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Abstract

In the service oriented paradigm applications are cre-
ated as a composition of independently developed Web ser-
vices. Since the same service may be offered by different
providers with different non-functional Quality of Service
(QoS) attributes, a selection process is needed to identify
the constituent services for a given composite service that
best meet the users QoS requirements.

In this paper, we consider a broker that offers a compos-
ite service with multiple QoS classes to several users each
generating a flow of requests over time. We propose a ser-
vice selection scheme which optimizes the end-to-end ag-
gregated QoS of all incoming flows of requests by means of
a simple linear programming problem which scales as the
number of users, request volumes and/or services grows.
This approach differs from most of the current proposals
which may not scale well since: a) requests, even from the
same user, are handled independently from one another;
and b) the selection process often requires the solution of
an NP-hard problem.

1. Introduction

The service oriented paradigm encourages the imple-
mentation of new applications through the composition of
independently developed and deployed Web services. Dif-
ferent providers may offer equivalent services correspond-
ing to the same functional description (we refer to the for-
mer as concrete services and the latter as abstract service).
Quality of Service (QoS) attributes provide a differentiation
among the competing services, allowing a prospective user
to choose the services which best suit his/her QoS require-
ments. To formally define the QoS level required from the
selected provider, the latter and the user may engage in a
negotiation process, which culminates in the definition of a
Service Level Agreement (SLA).

Web service composition has received increasing at-
tention by the research community in the past few years

(e.g., [7, 8, 9, 11, 13] to cite a few). An important role
for the provisioning and management of a composite ser-
vice is played by the QoS-aware selection of the con-
crete services from a larger set of candidates. Several
works [2, 3, 4, 10, 12, 13] have tackled this issue, propos-
ing exact algorithms or heuristics (e.g., [3] or genetic algo-
rithms in [4]) to optimally determine the appropriate con-
crete services for each individual component invocation or
over the whole composite request. Yu and Lin [12] for-
mulate the problem as a multi-dimension multi-choice 0-1
knapsack as well as a multi-constraint optimal path prob-
lem. Zeng et al. [13] present a global planning approach
to select an optimal execution plan by means of integer
programming. In [2, 10] the service selection is tackled
through mixed integer programming. All these proposals
perform the optimization on a per-request basis that is, they
solve the optimization problem for each single request (or
even more times per request [13]); moreover, the optimiza-
tion problems have exponential complexity and can be effi-
ciently solved only via heuristics. Therefore, it appears that
the proposed request-based approaches might not be suit-
able for on-line broker operations where potentially high
volumes of service requests must be handled.

To overcome these limitations, we propose a differ-
ent approach, whereby service selection is carried out per
groups of requests rather than per-request. More precisely,
we consider flows of requests, where each flow is a se-
quence of homogenous requests originating by the same
user/organization over time, all requiring the same QoS
level. We formulate the service selection problem as a Lin-
ear Programming optimization problem, which takes into
account various non-functional QoS global attributes of the
composite service, such as response time, cost, and avail-
ability. The solution provided by the optimization problem
is used by a service broker, which advertises and offers the
composite service with a range of service classes which im-
ply different monetary prices. Differently from the request-
based approach to optimal service selection, in our proposal
the solution of the optimization problem (i.e., a given se-
lection of concrete services) holds for all the requests in a



flow, and needs to be recomputed only when there is a rel-
evant change in the set of SLAs, or in the set of offered
QoS classes, or in the set of request flows. Moreover, the
broker solves the optimization problem taking into account
the coexistence of competing flows of requests generated by
multiple requestors, with possibly different QoS constraints
agreed in the SLAs. This is not possible in the request-
based approach, which could result in sub-optimal and pos-
sible instable solutions as it does not take into account the
presence of other simultaneous requests.

Our flow-based approach is able to give to each flow
of requests a statistical guarantee that its QoS constraints
will be actually met. Specifically, our guarantee takes the
form of bounds on the expected values of the QoS attributes
agreed on for each class. These guarantees are similar to
those provided by the request-based approaches and only
differ in that they hold on a per-flow rather than a per-
request basis. We have introduced the flow-based service
selection approach in [6]. However, this paper presents
novel and significant contributions, which include the for-
mulation as a Linear Programming problem and the man-
agement of the concurrent execution pattern in the workflow
of the composite service.

