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Abstract—One of the major current trends in service- The MOSES aim is to drive the self-adaptation of the

. : jor cu . P

oriented systems is the emphasis given to the need of introdu  SOA system it manages to fulfill non-functional QoS re-

ing runtime adaptation features, so that the system canmeéls ¢\ ;iraments of the composite service, such as its response

QoS requirements in a volatile operating environment. In ths fi ilabilit d t Th S tracted by th

paper we present the design anq implemgntation of a service UME, avallability, an .COS T e Qo_ contracte y e.

broker that supports the QoS-driven runtime adaptation of  USers and the composite service provider must meet certain

SOA applications offered as composite services to users. We respective obligations and performance expectationstwhic
app _ofrere omp p g p p

describe the functionalities provided by the broker compoents  the parties agree upon in a Service Level Agreement (SLA).

and present their design and implementation according to tw The distinguishing features of the MOSES approach to

different versions we have developed and that are both based . . .
on open source products. The components of the first version adaptation can be summarized as follows [2]. First, MOSES

have been developed in Java as Web services, while the second Performs aper-flowadaptation to reduce the computational
version takes advantage of OpenESB. Since the broker needs load under a sustained traffic scenario. Such approacliyjoint
to sustain a traffic of requests ggnerated by several concuent considers the aggregate flow of requests; to the contrary,
Effi:'r \V/‘gis?(l)i‘; pvr\?es‘é?stctg'ses iﬁg”g:ts?d architectures of thend  yq¢t of the proposed adaptation methodologies (e.g., [3],
. gn tradeoffs and the lesn . . N .
we have learned in developing the broker. [4]) deal with s!ngle requests to the SOA application, which
are managed independently one from another. The second
characteristic of MOSES regards the mechanisms used to
perform the adaptation, because it combigesvice selec-
tion with coordination pattern selectionThe goal of the
first mechanism is to identify at runtime for each abstract
The introduction of self-adaptation and self-managemenservice a corresponding concrete service, selectingri &o
techniqgues may significantly improve service-oriented sysset of candidates (e.g., [3], [4]). To increase the offere$Q
tems, because such techniques can help tackle the increadd@®SES also exploits the coordination pattern selection [2]
complexity of the systems themselves and of their environwhich allows to bind at runtime each abstract service to a
ment [1]. Specifically, runtime adaptation features caovall set of functionally equivalent concrete services, coatiny
a SOA-based system to meet its quality of service (QoS}hem according to some redundancy pattern.
requirements even when operating in highly changing and The two major goals of the service broker supporting
evolving environments. Being able to effectively guarante the MOSES methodology are: (1) its ability to manage
the QoS agreements at runtime is an important concerin an adaptive and flexible manner the concrete services
for the provider of a SOA application, because it mayin such a way to guarantee for the SOA application the
bring competitive advantage over other providers. Since #0S parameters agreed in the SLAs with the users; (2) its
SOA application is constructed by orchestrating network-scalability and reliability, because the broker needs &ban
accessible services offered by a multitude of third-partya traffic of requests generated by several users without
service providers, the dynamic binding to the componenservice discontinuity. To achieve the first goal, we have
services is a crucial task. Indeed, several competingeesvi designed the MOSES architecture as an instantiation for
may coexist implementing the same functionality (we referthe SOA environment of a self-adaptive software system,
to the former agoncrete serviceand the latter aabstract ~ where the software components are organized in a feedback
servicg but with different QoS performance attributes (e.g.,loop aiming to adjust the SOA system to changes during its
response time and reliability) and cost. operation. We present two implementations of the MOSES
In this paper, we present the architecture and detailedrchitecture: in the first version the MOSES components
design of the MOSES prototype. MOSES, which stands fohave been developed in Java as Web services, while the
MOdel-based SElf-adaptation of SOA systeimsa runtime  second version is based on OpenESB. To achieve the scal-
adaptation framework for a SOA-based system architectedbility and reliability goal, we have designed the repkcht
as a service broker. The methodology at the basis of MOSESrchitecture of the two broker versions.
has been presented in [2]; we briefly review its distinguish- The MOSES architecture is inspired by existing imple-
ing features prior to present the MOSES prototype. mentation of frameworks for Web services QoS brokering

