
Designing a Broker for QoS-driven Runtime Adaptation of SOAApplications

Valeria Cardellini, Stefano Iannucci
DISP, University of Roma “Tor Vergata”, 00133 Roma, Italy

{cardellini, iannucci}@ing.uniroma2.it

Abstract—One of the major current trends in service-
oriented systems is the emphasis given to the need of introduc-
ing runtime adaptation features, so that the system can meetits
QoS requirements in a volatile operating environment. In this
paper we present the design and implementation of a service
broker that supports the QoS-driven runtime adaptation of
SOA applications offered as composite services to users. We
describe the functionalities provided by the broker components
and present their design and implementation according to two
different versions we have developed and that are both based
on open source products. The components of the first version
have been developed in Java as Web services, while the second
version takes advantage of OpenESB. Since the broker needs
to sustain a traffic of requests generated by several concurrent
users, we also present the replicated architectures of the two
broker versions. We discuss the design tradeoffs and the lesson
we have learned in developing the broker.

Keywords-Service-oriented architecture; quality of service;
runtime adaptation.

I. I NTRODUCTION

The introduction of self-adaptation and self-management
techniques may significantly improve service-oriented sys-
tems, because such techniques can help tackle the increased
complexity of the systems themselves and of their environ-
ment [1]. Specifically, runtime adaptation features can allow
a SOA-based system to meet its quality of service (QoS)
requirements even when operating in highly changing and
evolving environments. Being able to effectively guarantee
the QoS agreements at runtime is an important concern
for the provider of a SOA application, because it may
bring competitive advantage over other providers. Since a
SOA application is constructed by orchestrating network-
accessible services offered by a multitude of third-party
service providers, the dynamic binding to the component
services is a crucial task. Indeed, several competing services
may coexist implementing the same functionality (we refer
to the former asconcrete servicesand the latter asabstract
service) but with different QoS performance attributes (e.g.,
response time and reliability) and cost.

In this paper, we present the architecture and detailed
design of the MOSES prototype. MOSES, which stands for
MOdel-based SElf-adaptation of SOA systems, is a runtime
adaptation framework for a SOA-based system architected
as a service broker. The methodology at the basis of MOSES
has been presented in [2]; we briefly review its distinguish-
ing features prior to present the MOSES prototype.

The MOSES aim is to drive the self-adaptation of the
SOA system it manages to fulfill non-functional QoS re-
quirements of the composite service, such as its response
time, availability, and cost. The QoS contracted by the
users and the composite service provider must meet certain
respective obligations and performance expectations which
the parties agree upon in a Service Level Agreement (SLA).
The distinguishing features of the MOSES approach to
adaptation can be summarized as follows [2]. First, MOSES
performs aper-flowadaptation to reduce the computational
load under a sustained traffic scenario. Such approach jointly
considers the aggregate flow of requests; to the contrary,
most of the proposed adaptation methodologies (e.g., [3],
[4]) deal with single requests to the SOA application, which
are managed independently one from another. The second
characteristic of MOSES regards the mechanisms used to
perform the adaptation, because it combinesservice selec-
tion with coordination pattern selection. The goal of the
first mechanism is to identify at runtime for each abstract
service a corresponding concrete service, selecting it from a
set of candidates (e.g., [3], [4]). To increase the offered QoS,
MOSES also exploits the coordination pattern selection [2],
which allows to bind at runtime each abstract service to a
set of functionally equivalent concrete services, coordinating
them according to some redundancy pattern.

The two major goals of the service broker supporting
the MOSES methodology are: (1) its ability to manage
in an adaptive and flexible manner the concrete services
in such a way to guarantee for the SOA application the
QoS parameters agreed in the SLAs with the users; (2) its
scalability and reliability, because the broker needs to sustain
a traffic of requests generated by several users without
service discontinuity. To achieve the first goal, we have
designed the MOSES architecture as an instantiation for
the SOA environment of a self-adaptive software system,
where the software components are organized in a feedback
loop aiming to adjust the SOA system to changes during its
operation. We present two implementations of the MOSES
architecture: in the first version the MOSES components
have been developed in Java as Web services, while the
second version is based on OpenESB. To achieve the scal-
ability and reliability goal, we have designed the replicated
architecture of the two broker versions.

