
Enhancing a Web-server Cluster with Quality of Service Mechanisms

Valeria Cardellini, Emiliano Casalicchio
University of Roma Tor Vergata

Roma, Italy 00133�
cardellini, ecasalicchio � @ing.uniroma2.it

Michele Colajanni, Marco Mambelli
University of Modena

Modena, Italy 41100�
colajanni, mmambelli � @unimo.it

Abstract

The Web is now a mature and business-oriented media
so the need for differentiated classes of users and services
is becoming stronger than ever. This differentiation is de-
sired to accommodate heterogeneous application require-
ments and user expectations, and to permit differentiated
pricing for content hosting or service providing. In this pa-
per, we introduce the concept of “Quality of Web-based Ser-
vices” (QoWS) which is inspired by the well known QoS
principles for networks, but it is focused on the server side
of the Web system. In particular, we investigate how it is
possible to enhance with QoWS mechanisms a Web site that
is hosted on a system platform consisting of locally dis-
tributed server nodes, namely Web-server cluster or Web
cluster in short. We discuss and compare some QoWS poli-
cies and mechanisms that can be used to transform a best-
effort Web cluster into a QoWS-enhanced system. We deter-
mine a set of confident Service Level Agreements (SLAs) in
a Web cluster for different classes of users and Web services.
Moreover, we verify through a large set of simulation exper-
iments under realistic workload models which mechanisms
are valid for satisfying the pre-determined SLA target.

Keywords: Distributed systems, Quality of Service, Load
sharing, Performance evaluation.

1 Introduction

A significant amount of research on Quality of Service
(QoS) has focused on the network infrastructure. However,
network QoS alone is not sufficient to support end-to-end
QoS. To avoid the situation where high priority traffic reach-
ing a server is dropped at the server side, the system hosting
the Web site should be also enhanced with mechanisms for
delivering end-to-end QoS to some classes of users and ser-
vices. When many users rely on the Web for up-to-date
information and business processes, it is necessary to pass
from a best-effort system to a system with guaranteed per-
formance. In this paper, we introduce the concept of “Qual-

ity of Web-based Services” (QoWS) which is inspired by the
well known QoS principles for networks (service classifica-
tion, performance isolation, high resource utilization, and
request admission), but it is focused on the server compo-
nents of the Web. In particular, we investigate how QoWS
mechanisms and principles can be applied to a Web site that
is hosted on a system platform consisting of locally dis-
tributed Web server nodes, namely Web-server cluster or
Web cluster in short. Given a Web cluster that provides
static and dynamic content, we first propose some QoWS
policies and mechanisms that can be easily implemented
in the considered Web cluster. We then propose a way to
setup and tune a set of confident Service Level Agreements
(SLAs) for two classes of users and two main classes of
Web services. We demonstrate that in this QoWS-enhanced
Web cluster the performance for both static and dynamic
services conform to the pre-determined SLA.

QoWS-enhanced systems for Web services have been re-
cently proposed for single and multiple server platforms.
For a Web site hosted on a single server node, the main
mechanisms focus on scheduling algorithms and resource
management of server components, either at the HTTP
server or kernel level [3, 4, 8, 12]. The proposals for en-
abling QoWS in cluster-based systems can refer to a single
Web site or to multiple Web sites co-located on the same
platform (namely, Web content hosting). Most results for
QoWS-enhanced clusters address the latter issue. On the
other hand, in this paper we investigate QoWS mechanisms
and policies for a cluster that hosts one popular Web site.
One of the first study on this subject is by Chen et al. [7].
Their simulation results clearly show that when the system
is highly utilized, differentiated services provide better per-
formance than those achieved by traditional Web clusters.
Kanodia et al. have proposed a QoWS policy that uses both
admission control and performance isolation mechanisms
to guarantee that different classes of service have latencies
within pre-specified targets [9]. Unlike our paper that fo-
cus on static and dynamic requests, they consider Web sites
providing static content only. Two dynamic resource par-
titioning algorithms for static and dynamic Web requests



