
Auto-scaling in Data Stream Processing
Applications: A Model-based Reinforcement

Learning Approach

Valeria Cardellini(�), Francesco Lo Presti, Matteo Nardelli, and
Gabriele Russo Russo

Department of Civil Engineering and Computer Science Engineering
University of Rome Tor Vergata, Rome, Italy

{cardellini,nardelli,russo.russo}@ing.uniroma2.it,
lopresti@info.uniroma2.it

Abstract By exploiting on-the-fly computation, Data Stream Process-
ing (DSP) applications can process huge volumes of data in a near real-
time fashion. Adapting the application parallelism at run-time is critical
in order to guarantee a proper level of QoS in face of varying workloads.
In this paper, we consider Reinforcement Learning based techniques in
order to self-configure the number of parallel instances for a single DSP
operator. Specifically, we propose two model-based approaches and com-
pare them to the baseline Q-learning algorithm. Our numerical inves-
tigations show that the proposed solutions provide better performance
and faster convergence than the baseline.

Keywords: Data Stream Processing, Elasticity, Reinforcement Learning

1 Introduction

Under several emerging application scenarios (e.g., Internet of Things and Smart
Cities) Data Stream Processing (DSP) applications are required to process in
near real-time fast data streams, often arriving at an unpredictable rate. In order
to process these continuous data streams in an efficient and scalable manner, the
deployment of DSP applications should be accordingly adapted at runtime.

A DSP application is represented as a directed acyclic graph, with data
sources, operators, and final consumers as vertices, and streams as edges. Each
operator can be seen as a black-box processing element, that continuously re-
ceives incoming streams, applies a transformation, and generates new outgoing
streams. To deal with the fact that some operators in the application can be-
come overloaded, a commonly adopted stream processing optimization technique
is data parallelism, which consists of scaling-out or scaling-in the number of par-
allel instances for the operators, so that each instance can process a subset of
the incoming data flow in parallel [7]. Due to the highly variable rate at which
the sources may produce the data streams, a static or manual configuration of

banto
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-91632-3_8

the operator parallelization degree does not provide an effective solution. There-
fore, a key design choice in a DSP system is to enable it with auto-scaling,
where the parallelization degree of each operator is self-configured at run-time.
Since scaling-in/out decisions have an associated cost, not only monetary and
related to number of operator instances but also in terms of reconfiguration, the
auto-scaling policy should also take the latter into account.

In this paper, we consider the auto-scaling problem for a single DSP operator
considered in isolation, and focus on the adoption of Reinforcement Learning for
determining at run-time the parallelization degree of the operator. Reinforcement
Learning (RL) refers to a collection of trial-and-error methods by which an agent
can learn to make good decisions through a sequence of interactions with a
system or environment [12]. It can be considered a special method belonging to
the machine learning branch. The adaptive nature of RL makes it very appealing
to devise auto-scaling policies; however, standard RL policies suffer from long
learning phases, to the point that the time required to converge to a near-optimal
policy can be unfeasible in a running system.

To improve the convergence to the optimal policy and the quality of the so-
lution, we propose two model-based RL approaches and compare them to the
baseline and model-free Q-learning algorithm, which is the RL approach most
used in literature to determine auto-scaling decisions. The first model-based
approach integrates a partial knowledge of the system state into the learning al-
gorithm; the second approach exploits a system model approximation, improved
over time, to converge faster towards the optimal policy. We numerically eval-
uate the three RL policies using a real trace from the New York City taxis
and show that the model-based solutions provide better performance and faster
convergence than that achieved by Q-learning.

The rest of this paper is organized as follows. We review related work in
Sect. 2. In Sect. 3 we describe the auto-scaling problem for an isolated DSP
operator, before presenting in Sect. 4 the system model and problem formulation.
In Sect. 5 we present three RL-based approaches for learning the auto-scaling
strategy and discuss their numerical evaluation in Sect. 6. Finally, we conclude
in Sect. 7.

2 Related Work

Elasticity is a key feature for DSP systems that is attracting many research ef-
forts. Most approaches that enable elasticity in DSP systems, e.g., [3], exploit
best-effort threshold-based policies that rely on the utilization of either the sys-
tem resources or the operator instances. Other works, e.g., [1,2,8], use more
complex policies to determine the scaling decisions, exploiting optimization the-
ory [1], control theory [2], or queueing theory [8].