The MOSES architecture is inspired by existing imple-
mentation of frameworks for Web services QoS brokering

(e.g., [5]–[7]). Menascé et al. have proposed a SOA-based
QoS broker for negotiating QoS goals [7] but their broker
do not offer a composite service and its components are
not organized as a self-adaptive system. PAWS [5] is a
framework for flexible and adaptive execution of business
processes but some of its modules work at design time,
while MOSES adaptation operates only at runtime. Erradi et
al. have presented a policy-based middleware that performs
runtime monitoring and adaptation of Web service compo-
sitions [6]. Proxy-based approaches, similar to that used in
MOSES for the dynamic binding to concrete services, have
been previously proposed for re-binding purposes [8] as well
as for handling runtime failures [9] in SOA applications.

The remainder of the paper is organized as follows. In
Section II we present an overview of the MOSES architec-
ture, outlining the main tasks of its components. We describe
the design and implementation of two MOSES versions
in Sections III and IV, also discussing some performance
results. Finally, in Section V we point out the lesson learned
from the development of the MOSES prototype and give
some suggestions for future work.

II. OVERVIEW OF THE MOSES ARCHITECTURE

MOSES is architected as aservice broker, which offers to
its users a composite service with a range of different service
classes. It acts as an intermediary between users and concrete
services, performing a role of service provider towards the
users and being in turn a requestor to the concrete services
used to implement the composite service. Its main task is to
drive the adaptation of the composite service it manages to
fulfill the SLAs negotiated with its users, given the SLAs it
has negotiated with the concrete services. Moreover, it also
aims at optimizing a given utility goal.

Figure 1 shows the core components of the MOSES high-
level architecture and their interaction. In this section we
provide a functional overview of the tasks carried out by
the MOSES components, while in Sections III and IV we
discuss in details their design and implementation.

User

UDDI Registry

User

User

Concrete

Service
Concrete

Service Concrete

Service

Concrete

Service

Adaptation

Manager

Service

Manager

WS

Monitor

Workflow

Engine

Composition

Manager

Data Access Library

Storage

SLA

Manager

Optimization

Engine

QoS Monitor

BPEL

Process
Execution Path

Analyzer

Figure 1. MOSES high-level architecture.

The Composition Manageris mainly responsible for the
construction of the composite service model, which defines
the set of abstract services forming the abstract composition,
the set of concrete services, the parameters of the SLAs
established by the broker with the users and the providers
of the concrete services. Based on the workflow description
in BPEL and with the cooperation of the Service Manager,
the Composition Manager builds a behavioral model of
the composite service and saves it in the storage layer to
make it accessible to the other MOSES components. The
Composition Manager is only invoked by those users who
are responsible for MOSES administration and are allowed
to publish new BPEL processes.

The Workflow Engineis the software platform executing
the BPEL process and represents the user front-end for the
composite service. It interacts with the Adaptation Manager
to allow the invocation of the component services. For
each invocation in the abstract composition (i.e., a BPEL
invoke activity), theAdaptation Managerbinds at runtime
the request to the real endpoint that represents the abstract
service. The real endpoint is identified by the solution of
an optimization problem and can be either a single service
instance or a subset of service instances coordinated through
some pattern. The MOSES methodology (and therefore the
prototype presented in this paper) currently supports the
1-out-of-n parallel redundancy and the alternate service
coordination patterns [2]. With the former, the Adaptation
Manager invokes the concurrent execution of the concrete
services in the subset identified by the Optimization Engine,
waiting for the first successful completition. With the latter,
the Adaptation Manager invokes sequentially the concrete
services in the subset, until either one of them successfully
completes, or the list is exhausted. Therefore, in the envi-
sioned architecture the Adaptation Manager is in charge of
carrying out at runtime the adaptation actions.

The Optimization Engineis the MOSES component that
solves the optimization problem, which is based on the
behavioral model initially built by the Composition Manager
and instantiated with the parameters of the SLAs negotiated
with the composite service users and concrete services. The
model is kept up to date by the monitoring activity carried
out by the QoS Monitor, the WS Monitor, and the Execution
Path Analyzer. The optimization problem is formulated as a
Linear Programming problem and is therefore suitable to be
solved at runtime because of its efficiency [2]. Its solution
provides indications about the suitable adaptation actions
that must be performed to optimize the use of the available
concrete services with respect to the broker utility criterion,
within the constraints defined by the existing SLAs.