have been proposed in [5, 15]. Their experiments demon-
strate that dynamic server partitioning always outperforms
static server partitioning. An interesting work from Aron
et al. has extended the resource principal abstraction to
multi-node Web servers [2]. Several companies commer-
cialize as their most recent products content-aware Web
switches which can be used for service differentiation in
Web clusters (e.g., Nortel Networks’ Alteon WebOS, F5’s
BIG-IP, Resonate’s Central Dispatch). These switches pro-
vide only very simple service differentiation mechanisms
which aim to statically partition server nodes and assign dif-
ferent classes of requests to different server subsets. Vari-
ous results in literature [5, 15] demonstrate that static parti-
tioning policies cannot adapt to fluctuating arrival rates and
servers load conditions. Moreover, it may lead to waste of
resources when some partitions are not fully utilized while
others might be overloaded.

The rest of this paper is organized as follows. Section 2
describes the components and main dispatching mecha-
nisms in the considered Web cluster architecture. Section 3
discusses some policies and mechanisms that enhance the
Web cluster with QoWS principles. Section 4 describes how
to choose the right parameters to enforce SLA targets in a
Web cluster. The simulation experiments described in Sec-
tion 5 aim to verify how the proposed policies for QoWS
behave when different Web cluster components are subject
to stress testing. Finally, Section 6 presents some conclud-
ing remarks.

2 Web cluster architecture

A Web cluster refers to a Web site publicized with one
name (e.g., www.foo.com) that uses two or more server ma-
chines housed together in a single location to handle user
requests. A modern Web cluster has typically a front-end
component, which we call Web switch, acting as a network
representative for the Web site. In literature, this component
is denoted through various definitions. Figure 1 shows the
architecture of a typical Web cluster, where the Web switch
implements also some access control on requests.

A Web cluster provides to the external world a single vir-
tual IP address (VIP) corresponding to the IP address of the
Web switch. The authoritative DNS server(s) for the Web
site always translates the site name into the IP address of the
Web switch, which receives from clients all inbound pack-
ets destined to the VIP address. The Web switch includes
a dispatching algorithm to select the Web server node best
suited to respond and a dispatching mechanism to route the
client request to the target node. The Web switch can op-
erate request assignment at layer-4 or layer-7 of the OSI
stack [14]. The basic idea is that a layer-4 Web switch is
content information blind, because it determines the target
Web server when the client establishes the TCP connection,

Web server

Data/Application
Server

layer−7 WebSwitch

Dropped requests

Client requests

requests
Admitted

Ethernet 
Switch

Figure 1. Web cluster architecture with a layer-7 Web
switch.

before sending out the HTTP request. On the other hand, a
layer-7 Web switch is content information aware because it
first establishes a complete TCP connection with the client
and then examines the HTTP request content (URL) before
taking any dispatching or QoWS decision.

In this paper, we consider the Weighted Round Robin
(WRR) and the Client Aware Policy (CAP) [6] that are rep-
resentative examples of dispatching algorithms working at
layer-4 and layer-7, respectively. Layer-7 policies have sev-
eral potential advantages [13], but content aware routing in-
troduces an additional processing overhead at the dispatch-
ing entity and may cause the Web switch to become the sys-
tem bottleneck, thus limiting cluster scalability.