In the context of auto-scaling policies for self-adaptive systems, RL-based
policies learn from experience the adaptation policy, i.e., they learn the best
scaling action to take with respect to the system state through a trial-and-
error process. The system state can consider the amount of incoming workload,

the current application deployment, its performance, or a combination thereof.
After executing an action, the policy gets a response or reward from the system
(e.g., performance improvement), which indicates how good that action was.
One of the challenges that arise in reinforcement learning is the trade-off between
exploration and exploitation. To maximize the obtained reward, a RL agent must
prefer actions that it has tried in the past and found to be effective in producing
reward (exploitation). However, in order to discover such actions, it has to try
actions that it has not selected before (exploration). The dilemma is that neither
exploration nor exploitation can be pursued exclusively without failing at the
task. The agent must try a variety of actions and progressively favor those that
appear to be best [12]. To the best of our knowledge, only one work [5] has so
far applied RL techniques to drive the auto-scaling decisions in DSP systems.
Heinze et al. [5] propose a simple RL approach that learns from experience when
to acquire and release computing resources so to sustain the input load. The per-
operator auto-scaler populates a lookup table that associates the utilization of
the resource on which the operator is executed with the action to perform (i.e.,
scale in, scale out, or do nothing). The adaptation goal is to keep the system
utilization within a specific range; the SARSA learning algorithm [12] is used to
update the lookup table.

A larger number of works has exploited RL techniques to elastically scale
the amount of resources in Cloud computing environments [9], thus tackling
the elastic scaling problem at the resource level while in this work we take an
application-level perspective. Most of them use the simple Q-learning RL algo-
rithm (described in Sect. 5), which however suffers from slow convergence, as we
show in Sect. 6. Tesauro et al. [13] observe that RL approaches can suffer from
poor scalability in systems with a large state space, because the lookup table has
to store a separate value for every possible state-action pair. Moreover, during
the on-line training performance may be unacceptably poor, due to the absence
of domain knowledge or good heuristics. To overcome these issues, they combine
RL with a queueing-based system model, which computes the initial deployment
decisions and drives the exploration actions. They use the SARSA learning al-
gorithm, which however suffers from slow convergence as Q-learning. Differently
from [13], in this work we consider two model-aware learning approaches which
do not require a queuing model of the system and are able to achieve faster
convergence and good system performance.

3 Problem Description

In this paper, we consider the elasticity problem for a single DSP operator. As
shown in Fig. 1, the system comprises an operator which is possibly replicated
into several instances, the number of which can be adjusted to adapt to the -
possibly highly - variable input tuple rate. Arriving tuples are redirected to an
instance for being processed. For simplicity, and without lack of generality, we
consider ideal redirection with even distribution of the incoming data among the
operator parallel instances.

Figure 1: System architecture.

A system component, named Operator Manager, monitors the operator input
rate, the operator target response time, which we assume defined by a Service
Level Agreement (SLA), and periodically adjusts the number of parallel instances
used to run the operator. At each decision step, the Operator Manager can
require to the system Resource Provider to add a new instance (scale-out), to
terminate one of the running instances (scale-in), or to keep the current degree of
parallelism (no change). Following a scaling decision, the operator is subject to
a reconfiguration process in which the number of running instances is adjusted
as requested. As the integrity of the stream and the operator internal state (if
any) have to be preserved, the operator functionality is usually paused during
the process [6], leading to downtime.

The goal of the Operator Manager is to take scaling decisions as to minimize
a long-term cost function which accounts for the operator downtime and for the
monetary cost to run the operator. The latter comprises: (i) the cost for running
the number of instances during the next time slot, and (ii) possibly a penalty
in case of SLA violation. In particular, we consider a constraint on the operator
response time, so that a penalty is paid every time the response time exceeds a
given threshold TSLA.

4 System Model and Problem Formulation

Since decisions are taken periodically, we consider a slotted time system with
fixed-length time intervals of length ∆t, with the i-th time slot corresponding
to the time interval [i∆t, (i+ 1)∆t] (see Fig. 2). We denote by ki the number
of parallel instances at the beginning of slot i, and by λi the average tuple rate
during slot i − 1 (the previous slot). At the beginning of slot i the Operator-

Manager makes the decision ai on whether modify or keep the current instance
configuration.