The QoS Monitorcollects information about the perfor-
mance and reliability levels (specified in the SLAs) per-
ceived by the users and offered by the concrete services.
The WS Monitorchecks periodically the responsiveness of
the pool of operations. TheExecution Path Analyzerkeeps

up to date information about the composite service usage
profile by examining the business process executed by the
Workflow Engine; specifically, for every task of the abstract
composition it determines the expected number of times the
task is invoked by each service class.

Besides maintaining up to date the parameters of the
optimization problem, the QoS Monitor, WS Monitor, and
Execution Path Analyzer check and notify whether some rel-
evant change occurs in the composite service environment.
Changes to be tracked include: the arrival/departure of a user,
an observed variation in the SLA parameters of the concrete
services, the addition/removal of a concrete service, and a
variation in the usage profile of the tasks in the abstract
composition. Upon receiving a notification of a significant
variation of the model parameters, MOSES finds out whether
an adaptation action must be performed. To this end, it
builds a new instance of the optimization problem, with
the new values of the parameters. Based on this solution,
the Adaptation Manager issues suitable directives, so that
future concrete instances of the composite service workflow
will be generated according to these directives.

One of theService Managertasks is to identify through
the UDDI registry the set of concrete services (including
the parameters of their SLAs) implementing the required
functionalities of the composition. Its other task, sharedwith
theSLA Manager, regards the SLA negotiation processes in
which the broker is involved as intermediary. Specifically,
the Service Manager negotiates the SLAs with the concrete
services, while the SLA Manager is in charge of the user
SLA negotiation and registration, that is, it can add, modify,
and delete SLAs and users profiles. The SLA negotiation
process towards the user side includes also the admission
control of new users; to this end, the Optimization Engine
is invoked to evaluate the MOSES capability to accept
the incoming user, given the associated SLA and without
violating already existing SLAs. If the requesting user is
admitted, the user registration process adds the user profile
in the MOSES storage layer.

Finally, theData Access Libraryis used by most of the
components to access the model parameters of the composite
service operations and environment (including the abstract
services and the corresponding concrete services with their
QoS values, and the solution of the optimization problem).

The MOSES architecture represents an instantiation for
the SOA environment of a self-adaptive software system [1],
focused on the fulfillment of QoS requirements. The archi-
tecture of an autonomic system consists of a set of managers
and managed resources [10]. Each manager communicates
with the resources through a sensor/actuator mechanism and
the decision is elaborated using the so called MAPE-K
(Monitor, Analyze, Plan, Execute and Knowledge) cycle.
This loop collects information from the system, makes
decisions and then organizes the actions needed to achieve
goals and objectives, and controls the execution. Most of the

MOSES components are organized according to the MAPE-
K cycle. In particular, the QoS Monitor, WS Monitor, and
Execution Path Analyzer components play collectively the
Monitor and Analyze roles, the Optimization Engine plays
the Plan roles, while the Adaptation Manager plays the
Execute role. Finally, the Data Access Library collects the
knowledge about the system and environment status.

III. MOSES VERSION1

MOSES 1 components have been entirely developed in
Java as Web services. Java, Apache Tomcat, and Apache
Axis are the core technologies used in the implementation.
Furthermore, we used the open source ActiveBPEL Engine
by Active Endpoints to realize the Workflow Engine. At the
time of MOSES 1 implementation, for the BPEL engine we
have considered and tested both Apache ODE 1.2 and Ac-
tiveBPEL 5. We selected the latter mainly for two reasons:
first, only ActiveBPEL was fully compatible with BPEL4WS
1.1 and WS-BPEL 2.0 specifications; additionally, in pre-
liminary experiments we found that ActiveBPEL had better
performance and offered a more detailed documentation.

A. MOSES 1 Components

Each component has been developed as a Web service
and deployed inside an Axis2 engine. Figure 2 shows the
architectural overview of MOSES 1. We note that MOSES
components and ActiveBPEL actually reside on different in-
stances of the Apache Tomcat servlet container. Specifically,
MOSES components use Tomcat 6, while for ActiveBPEL
we were constrained to Tomcat 5.5, because it is the most
recent version supported by the BPEL engine. The two
Tomcat instances increase the resource consumption and
complicate the global management of the prototype.

Figure 2. MOSES 1 architectural overview.