The rest of the paper is organized as follows. Section 2
describes the broker architecture. Section 3 presents the
QoS model for the composite service and discusses how
to compute its global QoS attributes. Section 4 discusses
the formulation of the optimization problem and Section 5
presents some examples of solution of the optimization
problem. Finally, Section 6 concludes the paper.

2. Broker architecture

In this section, we outline the broker architecture with
its components. We also introduce the composite service
model and the notation later used to formulate the optimal
selection of the concrete services.

The service broker acts as an intermediary between ser-
vice requestors and providers, performing a role of ser-
vice provider towards the requestors and being in turn a re-
questor to the providers of the concrete services. The broker
is independently operated and maintained by a third party; it
is a Web service itself and advertises the offered composite
service in a public registry.

As a first step, the broker defines the business process for
the composite service and discovers those concrete services
which offer the proper functionalities and are therefore can-
didates for the selection (we do not focus on the discovery
and selection process of a pool of candidates e.g., [9, 11]).
For each candidate service, the broker negotiates a SLA
with its provider, establishing the values of the QoS at-
tributes provided by each concrete service in correspon-
dence with a mean volume of requests generated by the bro-

ker for that service. Then, the broker may negotiate a SLA
with each requestor, establishing the offered QoS level of
the composite service in correspondence with a mean vol-
ume of requests generated by the requestor to the broker. In
our architecture, we assume that the broker manages differ-
ent, but fixed, QoS levels for the operated composite ser-
vice. Within this framework, one of the main broker tasks
is to determine a service selection that fulfills the SLAs it
negotiates with its requestors, given the SLAs it has nego-
tiated with the providers. The selection criteria correspond
to the optimization of a given utility goal of the broker.

In this paper, we mainly focus on the service selection
task. However, we briefly discuss the main components of
the broker architecture, assuming that the broker acts as a
full intermediary, which really provides the composite ser-
vice to the requestors. To this end, we consider that the logic
of the composite service is expressed through the Business
Process Execution Language for Web Services (WS-BPEL
or BPEL for short) [1], which has emerged as the de-facto
standard language for the orchestration of Web services and
the description of abstract business processes.

As illustrated in Figure 1, the broker consists of the fol-
lowing components: the Composition Manager, the SLA
Negotiation Manager, the Admission Control Manager, the
BPEL Engine, the Selection Manager, the Optimization En-
gine, the Execution Path Analyzer, and the SLA Monitor.
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Figure 1. Broker architecture

The main functions of the Composition Manager are the
service composition (i.e., the specification of the business
process in BPEL) and the discovery of the candidate con-
crete services. The SLA Negotiation Manager is responsi-
ble for establishing the SLAs with both the requestors and
the service providers. The role of the Control Admission
Manager is to determine whether a new requestor can be
accepted for the required classes of service, without violat-
ing the SLAs of already accepted requestors.

The BPEL Engine is the software platform to execute the
business process described in BPEL. Once the request has



been admitted and classified as pertaining to a flow with an
established SLA, the BPEL Engine acts as the broker front-
end to the service requestors for the service provisioning.
When the requestor invokes the business process, the BPEL
Engine creates a new instance of the process itself.

At the beginning of each process instance, the Selection
Manager binds each request to the concrete services that
meet the contracted QoS level by assigning a real endpoint
to each invoked service. The endpoints list is obtained at
run time from the solution of the optimization problem pro-
vided by the Optimization Engine. The Selection Manager
may also trigger a new solution of the optimization problem
when some relevant change is detected.

The Optimization Engine determines the selection of the
concrete services by solving the optimization problem. In
this paper, we mainly focus on the methodologies underly-
ing the implementation of this broker component.

Finally, the Execution Path Analyzer collects informa-
tion about the composite service usage, while the SLA
Monitor verifies whether the performance perceived by the
requestors and offered by the providers complies with the
SLAs. These information are used by the Selection Man-
ager to find out whether a new solution of the optimization
problem is required. Moreover, the information obtained by
the SLA Monitor can be used to take proper actions when a
SLA violation is detected (e.g., SLA enforcing [8]).