Keywords-Service-oriented architecture; quality of service;
runtime adaptation.
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(e.g., [5]-[7]). Menascé et al. have proposed a SOA-based The Composition Manageis mainly responsible for the
QoS broker for negotiating QoS goals [7] but their brokerconstruction of the composite service model, which defines
do not offer a composite service and its components aréhe set of abstract services forming the abstract compasiti
not organized as a self-adaptive system. PAWS [5] is dhe set of concrete services, the parameters of the SLAs
framework for flexible and adaptive execution of businessestablished by the broker with the users and the providers
processes but some of its modules work at design timegf the concrete services. Based on the workflow description
while MOSES adaptation operates only at runtime. Erradi ein BPEL and with the cooperation of the Service Manager,
al. have presented a policy-based middleware that perfornthe Composition Manager builds a behavioral model of
runtime monitoring and adaptation of Web service compothe composite service and saves it in the storage layer to
sitions [6]. Proxy-based approaches, similar to that used imake it accessible to the other MOSES components. The
MOSES for the dynamic binding to concrete services, hav&Composition Manager is only invoked by those users who
been previously proposed for re-binding purposes [8] at welare responsible for MOSES administration and are allowed
as for handling runtime failures [9] in SOA applications. to publish new BPEL processes.

The remainder of the paper is organized as follows. In The Workflow Engines the software platform executing
Section Il we present an overview of the MOSES architecthe BPEL process and represents the user front-end for the
ture, outlining the main tasks of its components. We describ composite service. It interacts with the Adaptation Mamage
the design and implementation of two MOSES versiondo allow the invocation of the component services. For
in Sections Il and 1V, also discussing some performanceeach invocation in the abstract composition (i.e., a BPEL
results. Finally, in Section V we point out the lesson ledrne i nvoke activity), theAdaptation Managebinds at runtime
from the development of the MOSES prototype and givethe request to the real endpoint that represents the abstrac

some suggestions for future work. service. The real endpoint is identified by the solution of
an optimization problem and can be either a single service
[I. OVERVIEW OF THEMOSES ARCHITECTURE instance or a subset of service instances coordinatedghrou

_ ) _ ) some pattern. The MOSES methodology (and therefore the
MOSES is architected asszrvice brokerwhich offers to prototype presented in this paper) currently supports the
its users a composite service with a range of different servi 1_gyt-of-n parallel redundancy and the alternate service
classes. It acts as an intermediary between users and ®ncreggrdination patterns [2]. With the former, the Adaptation
services, performing a role of service provider towards th@anager invokes the concurrent execution of the concrete
users and being in turn a requestor to the concrete servic@gyices in the subset identified by the Optimization Engine
used to implement the composite service. Its main task is tQajting for the first successful completition. With the éait
drive the adaptation of the composite service it manages tthe Adaptation Manager invokes sequentially the concrete
fulfill the SLAs negotiated with its users, given the SLAs it seryices in the subset, until either one of them succegsfull
has negotiated with the concrete services. Moreover, @ alscompletes, or the list is exhausted. Therefore, in the envi-

aims at optimizing a given utility goal. ~sioned architecture the Adaptation Manager is in charge of
Figure 1 shows the core components of the MOSES highcarrying out at runtime the adaptation actions.