In MOSES 1, the request-response cycle begins with a
request to a given business process deployed inside the
BPEL engine; then, the invocations to the external con-
crete services involved in that process are captured by the
Adaptation Manager, which applies one of the coordination
patterns according to the current solution of the optimization

problem. Therefore, for each service invocation the Adap-
tation Manager has to query the storage layer to know the
optimal solution and then provide the response to the BPEL
Engine. At the end of the process execution, a response
is returned to the user. For the completion of the request-
response cycle, there is the need to pass twice through a
SOAP port for the BPEL engine, plus 8 times for each
concrete service invoked through the Adaptation Manager
(it would be 4 times without the Adaptation Manager). In
addition, inter-modules communications use SOAP calls. A
detailed description of all components follows, except forthe
Service Manager whose implementation is still incomplete.

1) Adaptation Manager:It provides a generic interface,
so that it can be used by any business process for the
invocation of any partner link. To reach this goal, the
component has to manage any kind of SOAP message;
therefore, its interface was designed with the maximum
degree of flexibility. The tasks of the Adaptation Manager
are: (1) to modify the namespaces found in the payload
field of the request element, so that they can be compatible
with the invoked concrete service; (2) to invoke such service
according to the coordination pattern determined by the
optimal solution. To accomplish the former task we used
the Apache Axiom library, that provides a pull-based parser
for SOAP messages and a set of API to act on them. The
latter task is accomplished by reading the solution from the
storage backend and then invoking the service by means of
the Apache Axis libraries.

2) Composition Manager:The original BPEL process is
not able to call the Adaptation Manager: therefore, we have
to specialize the process to let it invoke our component
instead of the concrete services. The Composition Manager
performs this specialization by looking only at the process
structure (e.g., the process name, the number of parallel
invocations) and applies it transparently to the developerof
the BPEL process. The extension of the original process
is done at the process deploy time. After the business
process specialization, the Composition Manager builds the
behavioral model [2] of the process just deployed.

3) Optimization Engine:Its core is a MATLAB program
(the latter is the only proprietary software used in MOSES).
The Optimization Engine is actually a wrapper that makes
it possible to invoke a MATLAB program as a Web service.
To this end, we defined an interface that exposes different
Web service operations, corresponding to the specific events
that may trigger the solution of a new instance of the
optimization problem: SLA creation, SLA deletion, status
change for a Web service, changes in the QoS parameters
(e.g., a SLA violation identified by the QoS Monitor), and
deployment of a new process.

4) WS Monitor: It checks whether registered concrete
services are up and running. Differently from the other
MOSES components, it is implemented as a daemon: it starts
immediately after the deployment and enters into an infinite

loop, without being invoked by the other components. The
WS Monitor task is to notify the Optimization Engine of
variations in the availability of the concrete services (i.e.,
available services that become unavailable or unavailable
services again available), in such a way that MOSES can
react to the change by solving a new instance of the
optimization problem. It executes periodically an “HTTP
ping” to all the endpoints defined for each concrete service.
Because of this simple implementation, the types of faults
that can be identified are limited: the monitor can only de-
termine if the application server that hosts the specified Web
service is running, but it is unable to find out whether the
Web service is actually and properly working. To overcome
this issue, the monitor should perform a “SOAP ping”, but
this involves the creation of request messages that are both
syntactically and semantically valid. While the former task
can be easily accomplished by parsing the WSDL document
of each Web service, the latter is harder because it assumes
the usage of ontologies [11]. Rather than following this
approach, a simpler improvement of the monitor could be
the definition of online test cases for each concrete service.

Furthermore, the component functionalities can be en-
riched by letting it trigger adaptation actions to the Op-
timization Engine not only when needed (i.e., after the
detection of an already unavailable service) but also in
a proactive manner (i.e., on the detection of a soon-to-
be unavailable service). As stated in [12], proactive fault
management is the next challenge in fault handling.

5) QoS Monitor: Its implementation currently focuses
on monitoring the response time and the availability of the
invoked concrete services. These measures are collected by
the Adaptation Manager as a result of the service invocations
and are periodically requested by the QoS Monitor. Given
a sliding time windowT formed byk subintervals and for
each concrete service, the QoS Monitor calculates the num-
ber of subintervalsv in each of which the concrete service’s
mean response time (availability) violates the corresponding
SLA value; if v/k > α, where 0 < α ≤ 1 is a given
threshold, the QoS Monitor invokes the Optimization Engine
with the measured QoS parameters.