2.1. Composite service model

We assume that the composite service structure is de-
fined using BPEL [1]. In this paper, we refer to a significant
subset of the whole BPEL definition, focusing on its struc-
tured style of modeling (rather than on its graph-based one,
thus omitting to consider the use of control links). Specif-
ically, besides the primitive invoke activity, which speci-
fies the synchronous or asynchronous invocation of a Web
service, we consider all the different kinds of structured ac-
tivities: sequence, switch, while, pick, and flow,
whose meaning is summarized in Table 1.

Activity Meaning

sequence Sequential execution of activities
switch Conditional execution of activities
while Repeated execution of activities in a loop
pick Conditional execution of activities based on

external event/alarm
flow Concurrent execution of activities

Table 1. Structured activities in BPEL

As a running example, throughout the paper we use the
Travel Planner (TP) composite service, whose BPEL code
is sketched in Figure 2, while Figure 3 illustrates the corre-
sponding workflow with its abstract services. With the ex-
ception of the pick construct, this example encompasses

all the structured activities listed above.

...
<sequence>

<while condition=“condition=trigger” ...>
<flow ...>

<sequence>
<invoke ...

operation=“FlightTicketBooking” .../>
<invoke ...

operation=“HotelBooking” .../>
</sequence>
<invoke ...

operation=“AttractionSearch” .../>
</flow>

</while>
<invoke ...

operation=“DrivingTimeCalculation” .../>
<switch ....>

<case condition=“carRental=OK”>
<invoke ...

operation=“CarRental” .../>
</case>
<otherwise>

<invoke ...
operation=“BikeRental” .../>

</otherwise>
</switch>

</sequence>

Figure 2. The Travel Planner (TP) BPEL code

The business process for the composite service defines
a set of abstract services V . We denote by Ii the set of all
concrete services that can be used to implement the abstract
service i ∈ V and by i.j ∈ Ii the j-th concrete service for i.
Figure 4 shows the TP workflow with the concrete services.
We assume that there are two concrete services for each ab-
stract one that is, |Ii| = 2 for each i ∈ V . For the sake
of readability, in the figure, we have renamed the activities
with numbers: 1 for the FlightTicketBooking activity, 2 for
the HotelBooking activity, etc.

FlightTicketBooking

HotelBooking Car Rental

AttractionSearch

Bike Rental

DrivingTimeCalculation

Figure 3. The TP workflow

As the broker acts on behalf of a significant amount of re-
questors, it is able to identify usage patterns of the compos-
ite service. To embody this knowledge in the workflow, we
consider an annotated version of the workflow, where each
abstract service is annotated with the average number of
times it is invoked by each service class. These values can



be initialized by the workflow designer and are then period-
ically updated by the Execution Path Analyzer component,
which monitors the workflow executions. Figure 4 shows
the annotated TP workflow, where V denotes the number of
invocations for each abstract service.
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Figure 4. The annotated TP workflow

2.2. SLA model

The broker is involved in the SLA negotiation with two
counterparts: the requestors of the composite service and
the providers of the concrete services. Let us first discuss
the SLA settled with the latter. The QoS of each concrete
service can be characterized according to various attributes
of interest, such as the response time, the cost, the reputa-
tion, the availability, and the throughput [7, 13]. The val-
ues of these QoS attributes are advertised by the service
providers as part of the SLA. Without loss of generality,
in this paper we will consider the following QoS attributes
for each concrete service i.j:

• the response time rij , which is the interval of time
elapsed from the invocation to the completion of the
concrete service i.j;

• the cost cij which represents the price charged for each
invocation of the concrete service i.j;

• the logarithm of the availability, aij , i.e., the logarithm
of the probability that the concrete service i.j is avail-
able when invoked.

As in [13], we consider the logarithm of the availabil-
ity, rather than the availability itself, to obtain linear expres-
sions when composing the availability of different services.

For each concrete service i.j, the SLA established by
the broker with its provider defines the service cost (mea-
sured in money per invocation), the service availability, and
the expected response time (measured in time unit), pro-
vided the volume of requests generated by the broker does
not exceed the negotiated average load. The SLA for the

concrete service i.j is therefore represented by the tuple
〈rij , cij , aij , Lij〉, where Lij is the agreed average load.