level architecture and their interaction. In this sectioa w  The Optimization Enginds the MOSES component that

provide a functional overview of the tasks carried out bysolves the optimization problem, which is based on the

the MOSES components, while in Sections Ill and IV we pehavioral model initially built by the Composition Manage

discuss in details their design and implementation. and instantiated with the parameters of the SLAs negotiated
with the composite service users and concrete services. The
model is kept up to date by the monitoring activity carried

out by the QoS Monitor, the WS Monitor, and the Execution
Path Analyzer. The optimization problem is formulated as a
Linear Programming problem and is therefore suitable to be
solved at runtime because of its efficiency [2]. Its solution
provides indications about the suitable adaptation astion
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The WS Monitorchecks periodically the responsiveness of
Figure 1. MOSES high-level architecture. the pool of operations. ThExecution Path Analyzekeeps



up to date information about the composite service usag®lOSES components are organized according to the MAPE-
profile by examining the business process executed by thi€ cycle. In particular, the QoS Monitor, WS Monitor, and
Workflow Engine; specifically, for every task of the abstractExecution Path Analyzer components play collectively the
composition it determines the expected number of times th&onitor and Analyze roles, the Optimization Engine plays
task is invoked by each service class. the Plan roles, while the Adaptation Manager plays the
Besides maintaining up to date the parameters of th&xecute role. Finally, the Data Access Library collects the
optimization problem, the QoS Monitor, WS Monitor, and knowledge about the system and environment status.
Execution Path Analyzer check and notify whether some rel-
evant change occurs in the composite service environment. 1. MOSES VERSION1

Changes to be tracked include: the arrival/departure oég us MOSES 1 components have been entirely developed in

an observed variation in the SLA parameters of the concretgava as Web services. Java, Apache Tomcat, and Apache
services, .the addmon/remoyal of a concretg service, and Rxis are the core technologies used in the implementation.
variation in the usage profile of the tasks in the abstrac}:urthermore we used the open source ActiveBPEL Engine

composition. Upon receiving a notification of a significant by Active Endpoints to realize the Workflow Engine. At the
variation of the model parameters, MOSES finds out Whethe{ime of MOSES 1 implementation, for the BPEL engine we
an adaptation action must be performed. To this end, i '

build inst f th Gimizati bl th have considered and tested both Apache ODE 1.2 and Ac-
thw S a nelw |ns]:3\?hce ot the top |méza |0dn proth.em, IW': tiveBPEL 5. We selected the latter mainly for two reasons:
€ new values of the paramelers. based on this solu Ior?i’rst, only ActiveBPEL was fully compatible with BPEL4AWS

the Adaptation Manager issues suitable directives, so thalt 1 and WS-BPEL 2.0 specifications; additionally, in pre-

future concrete instances of the composite service Workﬂovﬁminary experiments we found that ActiveBPEL had better

will be generated _accordlng to thesg dlre_ct|ve_s. performance and offered a more detailed documentation.
One of theService Managetasks is to identify through

the UDDI registry the .set of cqncrete ser.vices (incIud_ingA MOSES 1 Components

the parameters of their SLAs) implementing the required

functionalities of the composition. Its other task, shanith Each component has been developed as a Web service
the SLA Managerregards the SLA negotiation processes in@nd deployed inside an Axis2 engine. Figure 2 shows the
which the broker is involved as intermediary. Specifically, architectural overview of MOSES 1. We note that MOSES
the Service Manager negotiates the SLAs with the concretéomponents and ActiveBPEL actually reside on different in-
services, while the SLA Manager is in charge of the usestances of the Apache Tomcat servlet container. Specyficall
SLA negotiation and registration, that is, it can add, mpdif MOSES components use Tomcat 6, while for ActiveBPEL
and delete SLAs and users profiles. The SLA negotiatiofve were constrained to Tomcat 5.5, because it is the most
process towards the user side includes also the admissidRCent version supported by the BPEL engine. The two
control of new users; to this end, the Optimization EngineTomcat instances increase the resource consumption and
is invoked to evaluate the MOSES capability to acceptcomplicate the global management of the prototype.

the incoming user, given the associated SLA and without

violating already existing SLAs. If the requesting user is @ ActiveBREL JU—
admitted, the user registration process adds the usereprofil i ﬂ‘ it

in the MOSES storage layer.