Figure 2: Relationship between λi, the average input rate measured over the
previous time slot, the decision ai made at the beginning of a time slot by the
OperatorManager, and the resulting number of instances ki.

We formulate the DSP Operator Elastic control problem as a discrete-time
Markov Decision Process (MDP). A MDP is defined by a 5-tuple 〈S, A, p, c, γ〉,
where S is a finite set of states, A(s) a finite set of actions for each state s,
p(s′|s, a) are the transition probabilities from state s to state s′ given action
a ∈ A(s), c(s, a) is the immediate cost when action a is executed in state s, and
γ ∈ [0, 1] a discount factor that weights future costs.

In our setting, we define the state of the system as the pair si = (ki, λi),
that is the number of operator instances and the tuple arrival rate. For the sake
of analysis we consider a discrete state space, that is, we discretize the arrival
rate λi by assuming that λi ∈ {0, λ̄, . . . , Lλ̄} where λ̄ is a suitable quantum
(measured in tuple/min). We also assume that k ∈ {1, . . . ,Kmax}.

For each state s, the action set is A(s) = {+1,−1, 0} except for those state
with k = 1 where A(s) = {+1, 0} (at least one instance is always running), or
k = Kmax where A(s) = {−1, 0} (we cannot add instances beyond the maximum
allowed level).

System transitions occur as a consequence of auto-scaling decisions and tuple
arrival rate variations. Let us denote by p(s′|s, a) the transition probability from
state s to state s′ given action a. We readily obtain:

p(s′|s, a) = P [si+1 = (k′, λ′)|si = (k, λ), ai = a] =

{
P [λi+1 = λ′|λi = λ] k′ = k + a
0 otherwhise

= 1{k′=k+a}P [λi+1 = λ′|λi = λ]

(1)
where 1{·} is the indicator function. It is easy to realize that the system dynamic
comprises a stochastic component due to the tuple rate variation, which we
assume exogenous, captured by the transition probabilities P [λi+1 = λ′|λi = λ],

and a deterministic component due to the fact that, given action a, the number
of instances k′ is k′ = k + a.

To each state pair (s, a) we associate a cost c(s, a) which captures the cost
of operating the system in state s and carrying out action a. In this paper we
consider three different costs:

1. the instances cost cres(s, a), that is the cost of running k + a1 instances of
the operator. Assuming a fixed cost cres for instance, we have cres(s, a) =
(k + a)cres;

2. the reconfiguration cost crcf . Whenever the system carries out scale-out a or
scale-in operation, the operator suffers a downtime period during which no
tuple is processed. Since this downtime can be non-negligible especially for
stateful operators [4,6], we need to account for the downtime by considering
a reconfiguration penalty. For the sake of simplicity, we will assume crcf to
be a constant;

3. a SLA violation cost cSLA that captures a penalty incurred whenever the
system response time violates a threshold.

We combine the different costs into a single cost function using the Simple
Additive Weighting (SAW) technique [15]. According to SAW, we define the cost
function c(s, a) as the weighted sum of the normalized costs:

c(s, a) = wres
k + a

Kmax
+ wrcf1{a6=0} + wSLA1{T (k+a,λ)>TSLA} (2)

where wres, wrcf and wSLA, wres+wrcf+wSLA = 1, are non negative weights for
the different costs. After normalization, the reconfiguration and SLA violation
costs are binary functions which take value 0 when there is no reconfiguration/no
violation, and take value 1 in case of reconfiguration/violation.

4.1 MDP Formulation

A policy is a function π that associates an action a to be adopted (i.e., a scal-
ing decision) with each state s. We are interested in determining the policy
that minimizes the expected discounted cost with discounting factor 0 ≤ γ <
1. For a given policy π, let V π(s) be the value function, i.e., the expected
infinite-horizon discounted cost given s as initial state, defined as V π(s) =
Eπs
{∑∞

i=0 γ
ic(si, ai)

∣∣s0 = s
}
. The optimal policy π∗ satisfies the Bellman op-

timality equation (see [11]):

V π
∗
(s) = min

a∈A(s)

{
c(s, a) + γ

∑
s′∈S

p(s′|s, a)V π
∗
(s′)