6) SLA Manager:It is in charge of the creation and dele-
tion of the SLAs with the users, the admission control of new
users and their possible registration in case of acceptance
(see Section II). The current implementation provides a naive
automatic renegotiation of the SLA parameters assuming
that the broker offers ordered service classes with fixed
parameters (e.g., gold, silver, and bronze): in case the user
cannot be admitted, the SLA Manager invokes repeatedly
the Optimization Engine degrading the service class until it
finds a suitable one (if any), and proposes the renegotiated
contract to the user. We plan to enhance our automatic
negotiation mechanism, using an approach similar to [13].

7) Execution Path Analyzer:It is basically a simple file
parser: after a periodic analysis of the log file produced by

ActiveBPEL, it collects information on the number of visits
for eachinvoke activity in the business process, updating
subsequently the QoS model in the storage layer.

8) MOSES 1 Storage:Storage is a critical component
of a distributed system, because the right tradeoff between
responsiveness and other performance indexes like availabil-
ity, reliability, and scalability, should be found. We have
investigated various alternatives to implement our data layer,
focusing on MySQL and Apache ZooKeeper. The first is
a well-known relational database, while the latter is a dis-
tributed coordination mechanism for distributed applications.
ZooKeeper provides synchronization primitives as well as a
shared tree data structure that frees the developer from the
burden of managing the data distribution among the system
nodes [14]. In MOSES 1, we have decided to use Zookeeper
3.1.1 for two reasons. First, MOSES is a distributed appli-
cation and it could be limiting to use a single relational
database as data backend, especially considering that our
application does not need sophisticated data operations (e.g.,
complex joins). Furthermore, ZooKeeper provides near-local
read performance and it easily scales when read/write ratio
is over 10 [14], as in the MOSES case. To allow the MOSES
future developers not to know ZooKeeper internals, we have
developed a data access library, named MOSES Data Access
Library (MDAL), that completely hides the data backend.
This library implements a ZooKeeper specific logic, but its
interfaces can be implemented with other logics.

B. Replicated Architecture of MOSES 1

To evaluate the overhead introduced by the Adaptation
Manager on the management of the composite service, we
have compared the response time of a BPEL process served
by MOSES to that of the same BPEL process managed by
a stand-alone BPEL engine. The response time includes the
BPEL execution time and the invocation and execution times
of dummy partner Web services, while network times are
negligible because the tests have been executed in a Gigabit
LAN environment. Each test had a duration of 180 seconds,
where the first 30 seconds were discarded. The tests were
executed on 3 homogeneous computers, the first acting as
user machine, the second with only ActiveBPEL, and the
third running ZooKeeper, all the MOSES components except
the Workflow Engine, and the concrete services. Figure 3
shows the mean response times obtained for increasing
request arrival rates. We observe that at a rate of 1 req/sec,
the response time of the BPEL process served by MOSES
is 266% higher than that of the process served without
MOSES. We have investigated the reason and found that it
is due to the data serialization inside the ZooKeeper storage:
to gain in flexibility we have used XML, but XML parsing
wastes over 75% of the Adaptation Manager execution
time. From Figure 3 we observe that the saturation point
occurs with approximatively 30 req/sec without MOSES and
with approximatively 25 req/sec with MOSES serving the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

R
es

po
ns

e
T

im
e

[s
ec

.]

Request arrival rate [req./sec.]

w/o Adaptation Manager
with Adaptation Manager

Figure 3. Response times with and without Adaptation Manager.

business process. Since a sustained rate of 30 req/sec is
too limited for a service broker operating in a real world
scenario with several concurrent requests, our next effort
was to design the MOSES 1 replicated architecture.

Figure 4. MOSES 1 replicated architecture.

Figure 4 illustrates the replicated architecture of MOSES
1, that has been designed to overcome various of bottlenecks,
not only depending on the internal MOSES components, but
also on the BPEL engine. The first change is the introduction
of the new Switch component, which is in charge to select
an available replicated instance of the BPEL Engine for the
execution of the BPEL process using a simple stateless load
sharing policy (random or round-robin). During the process
execution, when the Adaptation Manager has to be invoked,
its instance is selected from a list of available Adaptation
Managers applying again a naive load sharing strategy.

The selection of which component to use is simplified by
the distributed storage system: each MOSES 1 component
registers itself in the storage system to inform the other
components about its existence. Furthermore, the task of
replicating the MOSES components is simplified by the
presence of the distributed storage: we realized a new
component, named MOSES Node, which registers itself on
the storage and offers the deployment and undeployment of
Web services to make it possible to add or remove MOSES
component instances. Finally, we added two circular moni-

toring cycles: the first is among Tomcat instances (precisely,
among MOSES Nodes instances); the second regards the
MOSES components. With the MOSES 1 replicated version
we are able to dynamically adapt the broker architecture,
adding or removing Tomcat instances (i.e., MOSES Nodes),
as well as changing the number of requested instances of
a certain component (maximum one instance per kind per
node) to increase the system scalability.