Finally, the Data Access Librarys used by most of the Apacha Tomeal Gonfainar
components to access the model parameters of the composite [ws] [ws] [Wws]
service operations and environment (including the abistrac Mm;;,i Monior °=5Mwnw| e
services and the corresponding concrete services with thei
QoS values, and the solution of the optimization problem).

The MOSES architecture represents an instantiation for
the SOA environment of a self-adaptive software system [1],
focused on the fulfillment of QoS requirements. The archi-
tecture of an autonomic system consists of a set of managers Figure 2. MOSES 1 architectural overview.
and managed resources [10]. Each manager communicates
with the resources through a sensor/actuator mechanism andin MOSES 1, the request-response cycle begins with a
the decision is elaborated using the so called MAPE-Krequest to a given business process deployed inside the
(Monitor, Analyze, Plan, Execute and Knowledge) cycle.BPEL engine; then, the invocations to the external con-
This loop collects information from the system, makescrete services involved in that process are captured by the
decisions and then organizes the actions needed to achiedgaptation Manager, which applies one of the coordination
goals and objectives, and controls the execution. Mostef thpatterns according to the current solution of the optinirat
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problem. Therefore, for each service invocation the Adapioop, without being invoked by the other components. The
tation Manager has to query the storage layer to know th&/S Monitor task is to notify the Optimization Engine of
optimal solution and then provide the response to the BPElvariations in the availability of the concrete serviceg.(i.
Engine. At the end of the process execution, a responsavailable services that become unavailable or unavailable
is returned to the user. For the completion of the requestservices again available), in such a way that MOSES can
response cycle, there is the need to pass twice throughraact to the change by solving a new instance of the
SOAP port for the BPEL engine, plus 8 times for eachoptimization problem. It executes periodically an “HTTP
concrete service invoked through the Adaptation Manageping” to all the endpoints defined for each concrete service.
(it would be 4 times without the Adaptation Manager). In Because of this simple implementation, the types of faults
addition, inter-modules communications use SOAP calls. Ahat can be identified are limited: the monitor can only de-
detailed description of all components follows, exceptf@  termine if the application server that hosts the specifiedd We
Service Manager whose implementation is still incompleteservice is running, but it is unable to find out whether the

1) Adaptation Manager:lt provides a generic interface, Web service is actually and properly working. To overcome
so that it can be used by any business process for thihis issue, the monitor should perform a “SOAP ping”, but
invocation of any partner link. To reach this goal, thethis involves the creation of request messages that are both
component has to manage any kind of SOAP messagayntactically and semantically valid. While the formerktas
therefore, its interface was designed with the maximunctan be easily accomplished by parsing the WSDL document
degree of flexibility. The tasks of the Adaptation Managerof each Web service, the latter is harder because it assumes
are: (1) to modify the namespaces found in the payloadhe usage of ontologies [11]. Rather than following this
field of the request element, so that they can be compatiblapproach, a simpler improvement of the monitor could be
with the invoked concrete service; (2) to invoke such servic the definition of online test cases for each concrete service
according to the coordination pattern determined by the Furthermore, the component functionalities can be en-
optimal solution. To accomplish the former task we usedriched by letting it trigger adaptation actions to the Op-
the Apache Axiom library, that provides a pull-based parsetimization Engine not only when needed (i.e., after the
for SOAP messages and a set of API to act on them. Thdetection of an already unavailable service) but also in
latter task is accomplished by reading the solution from thea proactive manner (i.e., on the detection of a soon-to-
storage backend and then invoking the service by means dfe unavailable service). As stated in [12], proactive fault
the Apache Axis libraries. management is the next challenge in fault handling.