We denote by K the set of QoS classes offered by the
broker. In the SLAs created with the requestors, the broker
characterizes the QoS of the composite service in terms of
bounds on the expected response time, cost, and availability
for each QoS class k ∈ K (i.e., Rk

max, C
k
max, A

k
min). Each

requestor has to negotiate for each QoS class the volume of
requests it will generate in that class (denoted by γk

u). The
SLA established by the broker with the requestor u for the
QoS class k is therefore a tuple 〈Rk

max, C
k
max, A

k
min, γk

u〉.

2.3. Service selection model

The goal of the Selection Manager is to determine, for
each QoS class, the concrete service i.j that must be used
to fulfill a request for the abstract service i. We model this
selection by associating with each abstract service i a vector
xi = (x1

i , ...,x
|K|
i ), where xk

i = [xk
ij ] and i.j ∈ Ii. Each

entry xk
ij of xk

i denotes the probability that the class-k re-
quest will be bound to the concrete service i.j. Figure 4
also shows the probabilities xk

ij for the TP example. With
this model, we assume that the Selection Manager can prob-
abilistically bind to different concrete services the requests
(belonging to a same QoS class k) for an abstract service
i. The deterministic selection of a single concrete service
corresponds to the case xk

ij = 1 for a given i.j ∈ Ii.
The Selection Manager determines the values of the xk

ij

by invoking the Optimization Engine. The optimization
problem takes the following general form (the explicit form
of the problem will be detailed in Section 4):

max F (x) (1)

subject to: Qα(x) ≤ Qα
max

Qβ(x) ≥ Qβ
min

S(x) ≤ L

x ∈ A

where x = (x1, ...,x|V|) is the decision vector, F (x) is a
suitable objective function, Qα(x) and Qβ(x) are, respec-
tively, those QoS attributes whose SLA values are settled
as a maximum and a minimum, S(x) are the constraints on
the offered load determined by the SLAs with the service
providers, and x ∈ A is a set of functional constraints (e.g.,
this latter set includes the constraint

∑
j∈Ii

xk
ij = 1).

To bind the requests to the concrete services, the Selec-
tion Manager uses the solution of this optimization problem
as follows. Given a class-k request, the Selection Manager
considers only the elements of the solution vector x that
pertain to class k. If, for each abstract service i, there is
more than one xk

ij �= 0, the Selection Manager selects ran-
domly the concrete service using the xk

ij values.



A new solution of the optimization problem may be trig-
gered when: a) the Execution Path Analyzer identifies some
change in the average number of visits to the abstract ser-
vices; b) the service composition changes, because either an
abstract service or a concrete service is added or removed;
c) the SLA Monitor detects some violation in the negotiated
SLA parameters; d) a new requestor, which does not have
yet a SLA with the broker, asks for the composite service.

3. Web service QoS model

In this section, we present the QoS model for the com-
posite Web service and how to compute its QoS attributes.
For each class k ∈ K offered by the broker, the overall QoS
attributes, namely,

• the expected response time Rk, which is the time
needed to fulfill a class-k request for the composite
service;

• the expected execution cost Ck, which is the price to
be paid to fulfill a class-k request;

• the expected availability Ak, which is the logarithm of
the probability that the composite service is available
for a class-k request

depend on: 1) the actual concrete service i.j selected
to perform each activity i ∈ V ; and, 2) how the services
are orchestrated. To compute these quantities, let Zk

i (x)
denote the QoS attribute of the abstract service i ∈ V , Z ∈
{R,C,A}. We have Zk

i (x) =
∑

j∈Ii
xk

ijz
k
ij where zk

ij , z ∈
{r, c, a} is the corresponding QoS attribute offered by the
concrete service i.j which can implement i.

We now derive closed form expressions for the QoS at-
tributes of the composite service we will later use in the
formulation of the optimization problem.
Cost and Availability. The cost and (logarithm of the)
availability QoS metrics are additive [7]. Therefore, for
their expected value we readily obtain

Ck(x) =
∑
i∈V

V k
i Ck

i (x) =
∑
i∈V

V k
i

∑
j∈Ii

xk
ijcij

Ak(x) =
∑
i∈V

V k
i Ak

i (x) =
∑
i∈V

V k
i

∑
j∈Ii

xk
ijaij .

where V k
i is the expected number of times service i is

invoked for a class k request.
Response Time. Differently from cost and availability, the
response time metric is additive as long as the composite
service does not include flow structured activities. In such
cases, we readily have:

Rk(x) =
∑
i∈V

V k
i

∑
j∈Ii

xk
ijrij . (2)

In the general case, instead, we need to account for the
fact that the response time of a flow activity is given by
the largest response time among its component activities.
Hence, in the general case, the response time is not additive
and (2) does not hold.