We have tested the replicated MOSES 1 using 2 Ac-
tiveBPEL nodes on 2 homogeneous PCs and 2 MOSES
nodes on 2 additional homogeneous PCs (one of these
hosted also the concrete services); a fifth PC was used for
generating the requests. Figure 5 compares the response
times of the replicated MOSES 1 with its non-replicated
counterpart. For a request rate up to 22 (corresponding to

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45

R
es

po
ns

e
T

im
e

[s
ec

.]

Request arrival rate [req./sec.]

with replication
w/o replication

Figure 5. Response times of MOSES 1 with and without replication.

the saturation point) the original MOSES 1 performed better
than its replicated version because of the lack of the Switch
dispatching. At a higher rate, we observe a significant per-
formance improvement achieved by the replicated version.

IV. M OSESVERSION2

The design of the replicated version of MOSES 1 has
allowed us to achieve a significant improvement in terms of
performance, reliability, and scalability, but at a certain point
of the development process we had to face new issues. First,
Active Endpoints has discontinued the open source BPEL
engine we have used so far; second, we have experimented
stability problems with Apache ZooKeeper; finally, mas-
querading the BPEL processes with the Switch component
implies the exposition of a unique interface that is the union
of all possible process interfaces. Therefore, we decided to
rearrange the MOSES architecture in such a way to let it
use as many industrial standards as possible. Specifically,
the architecture of MOSES version 2 was redesigned with
the use of the Java Business Integration (JBI) standard.

JBI is a messaging-based plug-in architecture [15], whose
components are described in WSDL. It provides an ar-
chitecture and enabling framework that facilitates dynamic

composition and deployment of loosely coupled composite
applications and service-oriented integration components.
The key components of the JBI environment are: (1) Service
Engine (SEs), enabling pluggable business logic; (2) Binding
Components (BCs), enabling pluggable external connectiv-
ity; (3) the Normalized Message Router (NMR), which
directs normalized messages from source to destination
components according to specified policies.

After thoroughly comparing the available and stable open
source implementations for JBI, we decided to focus on
OpenESB, developed by an open source community under
the direction of Sun Microsystems, because it is an imple-
mentation and extension of the JBI standard. It implements
JBI because it provides the key components (SEs, BCs, and
NMR); it extends JBI because it enables a set of distributed
JBI instances to communicate as a single logical entity
that can be managed through a centralized administrative
interface. GlassFish application server is the default runtime
environment, although OpenESB can be integrated in several
JEE application servers.

A. MOSES 2 within the JBI Environment

The OpenESB-based architecture of MOSES is depicted
in Figure 6. Each MOSES 2 component is executed by
one Service Engine, that can be either Sun BPEL Service
Engine for executing the business processes logic and inter-
nal orchestration needs, or J2EE Engine for executing the
business logic of all the components but the BPEL Engine.
Developing components with J2EE Engine improves the
flexibility, because they can be accessed either as standard
Web services or as EJB modules through the NMR.

Figure 6. OpenESB-based MOSES architecture.

The typical execution flow is illustrated in Figure 6. In
(1), a user issues a standard SOAP request to the MOSES
front end, that is the HTTP BC. The request format follows
what expected by the BPEL process. In (2), the HTTP BC
normalizes the HTTP request and sends it to the BPEL En-
gine through the NMR (3). When the BPEL Engine receives
the request message from the NMR, it de-normalizes the

message and starts its execution. At this point, the request
could be rejected because MOSES does not own sufficient
internal resources to manage it. In such a case, an exception
is forwarded to the user. (4) is accomplished whenever there
is the need to read the solution of the optimization problem
from the storage layer (i.e., for eachinvoke activity).
Finally, (5) and (6) occur when the response is provided
to the user: the BPEL Engine puts its response message on
the NMR, the HTTP BC de-normalizes it obtaining a plain
SOAP response message that is then forwarded to the user.