2) Composition ManagerThe original BPEL process is 5) QoS Monitor: Its implementation currently focuses
not able to call the Adaptation Manager: therefore, we haven monitoring the response time and the availability of the
to specialize the process to let it invoke our componentnvoked concrete services. These measures are collected by
instead of the concrete services. The Composition Managehe Adaptation Manager as a result of the service invocation
performs this specialization by looking only at the processand are periodically requested by the QoS Monitor. Given
structure (e.g., the process name, the number of parall@ sliding time windowI" formed byk subintervals and for
invocations) and applies it transparently to the develafer each concrete service, the QoS Monitor calculates the num-
the BPEL process. The extension of the original processer of subinterval® in each of which the concrete service’s
is done at the process deploy time. After the businessnean response time (availability) violates the correspand
process specialization, the Composition Manager builds thSLA value; if v/k > «, where0) < o < 1 is a given
behavioral model [2] of the process just deployed. threshold, the QoS Monitor invokes the Optimization Engine

3) Optimization Enginelts core is a MATLAB program  with the measured QoS parameters.

(the latter is the only proprietary software used in MOSES). 6) SLA Manager:ltis in charge of the creation and dele-
The Optimization Engine is actually a wrapper that makedgion of the SLAs with the users, the admission control of new
it possible to invoke a MATLAB program as a Web service. users and their possible registration in case of acceptance
To this end, we defined an interface that exposes differenfsee Section Il). The current implementation provides aenai
Web service operations, corresponding to the specific sventutomatic renegotiation of the SLA parameters assuming
that may trigger the solution of a new instance of thethat the broker offers ordered service classes with fixed
optimization problem: SLA creation, SLA deletion, status parameters (e.g., gold, silver, and bronze): in case the use
change for a Web service, changes in the QoS parametecannot be admitted, the SLA Manager invokes repeatedly
(e.g., a SLA violation identified by the QoS Monitor), and the Optimization Engine degrading the service class until i
deployment of a new process. finds a suitable one (if any), and proposes the renegotiated

4) WS Monitor: It checks whether registered concrete contract to the user. We plan to enhance our automatic
services are up and running. Differently from the othernegotiation mechanism, using an approach similar to [13].
MOSES components, it is implemented as a daemon: it starts 7) Execution Path Analyzert is basically a simple file
immediately after the deployment and enters into an infiniteparser: after a periodic analysis of the log file produced by



ActiveBPEL, it collects information on the number of visits 4

for eachi nvoke activity in the business process, updating w/o Adaptation Manager------

3.5 4 with Adaptation Manager———

subsequently the QoS model in the storage layer.

8) MOSES 1 StorageStorage is a critical component
of a distributed system, because the right tradeoff between
responsiveness and other performance indexes like aliailab
ity, reliability, and scalability, should be found. We have
investigated various alternatives to implement our datarla
focusing on MySQL and Apache ZooKeeper. The first is
a well-known relational database, while the latter is a dis- -
tributed coordination mechanism for distributed applimas. o7
ZooKeeper provides synchronization primitives as well as a 0 5 01520025 30
shared tree data structure that frees the developer from the Redquest arval rate [req sec.
burden of managing the data distribution among the system
nodes [14]. In MOSES 1, we have decided to use Zookeeper
3.1.1 for two reasons. First, MOSES is a distributed appli-
cation and it could be limiting to use a single relational business process. Since a sustained rate of 30 reg/sec is
database as data backend, especially considering that owo limited for a service broker operating in a real world
application does not need sophisticated data operatiogis (e scenario with several concurrent requests, our next effort
complex joins). Furthermore, ZooKeeper provides neasdloc was to design the MOSES 1 replicated architecture.
read performance and it easily scales when read/write ratio
is over 10 [14], as in the MOSES case. To allow the MOSES
future developers not to know ZooKeeper internals, we have
developed a data access library, named MOSES Data Access
Library (MDAL), that completely hides the data backend.

This library implements a ZooKeeper specific logic, but its @
interfaces can be implemented with other logics.

Response Time [sec.]