}
, ∀s ∈ S (3)

in which the first term represents the cost associated to the current state s and
decision a; the second term represents the future expected discounted cost under
the optimal policy.
1 Since we assume the action to be executed at the beginning of a time period, the
number of instances during an interval is k + a

It is also convenient to define the action-value function Qπ : S × A → <
which is the expected infinite-horizon discounted cost achieved by taking action
a in state s and then following the policy π:

Qπ(s, a) = c(s, a) + γ
∑
s′∈S

p(s′|s, a)V π(s′), ∀s ∈ S (4)

It is easy to realize that the value function V and the Q-function are closely
related, being V π(s′) = mina∈A(s)Q

π(s′, a), ∀s ∈ S. More importantly, the
knowledge of the Q function is fundamental in that it directly provides the
associated policy: for a given function Q, the corresponding policy is π(s) =
arg mina∈A(s)Q(s, a), ∀s ∈ S.

The optimal policy π∗ can be obtained by solving the optimality equation (3)
via standard techniques, e.g., value iteration. However, computing the optimal
policy requires a full knowledge of the system dynamics and parameters (e.g.,
the transition probabilities) that depend on the variable - and typically unknown
- tuple rate, and the cost functions, e.g., the instance response time.

5 Reinforcement Learning

In this section we present three Reinforcement Learning-based approaches for
learning the optimal auto-scaling strategy π∗. RL approaches are characterized
by the basic principle of learning the optimal strategy π∗ (and the optimal value
functions V ∗ and Q∗) by direct interaction with the system.

Algorithm 1 illustrates the general RL scheme: the Q and or V functions
are first initialized (setting all to 0 will often suffice) (line 1); then, by direct
interaction with the system, the controller at each step t chooses an action at
(based on current estimates of Q/V) (line 3), observes the incurred cost ct and
the next state st+1 (line 4) and then updates the Q/V function based on what
it just experienced (line 5). The different solutions differ for the actual learning
algorithm adopted and on the assumptions about the system.

In this paper we will consider the following three approaches, which differ
on how to choose the action (line 3) and how to update the Q/V function
(line 5). For its simplicity, we first consider the well-known Q-learning algorithm.
Q-learning is a model-free learning algorithm which requires no knowledge of the
system dynamics. We will then present two model-aware learning approaches.
First, we consider the so called post-decision state (PDS), where we exploit
the fact that part of the system dynamic, namely the impact of the auto-scaling
decision on the number of instances, is known and let the learning only deal with
the unknown dynamics. Then, we describe a full backup model-based approach,
which basically estimates the unknown dynamic, that is, it estimates the arrival
rate transition matrix and uses these estimates to update the Q function.

5.1 Q-learning

Q-learning is an off-policy learning method that essentially estimates Q∗ by
its sample averages. Since it relies on estimates, at any decision step (line 3),

Algorithm 1 RL-based Operator Elastic Control Algorithm
1: Initialize Q and/or V functions
2: loop
3: choose an action ai (based on current estimates of Q)
4: observe the next state si+1 and the incurred cost ci
5: update Q and/or V functions based on experience
6: end loop

Q-learning either: 1) exploits its knowledge about the system, that is, the current
estimates Qi, by selecting the greedy action ai = arg mina′∈A(si)Qi(s, a), i.e. the
action minimizes the estimated future costs; or 2) explores by selecting a random
action to improve its knowledge of the system. Here we consider the simple ε-
greedy action selection method which chooses a random action with probability
ε or the greedy action with probability 1− ε.

The algorithm performs simple one-step updates at the end of each time slot
(line 5), as follows:

Qi+1 (si, ai)← (1− α)Qi (si, ai) + α

[
ci + γ min

a′∈A(si+1)
Qi(si+1, a

′)

]
(5)

where α ∈ [0, 1] is the learning rate parameter. Observe that (5) simply updates
the old estimate Qi with the just observed value (which comprises the just
observed cost ci plus the discounted cost of following the greedy policy onward,
that is mina′∈AQi(si+1, a

′)). It has been proven that, independently of the policy
being followed and the initial values assigned to Q, the learned action-value
function converges with probability 1 to Q∗ [14], under the condition that every
state-action pair continues to be sampled as i→∞.