In this case, we can still derive an expression for the re-
sponse time Rk(x) by recursively computing the response
time of the constituent workflow activities. To this end, it
is convenient to represent the BPEL process by means of a
tree T = (V,E), which concisely captures the nesting re-
lationship among the BPEL process activities. In T , nodes
are the activities in the BPEL code, and edges reflect the
nesting relationship among the activities. For the sake of
simplicity, in the following, we will interchangeably speak
of activity i and node i. For each non root node i ∈ V , its
parent node f(i) is the structured activity within which ac-
tivity i occurs. Primitive activities are thus associated with
leaf nodes, while structured activities are associated with
internal nodes. We will write i ≺ l if node i is a descendant
of node l. Figure 5 shows the process activity tree for the
TP example. We will say that a node l ∈ T is a direct de-
scendant of l′ ∈ T , denoted by l �dd l′, if l ≺ l′ and for
any other node l′′ ∈ T , l ≺ l′′ ≺ l′ implies l′′ �= flow, i.e.,
if there is no node labeled flow in the path from l to l′.

switch

flow

while

1 2

3

4

5 6

seq.

seq.

Figure 5. Activity tree for the TP example

We can now state the following theorem, which provides
the expressions for the response time of each activity in the
BPEL code. Let F ⊂ V denote the set of nodes correspond-
ing to flow activities and let ı̄ denote the root node.

Theorem 1 For an activity l ∈ V and QoS class k ∈ K,
the response time Rk

l (x) is:

Rk
l (x) =




maxl′∈d(l) Rk
l′(x) l ∈ F∑

i∈V,i≺ddl
V k

i

V k
l

∑
j∈Ii

xk
ijrij+

+
∑

h∈F,h≺ddl
V k

h

V k
l

Rk
h(x) l /∈ F

(3)
Moreover, the overall expected response time Rk(x) is
given by the following expressions:



Rk(x) =




maxl′∈d(ı̄) Rk
l′(x) ı̄ ∈ F∑

i∈V,i≺dd ı̄ V k
i

∑
j∈Ii

xk
ijrij+

+
∑

h∈F,h≺dd ı̄ V k
h Rk

h(x) ı̄ /∈ F
(4)

Theorem 1 provides the response time Rk
l (x) of each

activity l ∈ V and the composite service response time
Rk(x), for each k ∈ K. The second of the expressions
for Rk(x) comprises two terms. The first term is the ex-
pected overall response time of the services which do not
appear within a flow structured activity. The second term
is the sum of the response times Rk

l of the outer flow activ-
ities, i.e., flow activities which are not nested within other
flow activities. These expressions can be easily derived
by visiting the tree in postorder and properly aggregating
the response time of the child nodes d(i) to derive the re-
sponse time of the parent node i. The theorem proof can be
found in [5].

4. Optimization problem

In this section we detail the instance of the general opti-
mization problem outlined in Section 2.3. The Optimization
Engine goal is to determine the variables xk

ij , i ∈ V , k ∈ K,
j ∈ Ii which maximize a suitable objective function. We as-
sume that the broker wants, in general, to optimize multiple
QoS attributes (which can be either mutually independent
or possibly conflicting), rather than just a single one, i.e.,
the response time. Therefore, in general the optimal service
selection takes the form of a multi-objective optimization.
Here, we tackle the multi-objective problem by transform-
ing it into a single objective problem. Specifically, we con-
sider as objective function F (x) an aggregate QoS measure
given by a weighted sum of the (normalized) QoS attributes.
More precisely, let Z(x) = 1∑

k∈K γk

∑
k∈K γkZk(x),

where Z ∈ {R,C,A} is the expected overall response time,
cost and availability, respectively, and γk =

∑
u γk

u is the
aggregate flow of class-k requests. We define the objective
function as follows:

F (x) = wr
Rmax − R(x)

Rmax − Rmin
+ wc

Cmax − C(x)

Cmax − Cmin
+ wa

A(x) − Amin

Amax − Amin

(5)

where wr, wc, wa ≥ 0, wr + wc + wa = 1, are weights
for the different QoS attributes. Rmax (Rmin), Cmax (Cmin)
and Amax (Amin) denote, respectively, the maximum (mini-
mum) value for the overall response time, cost and the (log-
arithm of) availability. We will describe how to determine
these values shortly.