Figure 3. Response times with and without Adaptation Manage

ActiveBPEL
ActiveBPEL

ActiveBPEL

B. Replicated Architecture of MOSES 1

To evaluate the overhead introduced by the Adaptation
Manager on the management of the composite service, we
have compared the response time of a BPEL process served Figure 4. MOSES 1 replicated architecture.
by MOSES to that of the same BPEL process managed by
a stand-alone BPEL engine. The response time includes the Figure 4 illustrates the replicated architecture of MOSES
BPEL execution time and the invocation and execution timed,, that has been designed to overcome various of bottlenecks
of dummy partner Web services, while network times arenot only depending on the internal MOSES components, but
negligible because the tests have been executed in a Gigahitso on the BPEL engine. The first change is the introduction
LAN environment. Each test had a duration of 180 secondspf the new Switch component, which is in charge to select
where the first 30 seconds were discarded. The tests weemn available replicated instance of the BPEL Engine for the
executed on 3 homogeneous computers, the first acting @&xecution of the BPEL process using a simple stateless load
user machine, the second with only ActiveBPEL, and thesharing policy (random or round-robin). During the process
third running ZooKeeper, all the MOSES components excepéxecution, when the Adaptation Manager has to be invoked,
the Workflow Engine, and the concrete services. Figure 3ts instance is selected from a list of available Adaptation
shows the mean response times obtained for increasinganagers applying again a naive load sharing strategy.
request arrival rates. We observe that at a rate of 1 reg/sec, The selection of which component to use is simplified by
the response time of the BPEL process served by MOSE8e distributed storage system: each MOSES 1 component
is 266% higher than that of the process served withoutegisters itself in the storage system to inform the other
MOSES. We have investigated the reason and found that tomponents about its existence. Furthermore, the task of
is due to the data serialization inside the ZooKeeper strag replicating the MOSES components is simplified by the
to gain in flexibility we have used XML, but XML parsing presence of the distributed storage: we realized a new
wastes over 75% of the Adaptation Manager executiortomponent, named MOSES Node, which registers itself on
time. From Figure 3 we observe that the saturation pointhe storage and offers the deployment and undeployment of
occurs with approximatively 30 reqg/sec without MOSES andWeb services to make it possible to add or remove MOSES
with approximatively 25 reqg/sec with MOSES serving the component instances. Finally, we added two circular moni-



toring cycles: the first is among Tomcat instances (pregisel composition and deployment of loosely coupled composite
among MOSES Nodes instances); the second regards tlapplications and service-oriented integration companent
MOSES components. With the MOSES 1 replicated versiormhe key components of the JBI environment are: (1) Service
we are able to dynamically adapt the broker architectureEngine (SEs), enabling pluggable business logic; (2) Bigdi
adding or removing Tomcat instances (i.e., MOSES Nodes)Components (BCs), enabling pluggable external connectiv-
as well as changing the number of requested instances df; (3) the Normalized Message Router (NMR), which
a certain component (maximum one instance per kind pedirects normalized messages from source to destination
node) to increase the system scalability. components according to specified policies.

We have tested the replicated MOSES 1 using 2 Ac- After thoroughly comparing the available and stable open
tiveBPEL nodes on 2 homogeneous PCs and 2 MOSESource implementations for JBI, we decided to focus on
nodes on 2 additional homogeneous PCs (one of thes®BpenESBdeveloped by an open source community under
hosted also the concrete services); a fifth PC was used fdhe direction of Sun Microsystems, because it is an imple-
generating the requests. Figure 5 compares the responsentation and extension of the JBI standard. It implements
times of the replicated MOSES 1 with its non-replicatedJBI because it provides the key components (SEs, BCs, and
counterpart. For a request rate up to 22 (corresponding thIMR); it extends JBI because it enables a set of distributed