5.2 Learning with Post-Decision States

Updating a single state-action pair per time slot and ignoring any known in-
formation about the system dynamics, Q-learning may require a long time to
converge to a near-optimal policy. Actually, as in many scenarios, the dynamics
of the system we are considering are not completely unpredictable. In particular,
the impact on the system state of the action performed is known and determin-
istic. We would like to provide the learner with this knowledge, so that it has
only to learn about the unknown dynamics.

In order to integrate the partial knowledge of the system into a learning
algorithm, we rely on the post-decision state (PDS) concept, exploiting the gen-
eralized definition given in [10]. A PDS (i.e., afterstate) describes the state of the
system after the known dynamics take place, but before the unknown dynamics
take place. We denote a PDS as s̃ ∈ S. At any time i, we logically split the state
transition si → si+1 into two distinct transitions: si → s̃i and s̃i → si+1. Given

the current state si = (ki, λi) and the selected action ai, we have:

s̃i = (ki + ai, λi) = (ki+1, λi) (6)
si+1 = (ki+1, λi+1) (7)

where s̃i fully reflects the consequences of the action ai, and the next state si+1

incorporates the unknown system dynamics (i.e., the input rate variation). The
relationship between states, PDS, and actions is illustrated in Fig. 3.

In the same way we have logically split the state transitions, the cost associ-
ated to a state-action pair can be reformulated separating known and unknown
components:

c(s, a) = ck(s, a) + cu(s̃) (8)

where ck(s, a) accounts for the known deterministic cost associated to the scaling
action a in state s, and cu(s̃) incorporates the unknown unpredictable impact of
the rate variation on the system performance when transitioning from a PDS.

Figure 3: Relationships between current state, actions, PDS, and next state.
(Adapted from the diagram reported in [10].)

We exploit the PDS concept to design a learning algorithm that aims at
finding an optimal policy in less time than Q-learning. To this end, we adapt
the algorithm proposed in [10] to our problem. We integrate that solution into
the generic Algorithm 1 by extending the update phase. In particular, the Q
function has only to deal with the known system dynamics, since the unknown
parts are hidden by the PDS, for which we introduce a PDS value function Ṽ
that is updated along with Q:

Qi(si+1, a)← ck(si+1, a) + Ṽi(s̃i+1) ∀a ∈ A (9)

Ṽi+1(s̃i)← (1− α)Ṽi(s̃i) + α

[
cu,i + γ min

a′∈A(si+1)
Qi(si+1, a

′)

]
(10)

It is worth noting that, since the unknown system dynamics do not depend on
the selected action, randomized exploration is not required any more, and a
greedy policy can be followed during the learning phase.

5.3 Full Backup Model-based Reinforcement Learning

As third strategy we consider the full backup model-based reinforcement learning
approach (see [12], Sect. 9). Here the idea is to directly use the MDP expres-
sion of the Q function (4) by replacing the unknown transition probabilities
p(s′|s, a), and the unknown cost function cu(s, a), ∀s, s′ ∈ S and a ∈ A(s) by
their empirical estimates.

In order to estimate the transition probabilities p(s′|s, a), from (1) it follows
that it suffices to estimate the tuple arrival rate transition probabilities P [λi+1 =
λ′|λi = λ]. Hereafter, since λ takes value in a discrete set, we will write Pj,j′ =
P [λi+1 = j′λ̄|λi = jλ̄], j, j′ ∈ {0, . . . , L} for short.

Let ni,jj′ the number of times the arrival rate changes from state jλ̄ to j′λ̄, in
the interval {1, . . . , i}, j, j′ ∈ {1, . . . , L} that is ni,jj′ =

∑
m=1,...,i−1 1

{
λi−1=jλ̄,
λi=j

′λ̄

}.
At time i the transition probabilities estimates are

P̂j,j′ =
ni,jj′∑L
l=0 ni,jl

from which we derive the estimates p̂(s′|s, a) via (1).
For the estimates of the unknown cost, that in our case corresponds to the

SLA violation cost, we use a simple exponential weighted average:

ĉi,u(si, ai)← (1− α)ĉi−1,u(si, ai) + αci,u (11)

where ci, u = wSLA if a violation occur a time i (remember that we consider it
normalized and weighted) and 0 otherwise. The Q estimates updating rules are
then:

Qi(s, a)← ĉi(s, a) + γ
∑
s′∈S

p̂(s′|s, a) min
a′∈A(s′)

Qi−1(s′, a′) ∀s∈S,
a∈A(s) (12)

The Q update step is summarized in Algorithm 2.