Alternative execution flows can be split in monitoring
flows and administration flows. The former denotes each
flow that is related to the resources monitoring and can trig-
ger the execution of the Optimization Engine to determine a
new optimal solution. The WS Monitor along with the QoS
Monitor and the Execution Path Analyzer are invoked by
the Scheduler BC at fixed intervals, and each of them can
trigger the Optimization Engine in case it has detected a
significant change in the system model. The Execution Path
Analyzer in MOSES 2 is a simple porting from MOSES 1:
when invoked by the Scheduler BC, it parses a log file. This
off-line implementation introduces some delay to the update
of the system model. Therefore, we are currently evaluating
the component implementation using the Intelligent Event
Processor SE, which provides the ability to process complex
events as well as event streams. The Service Manager can be
invoked either by the Scheduler BC or by the SLA Manager
when a lookup of new concrete services is required. The
SLA Manager and Composition Manager invocation patterns
are unchanged with respect to MOSES 1.

All the inter-module communications take advantage from
the NMR presence: message exchanges are faster than those
based on SOAP communication, because they avoid to pass
through the network protocol stack without losing the ability
to expose every MOSES component as a Web service.

B. MOSES 2 Storage

MOSES 2 data storage has also been redesigned to use
as much industrial standards as possible. Therefore, we
have abandoned Apache ZooKeeper in favor of a more
consolidated DBMS like MySQL. With this choice, we
gain the opportunity to maintain a more structured data set,
that allows us not to use XML for data storing with the
subsequent performance speedup.

MySQL also offers interesting cluster capabilities that
we have exploited into MOSES 2. We use MySQL cluster
Network DataBase (NDB) to obtain performance improve-
ments and high availability. The NDB storage engine allows
the creation and the management of in-memory databases,
replicated with hard-consistency constraints. Within the
hard-consistency hypothesis, we have built a multi-master
MySQL cluster, where load balancing among the DB servers
is carried out by GlassFish through a random policy.

Figure 7. MOSES 2 replicated architecture.

C. Replicated Architecture of MOSES 2

MOSES 1 replicated architecture was quite flexible be-
cause its design allowed us to distribute the MOSES com-
ponents at the finest level of granularity; but in practice we
really did not need such flexibility. For example, why should
the Workflow Engine call a remote Adaptation Manager
rather than a local one? No reason, considering also that the
Adaptation Manager load is lower than that of Workflow
Engine. Therefore, it is preferable to consider them as a
single logical unit and eventually replicate them in pair.

MOSES 2 requires that only two components must be
up and running in order to complete the request-response
cycle: the BPEL Engine and the DB. In case only these
two components work, our broker may anyway orchestrate
the services in a sub-optimal way, but still it succeeds in
providing a response to the users. Figure 7 illustrates the
MOSES 2 replicated architecture, where the BPEL Engine
and the Adaptation Manager constitute the so-calledcore
cluster. The other clusters provide additional features to
MOSES 2 that are not mandatory for the basic execution: the
front-endcluster provides to the broker the ability to receive
new BPEL processes to deploy as well as the ability to
negotiate SLAs with users. Theback-endcluster comprises
the components that allows the runtime adaptation capabil-
ities. From a database point of view, the core cluster hosts
its own high available DB server with strong consistency
to make the execution of DB queries as fast as possible.
The back-end cluster’s DB is instead synchronized with the
core cluster’s DB using an external weak consistency policy
and an internal strong consistency policy. Finally, the front-
end cluster does not own a DB at all: we assume that the
request rate it receives is much lower than that directed to
the core cluster; therefore, we prefer to pay a penalty for the

DB accesses generated by the front-end cluster rather than
having on it a new MySQL instance with its own replication
strategy and related overhead.

We are evaluating the performance of MOSES 2. From
preliminary experiments we have obtained quite promising
results: MOSES 2 without replication halves the response
time of a request-response cycle with respect to MOSES 1.

V. L ESSONSLEARNED AND CONCLUSIONS

In this paper we presented the design and implementation
of the MOSES broker, which provides runtime QoS-driven
adaptation of SOA applications. We developed two versions
of MOSES, which are both based on open source products
and can be extended through replication to let MOSES scale
and efficiently cope with QoS requirements coming from
several concurrent users in a rapidly changing environment.

The development of MOSES 2 followed a totally different
approach from MOSES 1. We re-designed the whole archi-
tecture: MOSES 1 claimed to be a completely distributed
application, but the distribution of some component could be
not only unnecessary but it could also introduce additional
overhead. Furthermore, we carefully distributed MOSES 2
components to minimize the network overheads for inter-
module communications and storage access. For example,
by collocating the Workflow Engine and the Adaptation
Manager on the same machine and also letting them be
executed by the same JVM, we succeeded to call the
Adaptation Manager as a Java class rather than as a Web
service, with consequent speedup.