JBI instances to communicate as a single logical entity

11 5 that can be managed through a centralized administrative
104 yith replication interface. GlassFish application server is the defaultimn
_ 9 Worepliation environment, although OpenESB can be integrated in several
g' 8 7 JEE application servers.
) 7 A
E 6 A. MOSES 2 within the JBI Environment
é 57 The OpenESB-based architecture of MOSES is depicted
g 4 in Figure 6. Each MOSES 2 component is executed by

one Service Engine, that can be either Sun BPEL Service

Engine for executing the business processes logic and inter

o e ' — nal _orchestra_ltion needs, or J2EE Engine for executing_ the
o 5 10 15 20 25 30 35 40 45 business logic of all the components but the BPEL Engine.
Request arrival rate [req./sec.] Developing components with J2EE Engine improves the

flexibility, because they can be accessed either as standard

Figure 5. Response times of MOSES 1 with and without repdinat Web services or as EJB modules through the NMR.

the saturation point) the original MOSES 1 performed better
than its replicated version because of the lack of the Switch
dispatching. At a higher rate, we observe a significant per- | [FP2E8_[¥2E8] [12E€)

GlassFish container

JOEE] [J2EE) [J2EE) [J2EE]
H . . . sior) BPEL Engine i mizati o ervice || EXecution
formance improvement achieved by the replicated version. | ‘e || wnr ‘ verer naaptauonnfmger enaine || wensger | vmger || 730,
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The design of the replicated version of MOSES 1 has ‘ ormarizec Tessage T ‘
allowed us to achieve a significant improvement in terms of @ ﬁ ® v® I
performance, reliability, and scalability, but at a cartpoint | WrPBC | | DB Pool |

of the development process we had to face new issues. First,

Active Endpoints has discontinued the open source BPEL @ﬁ ®

engine we have used so far; second, we have experimentec

stability problems with Apache ZooKeeper; finally, mas- .

guerading the BPEL processes with the Switch component

implies the exposition of a unique interface that is the onio Figure 6. OpenESB-based MOSES architecture.

of all possible process interfaces. Therefore, we decided t

rearrange the MOSES architecture in such a way to let it The typical execution flow is illustrated in Figure 6. In

use as many industrial standards as possible. Specificall¢l), a user issues a standard SOAP request to the MOSES

the architecture of MOSES version 2 was redesigned witlfront end, that is the HTTP BC. The request format follows

the use of the Java Business Integration (JBI) standard. what expected by the BPEL process. In (2), the HTTP BC
JBI is a messaging-based plug-in architecture [15], whos@ormalizes the HTTP request and sends it to the BPEL En-

components are described in WSDL. It provides an argine through the NMR (3). When the BPEL Engine receives

chitecture and enabling framework that facilitates dyrami the request message from the NMR, it de-normalizes the




message and starts its execution. At this point, the request
could be rejected because MOSES does not own sufficient
internal resources to manage it. In such a case, an exception Front-end Cluster
is forwarded to the user. (4) is accomplished whenever there SLAManager | (=) (=3[ SLAManager
is the need to read the solution of the optimization problem Combastio| gup g
from the storage layer (i.e., for eadmvoke activity).
Finally, (5) and (6) occur when the response is provided
to the user: the BPEL Engine puts its response message on
the NMR, the HTTP BC de-normalizes it obtaining a plain
SOAP response message that is then forwarded to the user
Alternative execution flows can be split in monitoring
flows and administration flows. The former denotes each
flow that is related to the resources monitoring and can trig-
ger the execution of the Optimization Engine to determine a
new optimal solution. The WS Monitor along with the QoS
Monitor and the Execution Path Analyzer are invoked by
the Scheduler BC at fixed intervals, and each of them can e | DB+ ~0E
trigger the Optimization Engine in case it has detected a
significant change in the system model. The Execution Path Figure 7. MOSES 2 replicated architecture.
Analyzer in MOSES 2 is a simple porting from MOSES 1:
when invoked by the Scheduler BC, it parses a log file. This ) )
off-line implementation introduces some delay to the updatc' Replicated Architecture of MOSES 2
of the system model. Therefore, we are currently evaluating MOSES 1 replicated architecture was quite flexible be-
the component implementation using the Intelligent Eventause its design allowed us to distribute the MOSES com-
Processor SE, which provides the ability to process compleponents at the finest level of granularity; but in practice we
events as well as event streams. The Service Manager can tgally did not need such flexibility. For example, why should
invoked either by the Scheduler BC or by the SLA Managerthe Workflow Engine call a remote Adaptation Manager
when a lookup of new concrete services is required. Théather than a local one? No reason, considering also that the
SLA Manager and Composition Manager invocation patterné\daptation Manager load is lower than that of Workflow
are unchanged with respect to MOSES 1. Engine. Therefore, it is preferable to consider them as a
All the inter-module communications take advantage fromsingle logical unit and eventually replicate them in pair.
the NMR presence: message exchanges are faster than thoséOSES 2 requires that only two components must be
based on SOAP communication, because they avoid to pas and running in order to complete the request-response
through the network protocol stack without losing the apili  cycle: the BPEL Engine and the DB. In case only these