Algorithm 2 Full Backup Model-based Learning Update Algorithm

1: Update estimates P̂j,j′ and ĉi,u(si, ai)
2: for all s ∈ S do
3: for all a ∈ A(s) do
4: Qi(s, a)← ĉi(s, a) + γ

∑
s′∈S p̂(s

′|s, a) mina′∈A(s′)Qi−1(s′, a′)
5: end for
6: end for

5.4 Complexity

We now briefly discuss the complexity of the considered solutions, as summarized
in Table 1. In both Q-learning and the PDS-based solution, assuming that a
lookup table is used for storing the Q values, both the action selection and
the learning update at each time step have complexity O(|A|). Since we store an
entry for each state-action pair, the space requirement is O(|S||A|). In the model-
based approach, the complexity of the update phase defined by Algorithm 2
is O(|S|2|A|2) instead. Moreover, storing the input rate transition probability
estimates increases the space complexity when the number of quantization levels
L is large (i.e., L > Kmax|A|).

Table 1: Time and space complexity of the three considered algorithms.

Complexity Action selection Update step Space

Q-learning O(|A|) O(|A|) O(|S||A|)

PDS O(|A|) O(|A|) O(|S||A|)

Full Backup Model-based O(|A|) O(|S|2|A|2) O(|S||A|+ L2)

6 Evaluation

We evaluate the three learning algorithms presented above simulating their be-
havior on a realistic application workload, using MATLABR©. We consider a
dataset made available by Chris Whong2 that contains information about the ac-
tivity of the New York City taxis throughout one year. Each entry in the dataset
corresponds to a taxi trip, reporting time and location for both the departure
and the arrival. Figure 4 shows the number of events per minute throughout the
first two weeks in the dataset. The taxi service utilization is clearly characterized
by a daily pattern, thus requiring elastic capabilities for a system in charge of
analyzing the generated data in real-time.

We consider one minute time slots, thus setting ∆t = 1 min. In order to pro-
duce a sequence of input rate values λi, we aggregate the events in the dataset
over one minute windows. We assume each instance behaves as a M/D/1 queue
with service rate µ = 3.3 tuple/s. We compare the average cost achieved by
each of the presented algorithms, setting different values for the quantum λ̄ used
to discretize the arrival rate: 20, 40, 80 tuples/min. Using larger values for dis-
cretizing the input rate, we reduce the number of system states, thus simplifying
the learning process. However, coarse-grained input quantization makes the op-
erator controller less precise, possibly leading to worse policies. The constant
parameters used in the experiments are reported in Table 2.
2 http://chriswhong.com/open-data/foil_nyc_taxi/

http://chriswhong.com/open-data/foil_nyc_taxi/

 0

 200

 400

 600

 0 2 4 6 8 10 12 14

T
u
p
le

s
p
e
r

m
in

u
te

Time (days)

Figure 4: Events per minute in the first two weeks of the dataset.

Table 2: Parameters used in the experiments.

Discount factor γ 0.99 Learning rate α 0.1

Kmax 10 ∆t 1 min

wres,wrcf ,wSLA 1
3

λ̄ 20,40,80 tuples/min

Service rate 3.33 tuple/s TSLA 650 ms

Figure 5 shows the average cost achieved by the different algorithms in our
simulations. In Fig. 5a we report the results for the experiment with λ̄ = 20 tu-
ples/min. The full backup model-based algorithm achieves the best performance,
with an average cost that converges quickly to less than 0.15. The PDS-based
algorithm is slower to converge, and achieves a slightly higher average cost at the
end of the simulation. The conventional Q-learning is even slower to converge,
and achieves the highest average cost at the end of the simulation.

Table 3 reports the number of reconfigurations and violations observed dur-
ing the simulation, along with the average number of instances allocated. These
results reflect the average cost behavior described above. The full backup ap-
proach performs a dramatically smaller number of reconfigurations, incurring
in less SLA violations, and running less instances on average. The PDS-based
algorithm gets slightly worse results, with Q-learning being the worst solution.
Figure 5b highlights the behavior of the algorithms at the beginning of the sim-
ulation (i.e., for the first simulated week). All the proposed solutions incur high
costs at the beginning, when they still have to learn a good policy. After the
first simulated day, their behavior gets much more stable, especially for the full
backup model-based algorithm.