To limit Web switch operations, we consider a one-way
architecture with a layer-7 Web switch as it puts less over-
head on the Web switch, thus guaranteeing higher scala-
bility and throughput than two-way architectures. In one-
way architectures, requests reach the Web switch, but re-
sponses flow directly from the servers through another In-
ternet connection. Our Web cluster consists of multiple Web
servers and back-end servers, and a dedicated machine that
acts as a Web switch. All them are connected through a
switched Fast Ethernet, as in Figure 1. We use real pa-
rameters to setup the Web cluster components. For ex-
ample, the disk is parameterized with the values of a fast
disk (IBM Deskstar34GXP) having transfer rate equal to
20 MBps, controller delay to 0.05 msec., seek time to 9
msec., and RPM to 7200. The main memory transfer rate
is set to 100MBps. The network interface is a 100Mbps
Ethernet card. The Web server software is an Apache 1.3
server, where an HTTP daemon waits for connection re-
quests. Each client, after activation, enters the system and
generates the first connection request to the Web switch
of the cluster. The entire period of connection to the site,
namely Web session, consists of one or more requests. At
each request, the Web switch applies some dispatching pol-



icy (enhanced with some QoWS mechanisms) to determine
a target Web server. Some objects may be dynamic that is,
they require some computation and/or database search on
the back-end servers. Table 1 summarizes the main charac-
teristics of the Web cluster.

Parameter Value

Number of Web servers 10
Number of back-end servers 10
Disk transfer rate 20 MBps
Memory transfer rate 100 MBps
Intra-servers bandwidth 100 Mbps
Server state gathering interval 10 sec.
HTTP protocol 1.1

Table 1. Parameters of the Web cluster.

3 Enhancing the Web cluster with QoWS
mechanisms

The traditional goal of dispatching policies and mecha-
nisms used in Web clusters lies in providing best-effort ser-
vices through load sharing. Neither service differentiation
nor QoS mechanisms are typically implemented. In this pa-
per, we integrate the load sharing functionality of the Web
switch with some QoWS mechanisms. The motivation is
that the front-end switch of a Web cluster has a centralized
control on the system status and can provide fine-grained
control on request assignment. At the base of QoS (and
QoWS as well) there are the concepts of service and Service
Level Agreement (SLA). A service defines a set of charac-
teristics significant for the Web content provision, specified
in quantitative or statistical terms. We refer to service class
to denote the differentiation of incoming requests and users
into classes. The proposed policies support multiple ser-
vice classes. To make the presentation lighter, in this paper
we consider without loss of generality two classes of users
denoted as high and low classes, and two main classes of
requests that is, static and dynamic.

The need of QoS was born in the computer network area,
where this topic has been widely investigated. In [11] the
authors formulate the basic principles necessary to provide
QoS guarantees to network applications: service classifica-
tion, performance isolation, high resource utilization, and
request admission. This last function includes a declaration
step, a verification of the availability of resources for satis-
fying the request requirements, and an access control step.

Admission control has been proposed as a first key
mechanism to prevent performance degradation of Web ser-
vices [12, 8]. Both admission control and scheduling can
be based on the concept of resource principal that is, the
maximum amount of resources assigned to a service class.
In a single-node Web server, Banga et al. [3] have studied

how to ensure performance isolation by using resource con-
tainers which provide an abstraction from resource princi-
pals. In [5] we found that the best way to guarantee all
basic QoS principles for QoWS in a Web cluster is an ap-
proach that uses a layer-7 Web switch to implement request
classification and admission control mechanisms, and a dy-
namic server partition algorithm for performance isolation
and high utilization mechanisms.

Dynamic server partition denotes a large class of QoWS
policies. In the hypothesis of two classes of users, we parti-
tion the servers into two sets, denoted as High Set and Low
Set. Incoming requests classified as high are assigned to
servers in the first set, while servers in the Low Set must
serve user requests belonging to the low class. Besides ser-
vice classification and admission control, the policies for
dynamic server partition include a mechanism to dynami-
cally adapt the sizes of the two sets to the actual workload
composition and servers’ load state. In this paper, we de-
scribe how it is possible to implement one policy of this
class, namely DynamicPart, and some variants of it. In
the basic version, the admission control policy can reject
requests belonging to the low class only. Once the request
has been admitted into the system, the Web switch uses the
dynamic WRR policy to select the target server in the cor-
responding set. For a more accurate description, let us con-
sider a Web cluster with � servers, and denote with �������	�
and 
������	� the cardinality of the High Set and Low Set at
time � , respectively. ������	� is initially set to �������� , then
the QoWS algorithm adapts it dynamically to the load con-
ditions. The issue is to determine the best value for ������	�
that allows the Web cluster to satisfy the SLA contractual
targets for high class users.

