsulation of object state behind an interface
that allows the object type to vary at runtime. Figure 1 shows a Unified Mod-
eling Language (UML) class diagram of the State pattern, including the class
relationships and the public methods. The diagram hides the private attributes.

Let us consider the problem of switching among different storage formats for
a given object. An old-fashioned but feasible solution would be to have a data
structure containing integer values driving the interpretation and dispatching of
the various operations; however, this route is not very maintainable and scalable.
Using an object-oriented design and language per se is not a solution either;
indeed, while it seems that all variations in storage formats could be derived from
a base class, switching at runtime would require the same object to change its
class dynamically. This is generally not supported by object-oriented languages
(with very rare exceptions [9]); the solution is to add a layer of indirection,
encapsulating the “dynamic” object inside a normal one. The application to the
sparse matrix case is shown here:

type :: psb_d_base_sparse_mat

contains

procedure, pass(a) :: foo

end type psb_d_base_sparse_mat

type :: psb_dspmat_type

class(psb_d_base_sparse_mat), allocatable :: a

contains

procedure, pass(a) :: mat_foo

end type psb_dspmat_type

subroutine mat_foo(a)

call a%a%foo()

end subroutine mat_foo

The methods of the outer class are always thrown onto the inner class, which
is the actual workhorse. To enable a runtime class switch it is necessary to devise
a conversion strategy; a viable choice we employed is to have one reference storage
class, and to have all other classes provide methods to convert to/from it.

2.2 “PROTOTYPE” and “BUILDER” Are Good Ideas

This section is concerned with maintaining and extending a body of software,
and how certain patterns can help. Suppose you are designing a library for sparse



Fig. 1. UML class diagram for the State pattern: classes (boxes) and relationships
(connecting lines), including abstract classes (bold italics) and relationship adornments
(line labels) with arrows indicating the relationship direction. Line endings indicate
relationship type: inheritance (open triangle) and aggregation (open diamond). Class
boxes include: name (top), attributes (middle), and methods (bottom). Leading signs
indicate visibility: public (+) or private (−). Italics denote an abstract method.

matrix computations; you spend a long time in thinking about the capabilities
you have to implement, and how to combine them in a way that is both efficient
and flexible. You have also spent a significant amount of effort in properly seg-
regating the specifics of any given storage format to its class, and in optimizing
the implementation of its methods. This is a success, everything works properly,
and publication ensues; so far, so good.

However, at this point two issues arise: (1) your software has to be used on
the latest BNE Tour-de-France processor; (2) Professor Hook in the University
of Neverland absolutely wants to fit her favourite storage method into your
framework, since she thinks it is so good (both her method and the framework).
If your software is really successful, these requests might be coming in with an
alarming frequency. Each time you have to derive a new class for the inner storage
object (remember, we are systematically using the STATE pattern), and this is
the (relatively) easy part, but you also have to adapt the library to handle its
existence. You have to add constructors, converters, and what not; potentially,
you have to touch multiple places, and break multiple things. How do you get
out of this? The strategy that was devised in PSBLAS can be interpreted in
terms of two design patterns: Builder and Prototype.

BUILDER The Builder pattern in OO design allows for an abstract specifica-
tion of the steps required to construct an object. Figure 2 shows a UML class
diagram of the Builder pattern, including the class relationships and the public
methods of the abstract parent. Child classes must provide concrete implemen-
tations of these methods (not shown). The diagram hides the private attributes.

The strategy to build a sparse matrix is: (1) initialize to some default; (2)
add sets of coefficients by calling buildup methods in a loop; (3) assemble the re-
sults and bring the object to the desired final storage status. Most sparse matrix



libraries (including Trilinos, PETSc, PSBLAS) are organized around these con-
cepts; this is an example of “convergent evolution” towards a reasonable solution
that is more or less forced by the constraints of the application domain.

Fig. 2. UML class diagram for the Builder pattern.

It should be clear that the only place where the desired output storage format
has to be enforced explicitly is at the assembly step; in PSBLAS software, this
is handled at the inner level, by allocating a new object of the desired class and
converting to it from the existing inner object. It may appear that it is necessary
to have an exact knowledge of the derived class of the new object at the time
the assembly code is written; however this is not quite true. All that is needed
is to know that it is derived from a given base class, and that it is capable of
converting to/from a reference storage format. With this scheme, a conversion
between arbitrary derived classes can always be implemented by at most one
intermediate object of the reference class, even if the outer code invoking the
conversion methods does not know the exact dynamic type involved. This scheme
works fine, provided that the library code can allocate a new object with the
correct dynamic type, which is only known at runtime: to this end we call the
next design pattern to our rescue.