It is interesting to compare the results achieved with different values for the
quantum λ̄. When we increase it, as reported in Figs. 5c-5d, the average cost
achieved by the full backup model-based algorithm is slightly higher, as we could
expect. The benefits on the convergence time are much more evident for the other
two algorithms. With the reduced state space, they achieve an average cost at
the end of the simulation that is closer to the model-based solution.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300 350

A
v
e
ra

g
e
 c

o
s
t

Time (days)

Q-Learning
PDS

Full Backup

(a) λ̄ = 20 tuples/min

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6 7

A
v
e
ra

g
e
 c

o
s
t

Time (days)

Q-Learning
PDS

Full Backup

(b) First week, λ̄ = 20 tuples/min

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300 350

A
v
e
ra

g
e
 c

o
s
t

Time (days)

Q-Learning
PDS

Full Backup

(c) λ̄ = 40 tuples/min

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300 350

A
v
e
ra

g
e
 c

o
s
t

Time (days)

Q-Learning
PDS

Full Backup

(d) λ̄ = 80 tuples/min

Figure 5: Average cost achieved by the different algorithms with different values
for the input rate quantization step λ̄.

Table 3: Number of reconfigurations, SLA violations, and allocated instances (on
average) in the experiments.

Algorithm Reconfigurations Violations Avg. instances

Q-learning 115296 47942 4.58

PDS 13674 36337 4.20

Full Backup Model-based 2772 1430 3.46

7 Conclusions

In this paper we have studied the auto-scaling problem for DSP applications.
Focusing on a single operator, we have proposed and evaluated two model based
Reinforcement Learning algorithms. Our numerical evaluation reveals that by
exploiting our knowledge of (part of) the system under study, we are capable

to achieve faster convergence and good system performance compared to the
baseline Q-learning algorithm which is often adopted in literature.

As future work, our goal is to extend these results to address the auto-scaling
of DSP applications, which typically consist of many interconnected operators.
To tackle the inherent complexity and the state space explosion of these systems,
we plan to investigate the use of more refined Reinforcement Learning techniques,
e.g., Function Approximation and Bayesian Reinforcement Learning [12].

References

1. Cardellini, V., Lo Presti, F., Nardelli, M., Russo Russo, G.: Optimal operator
deployment and replication for elastic distributed data stream processing. Concurr.
Comput. (2017), https://doi.org/10.1002/cpe.4334

2. De Matteis, T., Mencagli, G.: Elastic scaling for distributed latency-sensitive data
stream operators. In: Proc. PDP ’17. pp. 61–68 (2017)

3. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating scale
out and fault tolerance in stream processing using operator state management. In:
Proc. ACM SIGMOD ’13. pp. 725–736 (2013)

4. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

5. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling techniques for
elastic data stream processing. In: Proc. IEEE ICDEW ’14. pp. 296–302 (2014)

6. Heinze, T., Aniello, L., Querzoni, L., Jerzak, Z.: Cloud-based data stream process-
ing. In: Proc. ACM DEBS ’14. pp. 238–245 (2014)

7. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2014)

8. Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing with latency guar-
antees. In: Proc. IEEE ICDCS ’15. pp. 399–410 (2015)

9. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4) (2014),
https://doi.org/10.1007/s10723-014-9314-7

10. Mastronarde, N., van der Schaar, M.: Fast reinforcement learning for energy-
efficient wireless communication. IEEE Trans. Signal Process. 59(12), 6262–6266
(2011), https://doi.org/10.1109/TSP.2011.2165211

11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons (2014)

12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

13. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: On the use of hybrid reinforce-
ment learning for autonomic resource allocation. Cluster Comput. 10(3), 287–299
(2007), https://doi.org/10.1007/s10586-007-0035-6

14. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992),
https://doi.org/10.1007/BF00992698

15. Yoon, K.P., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction,
vol. 104. Sage Publications (1995)

https://doi.org/10.1002/cpe.4334
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1109/TSP.2011.2165211
https://doi.org/10.1007/s10586-007-0035-6
https://doi.org/10.1007/BF00992698