The Optimization Engine task consists in finding the
variables xk

ij , i ∈ V , k ∈ K, j ∈ Ii, which solve the fol-
lowing optimization problem:

max F (x)

subject to: Rk(x) ≤ Rk
max k ∈ K (6)

Rk
l′(x) ≤ Rk

l (x) l′ ∈ d(l), l ∈ F , k ∈ K (7)

Rk
l (x) =

∑
i∈V,i≺ddl

V k
i

V k
l

∑
j∈Ii

xk
ijrij+

+
∑

h∈F,h≺ddl

V k
h

V k
l

Rk
h(x), l /∈ F , k ∈ K (8)

Ck(x) ≤ Ck
max k ∈ K (9)

Ak(x) ≥ Ak
min k ∈ K (10)

∑
k∈K

xk
ijV

k
i γk ≤ Lij i ∈ V , j ∈ Ii (11)

xk
ij ≥ 0,j ∈ Ii,

∑
j∈Ii

xk
ij = 1 i ∈ V , k ∈ K (12)

Equations (6)-(10) are the QoS constraints for each ser-
vice class on response time, cost and availability, where
Rk

max, Ck
max, and Ak

min are respectively the maximum re-
sponse time, the maximum cost and the minimum (loga-
rithm of the) availability that characterize the QoS class k.
The constraints (7)-(8), which can be easily derived from
(3), provide the expressions for the response times. Inequal-
ities (7), in particular, allow us to express the relationship
among the response time Rk

l of a flow activity and that of
its component activities Rk

l′ . Equations (11) are the broker-
providers SLA constraints and ensure the broker does not
exceed the SLA with the service providers. Finally, equa-
tions (12) are the functional constraints.

The maximum and minimum values of the QoS at-
tributes in the objective function (5) are determined as fol-
lows. Rmax, Cmax, and Amin are simply expressed re-
spectively in terms of Rk

max, Ck
max, and Ak

min. For ex-
ample, the maximum response time is given by Rmax =

1∑
k∈K γk

∑
k∈K γkRk

max. Similar expressions hold for

Cmax and Amin. The values for Rmin, Cmin, and Amax are
determined by solving a modified optimization problem in
which the objective function is the QoS attribute of interest,
subject to the constraints (11)-(12).

We observe that the proposed Optimization Engine prob-
lem is a Linear Programming problem which can be effi-
ciently solved via standard techniques. The solution thus
lends itself to both on-line and off-line operations.

5. Numerical results

In this section, we illustrate the behavior of the proposed
selection scheme through the Travel Planner service of Fig-
ure 3. The composite service offers two QoS classes, gold
and silver, denoted by the superscripts 1 and 2, respectively.



Table 2 summarizes the two classes QoS attributes. Users
in the gold class accept to pay a higher cost to get better re-
sponse time and availability, while users in the silver class
accept worse performance to pay a lower cost.

QoS Class Rk
max Ck

max Ak
min

gold 12 20 log(0.95)
silver 20 12 log(0.9)

Table 2. Composite service class attributes

We assume that for each abstract service there are two
concrete services which implement it, i.e., |Ii| = 2, i ∈ V
(the resulting workflow is displayed in Figure 4). The con-
crete services differ in terms of response time, cost, and
availability. Table 3 summarizes the services parameters.
They have been chosen so that for each abstract service
i ∈ V , concrete service i.1 represents the better service,
which at a higher cost ensures lower response time and
higher availability with respect to service i.2, which costs
less but has higher response time and lower availability. For
all services, we assume Lij = 10. Finally, we consider the
following values for the the number of service invocations:
(V 1

1 , V 2
1 ) = (V 1

2 , V 2
2 ) = (V 1

3 , V 2
3 ) = (1.5, 1.5), (V 1

4 , V 2
4 ) =

(1, 1), (V 1
5 , V 2

5 ) = (0.7, 0.5), and (V 1
6 , V 2

6 ) = (0.3, 0.5).