PROTOTYPE This design pattern might also be defined as “copy by exam-
ple”: when a method needs to instantiate an object, it does it by referring to
another object which is a “source” or a “mold”. The class for copied object will
include a cloning or molding method by which the desired copy can be obtained;
the two variations refer to whether a full copy of the source object is created, or
just an empty copy with the correct dynamic type.

Returning to our example of assembling a sparse matrix, you (or rather, your
library code) gets a reference object for the inner storage; you do not need to
know the details of its contents, as long as it is an extension of the base storage
class, and it implements the necessary conversion methods to/from the reference
format.



This idea is so good that in Fortran 2003/2008 it has become part of the
language itself. To call into existence a polymorphic object the language provides
a specification of dynamic type in the ALLOCATE statement; the most common
way is shown in the following example:

class(base_sparse_mat), allocatable : mat_object
allocate(my_storage_format : mat_object)

where my_storage_format is the name of the desired dynamic type. However it
is also possible to use the following alternatives:

class(base_sparse_mat) :: sourcemat;
allocate(mat_object, source=sourcemat)

or alternatively

allocate(mat_object, mold=sourcemat)

depending on whether the original contents of sourcemat have to be copied or
not. The MOLD= variant is extensively used in PSBLAS to implement the PRO-
TOTYPE pattern. In this way, a new storage format can be added by (1) defining
a derived class from the base class, providing the necessary implementations of
the methods; (2) using the new class in the main application, declaring a vari-
able of the desired new class; (3) passing the “mold” variable to the assembly
routine. This is it; no changes are necessary to the library code, not even a re-
compilation, and the existing computational methods will happily use the new
storage format.

3 An Example: Adding Support for NVIDIA GPUs

Graphics Processing Units (GPUs) have entered as an attractive choice the world
of scientific computing, building the core of the most advanced supercomputers
and even being offered as an infrastructure service in Cloud computing (e.g.,
Amazon EC2). We discuss here how our desing techniques help in interfacing
sparse matrix computations kernels for the GPU into the existing sparse library
PSBLAS.

The NVIDIA GPU architectural model is based on a scalable array of multi-
threaded streaming multi-processors, each composed by a fixed number of scalar
processors, one dual-issue instruction fetch unit, one on-chip fast memory with a
configurable partitioning of shared memory, and L1 cache plus additional special-
function hardware. CUDA is the programming model provided by NVIDIA for
its GPUs; a CUDA program consists of a host program that runs on the CPU
host, and a kernel program that executes on the GPU device. The host program
typically sets up the data and transfers it to and from the GPU, while the kernel
program processes that data. The CUDA programming environment specifies a
set of facilities to create, identify, and synchronize the various threads involved
in the computation. A key component of CUDA is the GPU memory hierarchy.



Memory on the GPU includes a global memory area in a shared address space
accessible by the CPU and by all threads, a low-latency memory called the
shared memory, which is local to each multiprocessor, and a per-thread private
local memory, not directly available to the programmer.

3.1 Sparse Matrix Computation on GPU

The considerable interest in GPUs for General Purpose computation (GPGPU)
is due to the significant performance benefits possible with its usage; for example,
the works in [2, 3, 16] demonstrated how to achieve significant percentages of peak
single-precision and double-precision throughput in dense linear algebra kernels.
It is thus natural that GPUs (and their SIMD architecture) are considered for
implementing sparse matrix computations; sparse matrix-vector multiplication
has been the subject of intense research on every generation of high performance
computing architectures.

Sparse matrix computations on the GPU introduce additional challenges with
respect to their dense counterparts, because operations on them are typically
much less regular in their data access patterns; recent efforts on sparse GPU
codes include [4–6], and NVIDIA’s CUSPARSE library [13].

Let us consider the matrix-vector multiplication y ← αAx + βy where A is
large and sparse and x and y are column vectors; we will need to devise a specific
storage format for the matrix A to implement the sparse matrix computations
of interest. Our starting point is a GPU-friendly format we developed; we will
concentrate on how the design patterns discussed in Sect. 2 can be used to plug
in the new formats and the GPU support code in the PSBLAS library.

Our storage format is a variation of the standard ELLpack (or ELL)format;
an M -by-N sparse matrix with at most K nonzeros per row is stored as a dense
M -by-K array data of nonzeros and array indices of column indices; all rows
are zero-padded to length K; this format is efficient when the maximum number
of nonzeros per row is close to the average. ELL fits a sparse matrix in a regular
data structure; thus it is a good candidate to implement sparse matrix operations
on SIMT architectures. The usage of ELL format and its variants on GPUs have
been previously analyzed in [15, 16].