Another weakness of MOSES 1 was the manual integra-
tion of many software products: ActiveBPEL, Tomcat, Axis,
and ZooKeeper. With MOSES 2, we decided to use JBI,
which provides a standardized way to integrate components.
The choice of OpenESB as JBI implementation lead us to
replace Tomcat with GlassFish. The latter with OpenESB
offers us the same functionalities we had in MOSES 1, plus
a standard pluggable architecture and a standardized way to
communicate among components.

Furthermore, OpenESB can be extended through different
GlassFish instances; therefore, we can rely on GlassFish’s
own cluster capabilities for the replicated MOSES 2, without
the need to realize any “ping and react” pattern. Again, the
native support of relational DBs like MySQL offered by
GlassFish lead us to conduct a more precise analysis on
the storage layer, whose aim was to identify the MOSES
components that execute more frequent data accesses. As a
result, we identified three load sources: the BPEL Engine
with the Adaptation Manager make the majority of the
data accesses (and they are the components within the
core cluster). Then, in decreasing load order, there are the
components belonging to the back-end cluster and finally the
components in the front-end cluster. Having local clusters
instead of geographically distributed ones, together withthe
ability of MySQL to manage in-memory DBs, allowed us to

relinquish the distributed storage layer in favor of the more
classic DB-based solution. Specifically, we used a MySQL
cluster with strong consistency and synchronous replication
within the core cluster, asynchronously replicated with the
MySQL cluster of the back-end cluster. With this solution
it is possible to realize three types of local clusters that can
be spread across geographically distributed networks (e.g.,
collocating the core cluster on a private cloud and the back-
end and front-end clusters on Amazon EC2).

Besides completing the Service Manager component, we
are planning a more comprehensive set of experiments to
validate the architectural choices of MOSES 2 and prove
its effectiveness in a real testing scenario. Finally, we are
extending MOSES to fully support stateful services, as well
as to proactively monitor its adequacy to SLAs.

ACKNOWLEDGMENT
Work supported by the Italian PRIN project D-ASAP.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software:Land-
scape and research challenges,”ACM Trans. Auton. Adapt.
Syst., vol. 4, no. 2, pp. 1–42, 2009.

[2] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and
R. Mirandola, “Qos-driven runtime adaptation of service
oriented architectures,” inACM ESEC/SIGSOFT FSE, 2009.

[3] D. Ardagna and B. Pernici, “Adaptive service composition in
flexible processes,”IEEE Trans. Softw. Eng., vol. 33, no. 6,
June 2007.

[4] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for
web services selection with end-to-end qos constraints,”ACM
Trans. Web, vol. 1, no. 1, pp. 1–26, 2007.

[5] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Ple-
bani, “Paws: A framework for executing adaptive web-service
processes,”IEEE Softw., vol. 24, no. 6, pp. 39–46, 2007.

[6] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-driven mid-
dleware for self-adaptation of web services compositions,” in
ACM/IFIP/USENIX Middleware 2006, 2006, pp. 62–80.

[7] D. Menascé, H. Ruan, and H. Gomma, “Qos management in
service oriented architectures,”Performance Evaluation, vol.
7-8, no. 64, Aug. 2007.

[8] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A
framework for qos-aware binding and re-binding of composite
web services,”J. of Systems and Software, vol. 81, no. 10,
pp. 1754–1769, 2008.

[9] O. Ezenwoye and S. Sadjadi, “A proxy-based approach to
enhancing the autonomic behavior in composite services,”J.
of Networks, vol. 3, no. 5, pp. 42–53, 2008.

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,”IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[11] J. Cardoso, “Semantic integration of web services and peer to
peer networks to achieve fault-tolerance,” in2006 IEEE Int’l
Conf. on Granular Computing, May 2006, pp. 796–799.

[12] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,”ACM Comput. Surv., vol. 42, no. 3, pp.
1–42, 2010.

[13] M. Comuzzi and B. Pernici, “A framework for qos-based web
service contracting,”ACM Trans. Web, vol. 3, no. 3, 2009.

[14] “Apache ZooKeeper,” http://hadoop.apache.org/zookeeper/.
[15] B. Kumar, P. Narayan, and T. Ng,Implementing SOA Using

Java EE. O’Reilly, Dec. 2009.