to expose every MOSES component as a Web service. two components work, our broker may anyway orchestrate
the services in a sub-optimal way, but still it succeeds in

B. MOSES 2 Storage providing a response to the users. Figure 7 illustrates _the
MOSES 2 replicated architecture, where the BPEL Engine
MOSES 2 data storage has also been redesigned to used the Adaptation Manager constitute the so-catlece
as much industrial standards as possible. Therefore, weluster. The other clusters provide additional features to
have abandoned Apache ZooKeeper in favor of a morgMOSES 2 that are not mandatory for the basic execution: the
consolidated DBMS like MySQL. With this choice, we front-endcluster provides to the broker the ability to receive
gain the opportunity to maintain a more structured data seiiew BPEL processes to deploy as well as the ability to
that allows us not to use XML for data storing with the negotiate SLAs with users. THeack-endcluster comprises
subsequent performance speedup. the components that allows the runtime adaptation capabil-
MySQL also offers interesting cluster capabilities thatities. From a database point of view, the core cluster hosts
we have exploited into MOSES 2. We use MySQL clusterits own high available DB server with strong consistency
Network DataBase (NDB) to obtain performance improve-to make the execution of DB queries as fast as possible.
ments and high availability. The NDB storage engine allowsThe back-end cluster’s DB is instead synchronized with the
the creation and the management of in-memory databasespre cluster’'s DB using an external weak consistency policy
replicated with hard-consistency constraints. Within theand an internal strong consistency policy. Finally, thenfro
hard-consistency hypothesis, we have built a multi-masteend cluster does not own a DB at all: we assume that the
MySQL cluster, where load balancing among the DB serversequest rate it receives is much lower than that directed to
is carried out by GlassFish through a random policy. the core cluster; therefore, we prefer to pay a penalty fer th
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DB accesses generated by the front-end cluster rather thamlinquish the distributed storage layer in favor of the enor
having on it a new MySQL instance with its own replication classic DB-based solution. Specifically, we used a MySQL
strategy and related overhead. cluster with strong consistency and synchronous reptinati

We are evaluating the performance of MOSES 2. Fronwithin the core cluster, asynchronously replicated with th
preliminary experiments we have obtained quite promisinglySQL cluster of the back-end cluster. With this solution
results: MOSES 2 without replication halves the responsé is possible to realize three types of local clusters tlzat c
time of a request-response cycle with respect to MOSES lbe spread across geographically distributed networks, (e.g
collocating the core cluster on a private cloud and the back-
end and front-end clusters on Amazon EC2).

In this paper we presented the design and implementation Besides completing the Service Manager component, we
of the MOSES broker, which provides runtime QoS-drivenare planning a more comprehensive set of experiments to
adaptation of SOA applications. We developed two versionsalidate the architectural choices of MOSES 2 and prove
of MOSES, which are both based on open source produciss effectiveness in a real testing scenario. Finally, we ar
and can be extended through replication to let MOSES scalextending MOSES to fully support stateful services, as well
and efficiently cope with QoS requirements coming fromas to proactively monitor its adequacy to SLAs.
several concurrent users in a rapidly changing environment A
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