Serv. rij cij aij

1.1 2 6 log(0.999)
1.2 4 3 log(0.99)

2.1 2 4 log(0.999)
2.2 4 2 log(0.99)

3.1 1 2 log(0.999)
3.2 3 1 log(0.99)

Serv. rij cij aij

4.1 0.5 0.5 log(0.999)
4.2 1 0.3 log(0.99)

5.1 2 1 log(0.999)
5.2 2.2 0.7 log(0.99)

6.1 1.8 0.5 log(0.999)
6.2 2 0.2 log(0.99)

Table 3. Concrete services QoS attributes

We assume that the arrival rates for the two QoS classes
are (γ1, γ2) = (4, 7) and consider the selection strategy
for two different objective functions: 1) the Optimization
Engine minimizes the average response time (wr = 1); and,
2) it minimizes the mean cost (wc = 1). Figure 6 shows the
solution of the optimization problem in the two scenarios;
the values within the graphs are those of the variables xk

ij

when different from 1.
In the first scenario, the goal is to minimize the aver-

age response time. The broker treats quite differently the
requests of the two QoS classes. For the gold service re-
quests, the broker always selects the faster concrete services
i.1 (see the upper left workflow in Figure 6). This allows to
achieve the lowest possible response time (8.44) at a cost
(19.35) which is within gold user upper limit C1

max. For the
silver requests, instead, the solution adopted for the gold
users cannot be applied as it is too expensive (well above
C2

max = 12). For this class, instead, a fraction of requests

is assigned to the cheaper services i.2 to satisfy the cost
constraints. It is worth observing that the abstract service
3 is handled differently as all requests are assigned to 3.2.
This is easily explained by observing that no matter how
concrete services are chosen, the response time of abstract
service 3 is lower than the sum of the response time of 1 and
2, R2

3 < R2
1 + R2

2; hence, there is no benefit in assigning
requests to service 3.1 which would only increase cost with-
out any gain in the response time. Finally, we observe that,
as a byproduct of the concrete services attributes, gold users
also enjoy better service availability with an availability of
98% versus an availability of about 95% for silver users.

Service Util. (%)

1.1 65%
1.2 100%

2.1 65%
2.2 100%

3.1 65%
3.2 100%

Service Util. (%)

4.1 10%
4.2 100%

5.1 0%
5.2 63%

6.1 0%
6.2 47%

Table 4. Scenario 2: services utilization

In the second scenario, the goal is to minimize the av-
erage cost. Intuitively, this should be achieved by us-
ing as much as possible the concrete services i.2, i ∈ V
since they cost less (as long the other QoS requirements
are satisfied). To show that this is indeed the case, we
list in Table 4 the concrete service utilization, defined as∑

k∈K xk
ijV

k
i γk/Lij , which shows that the cheaper ser-

vices are fully utilized (except service 6.2 which, neverthe-
less, is assigned all requests for abstract service 6). Re-
quests which cannot be assigned to these services are as-
signed to the more expensive services i.1. Besides ensur-
ing full utilization of the cheaper services, users requests
are also assigned as to satisfy the other QoS attributes: gold
users are mainly assigned to the more expensive services be-
cause of the more stringent response time constraints, while
the opposite is true for the silver requests.

6. Conclusions

This paper deals with service selection in composite Web
services offered by a broker which supports multiple QoS
classes. Differently from most of the existing proposals
for service selection, we consider SLAs encompassing the
overall flow of requests and formulate a constrained opti-
mization problem which can be efficiently solved via stan-
dard techniques for linear programming. Our approach is
applicable to manage the service selection in a real operat-
ing broker-based architecture, where the broker efficiency
and scalability in replying to the requestors are important
factors. Our problem formulation can be easily modified to
take into account other QoS attributes. Moreover, it can be
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Figure 6. Solution of the optimization problem

easily extended to determine a new resource provisioning
that the broker can negotiate with the providers to satisfy a
new flow of requests or a change in an existing SLA.

The model proposed in this paper provides a statistical
guarantee on the expected QoS attributes. Our future work
will address the support for more general types of statis-
tical guarantees (e.g., upper bound on the 99-percentile of
the response time), the dynamic re-binding of the concrete
services during the process execution, and the sharing of
services among multiple brokers.
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