�������	� is a function of several parameters, such as the
(Web and back-end) server capacity, the � value for the
SLA, and the workload. In the next section we demon-
strate that the main impact on Web cluster performance is
by far due to dynamic requests. Hence, the focus of the
DynamicPart algorithm(s)1 will be on the maximum num-
ber of connections containing dynamic requests (namely,��������������� �!�

) that the system can sustain with a latency
time parameter less or equal to � seconds.

An important observation is in order. Since each dy-
namic request is processed by only one Web server and one
back-end server, the

�������"������� �!�
parameter is indepen-

dent of the number of servers in the Web cluster. Hence,
DynamicPart chooses ������	� such that each server belong-
ing to the High Set has to serve a number of dynamic re-
quests less or equal to

�����#��������� �!�
.

Assuming that the distributions of the service time for
static and dynamic requests are known (benchmark tests
for the Web services can be easily carried out by the ser-

1Unlike the DynamicPart algorithm proposed in [5], the version pro-
posed in this paper considers as the load metric only the dynamic requests.



vice provider), four parameters remain at time � : the total
number of client requests � � � ��� ��� �!� ��	� , the percentage of
dynamic requests � ��	� , and the percentage of high class re-
quests �#��	� , and the SLA value. The number of servers in
the High Class at time � results from the following equation:

������	��� � �#��	�	�
� ��	�	��� � � ��� ��� �!� ���	���������������� �!� � (1)

It is evident that if ������	�� � , the Web cluster is un-
derprovisioned. We also exclude the case of �������	��� �
because at least one server should be in the Low Set.

DynamicPart sets �������� on the basis of the expected
percentage of dynamic requests from the high class users.
Then it dynamically adjusts it to let the system satisfy the
SLA under the load at time � . (In our experiments, ������	�
is evaluated every 10 seconds.) If ������	�� ����������� �
DynamicPart adds to the High Set the least loaded server(s)
of the Low Set. From that point, the moved server(s) will
receive only new requests from the high class users, and will
continue to serve requests of already accepted connections
belonging to the low class. (Stronger actions can be used,
such as dropping all pending low class requests, but we did
not use them because highly unfair solutions.) If � �����	���
����������� � , the server(s) with the lowest number(s) of high
user requests will return to the Low Set.

The cardinality of the Low Set of servers is simply given
by 
 ����	��� ��� � �����	� . However, it is important not
to overload these servers, because they must be ready to
pass to serve high class users, once they are moved to the
High Set. For this reason, we choose a maximum num-
ber of connections that each server in the Low Set can ac-
cept, namely

�����#��� �!�����
, and integrate the Web switch

with an admission control policy. The Web switch gathers
from each server in the Low Set the number of active con-
nections at time � , thus computing the aggregate number� � � ��� ��� �!����� ��	� , and accepting low class requests only if����� ��� �!����� � 
������	� �� � � ��� ��� �!���!� ���	� .

In this paper, we consider also two variations of the basic
DynamicPart policy: DynamicPart-DRdrop aims to reduce
the percentage of dropped requests; DynamicPart-HUdrop
allows the system to reject high class requests, if the Web
cluster is really overloaded and the SLA requirement for
high class users cannot be satisfied.

DynamicPart-DRdrop. The basic idea is to use a request
admission control which is based on both the user
class and the type of service being requested. As dy-
namic requests may require service times of two or-
ders of magnitude higher than static requests, drop-
ping few of them can have a beneficial effect on clus-
ter load and prevent the need to deny service to static
requests from low class users. When

����� ��� �!� �!� �

 ����	�"� � � � ��� ��� �!� ��� ���	� , DynamicPart-DRdrop

starts to reject the dynamic requests only. If load mea-
surements at time � denote that the low class servers
are critically loaded (e.g., # ����� ��� �!����� ��
 ����	�$�� � � ��� ��� �!���!� ���	� ), the Web switch rejects static re-
quests too.