Our storage format ELL-G takes into account the memory access patterns of
the NVIDIA Tesla architecture [12], as well as other many-threads performance
optimization patterns of the CUDA programming model.

A critical issue in interfacing with existing codes is the need to take care of
the data movements from the main memory to the GPU RAM and vice versa;
unfortunately data movement is very slow compared to the high bandwidth
internal to the GPU, and this is one of the major problems in GPU programming.
To add support for NVIDIA GPUs in the PSBLAS library we had to derive from
ELL a new GPU class requiring the following modifications:

– At assembly time, copy the matrix to the GPU memory;
– At matrix-vector time, invoke the code on the GPU side;
– At deallocation time, release memory on both the host and device sides.



On the library side of things, a set of wrappers handles the communication with
the application and sorts out the needed inter-language call details; attached to
this layer there is the CUDA layer which performs the actual work. Thus, given
the preparatory work discussed above, we can have the code

call psb_spmm(-done,a,x,dzero,y,desc_a,info,’n’)

which performs the matrix-vector product; according to the dynamic type and
state of the inner component(s) of a, x and y the code will run on the CPU or
on the GPU, possibly including copying the vector data to the GPU side.

3.2 Performance Results

First of all, since this paper is dedicated to the design technique, let us state that
after writing the CUDA kernel code, embedding the new format in the existing
library required a development effort of just about a couple of days, including
debugging. Our computational experiments were run on an NVIDIA GeForce
GTX 285 graphics card, which has a maximum throughput of 94.8 Gflop/s in
double precision. The computation rates are reported in Gflop/s; the number
of arithmetic operations per matrix-vector is assumed to be 2NZ where NZ is
the number of nonzeros in the matrix, and the rate is averaged over multiple
runs. For the experiments we used a collection of sparse matrices arising from

Table 1. Sparse matrices used in the performance experiments.

matrix name N NZ

pde05 125 725
pde10 1000 6400
pde20 8000 53600
pde30 27000 183600
pde40 64000 438400

matrix name N NZ

pde50 125000 860000
pde60 216000 1490400
pde80 512000 3545600
pde90 729000 5054400
pde100 1000000 6940000

a test three-dimensional partial differential equation (PDE) problem; the PDE
is discretized with finite differences on a cubic domain. Table 1 summarizes
the matrix characteristics, where N is the matrix size and NZ is the number
of nonzeros. For the matrix-vector multiplication, in the experiments we set
β = 0, i.e., we consider y ← Ax, and report results only for double precision
computations.

In our experiments we compare the throughput of the sparse matrix-vector
multiplication in PSBLAS exploiting the GPU and using our ELL-G storage
format with that obtained by the standard PSBLAS library on CPU. For the
experiments on CPU we used an AMD Athlon 64 processor running at 2.7 GHz;
this is a dual-core processor, but we only run in serial mode for the purposes
of this comparison. Figure 3(a) shows the performance improvement that we
obtain implementing the PSBLAS interface for sparse matrix computations on
GPUs even when we include the overhead of transferring the vector data from
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main memory; in this case the GTX 285 vs AMD matrix-vector multiplication
gives a speedup between 2 and 3 depending on the sparse matrix.

With the measurements shown in Figure 3(b) we report the same operations
on the same data, but with the vectors prearranged in the GPU memory; this is
more representative of usage of the kernels in a sparse iterative solver. Comparing
these results with those in Figure 3(a), we see that data transfer overhead is very
significant; having the vectors on the GPU enables a performance level that is
essentially identical to that of the inner kernels. Arranging the vectors to be
loaded on the GPU device memory is possible because the vectors undergo the
same build cycle as the matrices; therefore by employing the State pattern for
vectors we can have the data loaded on the device side “on demand”. The high-
level solver code looks exactly the same for GPU and CPU execution, but during
the solution process only scalars are transferred between the CPU and the GPU;
the solution vector itself is recovered upon exit from the iterative process.

4 Conclusions

In this paper, we have discussed how the well-known software engineering con-
cept of Design Patterns can be applied with benefits in the context of sparse
matrix computation. We have demonstrated how these patterns can be used to
implement an interface for sparse matrix computations on GPUs starting from
the existing PSBLAS library. Our experience shows that this solution provides
good flexibility and maintainability and allows to exploit the GPU computation
with its related performance benefits. While the ideas discussed have been tested
in the PSBLAS framework, future work will include extension to multilevel pre-
conditioners as well as interfacing with ForTrilinos. The techniques described in
this paper can also be employed to encapsulate and use other storage formats,
including the format used in the CUSPARSE library; a detailed performance
analysis and comparison is the subject of currently ongoing work.
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