DynamicPart-HUdrop. A modified version of
DynamicPart-DRdrop is the DynamicPart-HUdrop
policy that allows the system to reject high class re-
quests if the SLA requirement risks not to be satisfied.
This could occur when the High Set has reached its
allowed maximum size and the QoWS policy cannot
intervene anymore on dynamic adjustment of the
server sets. Dropping high class requests is well
motivated in reality because, if the SLA requirement
is not respected, to drop a high class request has the
same penalty impact on the Web service provider as to
fail the SLA target.

4 SLA evaluation for a Web cluster

An SLA is a specified performance contract on which
the user and the Web service provider agree. Since rare vi-
olations of the SLAs are allowed without catastrophic con-
sequences, we consider most effective to express the SLA
for QoWS in terms of predictive service. In particular, we
choose the 95-percentile of the latency time of a client re-
quest [10] at the Web cluster as the main metric for SLA.
This metric measures the completion time of a request at
the Web cluster side and does not include network delays.

In this paper, we consider two treatments for the high
class and low class classes of users both issuing static and
dynamic requests to the Web cluster. In particular, the SLA
for the high class states that the “95-percentile of the la-
tency time of requests from high class users (in short, high
class requests) must be less than a threshold of Y seconds”
while “low class users continue to receive best effort ser-
vice”. To complete the specification of the SLA statement,
we need to define for the considered Web cluster and ex-
pected workload a realistic value for the upper bound on
the 95-percentile of the latency time that corresponds to the
previously defined Y parameter. To this purpose, we evalu-
ate the 95-percentile of latency time of static and dynamic
requests under normal load conditions.

In our Web cluster, a static request is served by one Web
server, while a dynamic request is served by one Web server
and one back-end server for the static and dynamic infor-
mation, respectively. More sophisticated architectures exist
where the embedded objects of a request could be served
by different nodes, but we do not consider them in this pa-
per. As each request is served by one Web server and (if
necessary) one back-end server, it is important to evalu-
ate the capacity of the single server nodes, independently



of the number of available servers in the Web cluster. For
this reason, we first evaluate the capacity of the testbed sys-
tem that is, a not QoWS-enabled Web cluster consisting of
one Web server and one back-end server under the expected
workload. The capacity of a Web cluster consisting of mul-
tiple servers is simply obtained by using a multiplicative
factors for

�����#��������� �!�
, because we assume that the

Web switch is able to balance the load among the servers
in each set (there are several dispatching policies that guar-
antee good results, for example WRR).

The expected workload model we consider in this paper
incorporates all recent results on Web load characterization
(e.g., [1]). We consider two main classes of services pro-
vided by the Web site that is, static services composed by
requests for HTML pages with some embedded static ob-
jects, and dynamic services, where some objects belonging
to the page are dynamically generated through Web server
and back-end server interactions. The workload model for
static requests is described in [5]. A dynamic Web service
request is composed by a page request with at most two em-
bedded objects that are generated by the back-end servers.
Specifically, we consider the impact of intensive database
queries (that is, disk bound requests) and dynamic page
composition. If not otherwise specified, the basic workload
composition consists of ����� of static requests and # ��� of
dynamic requests. The service time for a static object is pro-
portional to the file sizes. The service time on the back-end
server for a dynamic object is modeled according to a hyper-
exponential distribution. Specifically, dynamic requests are
further classified as high, medium, and low intensive, on the
basis of the computational impact they put on the back-end
servers.

We stress the system to find its break-point and a suit-
able working range to evaluate its performance. We then
set SLA parameters and perform some sensitivity analysis
on the workload. Figure 2 shows the 95-percentile of the la-
tency time as a function of the client arrival rate for a cluster
consisting of one switch, one Web server and one back-end
server with the characteristics described in Section 2. This
figure clearly shows that static requests (even those issued
by the high class users) typically do not represent a problem
for the SLA. The real challenge is to set the right SLA for
the latency time of dynamic requests.

From this figure, we observe that the 95-percentile of la-
tency time of dynamic requests is about 2 seconds when the
system is underutilized (that is, less than 5 clients per sec-
ond), and increases almost linearly up to 4 seconds for a
higher offered load. This is clearly the break-point of the
Web system, caused by an overloaded back-end server. As
this performance figure is representative of the behavior of
a system under stress testing, we recommend to choose the
time right before the knee of the curve as the upper bound
on the 95-percentile of the latency time. In the testbed sys-

tem, this value corresponds to 4 seconds. Hence, � ���
is the value for the parameter defined in the SLA for high
class users. However, many other considerations different
from performance observations contribute to the choice of
the SLA in the reality. The tradeoff is clear. Choosing a
lower SLA value allows the service provider to offer (and
publicize) a better service to a smaller number of high class
users. The opposite is true when a higher SLA value is cho-
sen. The service provider has typically a range of values
among which he can choose the best SLA for his Web ser-
vices. The lower bound for this SLA interval is evaluated
with the contribution of the system administrator, because
it is denoted by the time to serve the most demanding dy-
namic request. The upper bound depends more on market
considerations.

0

2

4

6

8

10

12

14

5 7 10 12 15

95
-p

er
ce

nt
ile

 o
f 

la
te

nc
y 

tim
e 

[s
ec

.]

Clients per second [cps]

Dynamic requests
Static requests

All requests

Figure 2. 95-percentile of latency time as a function of
the client arrival rate in a single-server system.

The system administrator has to translate the SLA of
Y=4 seconds in a metric that the Web switch can use to
execute QoWS mechanisms.

This problem exists because in one-way architecture,
latency time measurements are not available at the Web
switch. Hence, we have to translate the SLA upper bound in
practicable metrics to be used in dispatching and admission
control policies. From several studies, we can conclude that
the throughput expressed as a number of connections for dy-
namic requests per second is a metric rather representative
of the system load. To evaluate the throughput correspond-
ing to the break-point, we measure it as a function of the
client arrival rate. From Figure 3 we observe that the arrival
rate of 10 clients per second, corresponding in Figure 2 to a
latency time of 4 seconds, occurs when the system serves 30
connections per second. (This value corresponds also to the
number of page requests per second because we assume to
work with the HTTP/1.1 protocol where each TCP connec-



tion carries an entire page request.) A more precise analysis
of the throughput evidences that 24 of the 30 requests are
for static pages and 6 for dynamic pages. Moreover, Fig-
ure 3 shows that the maximum capacity of the Web cluster
(reached at 37 requests per second) is clearly due to the dy-
namic requests because the system would be able to serve
many other static requests. Indeed, the throughput for static
requests continues to grow linearly. We can conclude that
when the number of requests for dynamic pages exceeds
the value of 5, the system has a bottleneck on the back-end
server. Furthermore, it is quite easy to let the Web switch
know the current number of connections. This justifies the
choice for

��������������� �!� ��� as a break-point indicator
for the system composed of one Web server and one back-
end server.

0

5

10

15

20

25

30

35

40

45

50

5 7 10 12 15

T
hr

ou
gh

pu
t [

co
nn

/s
ec

.]

Clients per second [cps]

Dynamic requests
Static requests

All requests

Figure 3. Throughput as a function of the client arrival
rate in a single-server system.

The previous stress testing analysis has been based on
the number of request arrivals to the system. It is important
to observe that there are other two potential stress factors
for the Web cluster: the percentage of dynamic requests,
and the percentage of high class users. These three parame-
ters denote the admissible space where the Web cluster can
guarantee SLA targets. Workload values beyond the bounds
of the admissible space cannot be faced by QoWS mech-
anisms and policies, but they require interventions on the
system, e.g., adding some server nodes.

Space limits do not consent us to enter into many details,
however to give some ideas, in Figure 4 we report a sensi-
tivity analysis based on the percentage of dynamic requests
while keeping the percentage of high class users equal to
20%. This figure shows that an augment of dynamic re-
quests from 5% to 25% causes only a slight increase in the
95-percentile of latency time. This interval denotes the ac-
ceptable range for the request mix of the considered work-

load and Web cluster. Henceforth, the experimental results
will refer to a percentage of dynamic requests equal to 20%.

0

4

8

12

16

20

0 10 20 30 50 100

95
-p

er
ce

nt
ile

 o
f 

la
te

nc
y 

tim
e 

[s
ec

.]

Percentage of dynamic requests

Dynamic requests
Static requests

All requests

Figure 4. Latency time as a function of the percentage of
dynamic requests in a single-server system.

5 Simulation analysis

Unlike a traditional performance analysis where the goal
is to evaluate which policy provides best performance re-
sults (e.g., minimum response time, maximum throughput),
the goal of the QoS analysis is to verify whether the QoWS-
enhanced Web cluster satisfies the SLA target for different
scenarios. A secondary goal is to compare the behavior of
the different proposed QoWS policies. Being the SLA the
most important target, a policy that satisfies it for all exper-
iments is preferable to a policy that obtains a lower latency
time in most instances but it is unable to guarantee the SLA
in others. We compare the proposed QoWS policies under
different workload scenarios applied to a Web cluster. By
varying the amount and the composition of the offered load,
we stress different components of the system. Stress testing
analysis is motivated by the preliminary observation that if
the Web cluster components are underutilized, most poli-
cies can easily satisfy SLA. If not otherwise specified, we
consider the Web cluster and the workload model described
in Sections 2 and 4.

5.1 Stress testing on back-end server nodes

In this section we compare the performance of the QoWS
policies when the back-end nodes of the Web cluster rep-
resent the system bottleneck. Figure 5 shows the 95-
percentile of latency time of the proposed dynamic par-
tition algorithms and compare them with CAP policy [6]
as representative for QoWS-blind algorithms operating at



layer-7. As a first result, we observe that DynamicPart and
DynamicPart-Drdrop satisfy the SLA of 4 seconds for high
class users, while the same target is not achieved by the
CAP policy.

Further, we observe that both QoWS policies are able
to guarantee SLAs, but their performance differ in terms
of the latency time and the number of dropped requests ex-
perimented by low class users. In particular, Figure 5 shows
that DynamicPart-DRdrop performs slightly better than Dy-
namicPart in terms of 95-percentile for high class requests.
On the other hand, DynamicPart achieves better results for
low class requests with a page latency time that ranges from
4.2 to 4.4 seconds, while DynamicPart-DRdrop obtains a
latency time for low class requests beyond 5 seconds. The
motivation for this result is that DynamicPart-DRdrop re-
jects only dynamic requests. This entails a larger number
of Web servers devoted to the high class partition. As a re-
sult, the servers in the low set are overloaded with respect
to the case in which the Web switch drops both static and
dynamic requests originated by low class users. Dynam-
icPart drops a higher number of low class requests with re-
spect to DynamicPart-DRdrop, which rejects only those low
class requests that really impact on the system performance
that is, the requests for Web pages containing dynamically
generated Web objects. Indeed, DynamicPart drops 7% of
low class requests when the systems is overloaded, while
DynamicPart-DRdrop drops less than 4% of low class re-
quests (Figure 6).

2

3

4

5

6

7

8

9

10

100 125 150 175 200

95
-p

er
ce

nt
ile

 o
f 

la
te

nc
y 

tim
e 

[s
ec

.]

Clients per second [cps]

CAP
DynamicPart (High)

DynamicPart-DRdrop (High)
DynamicPart (Low)

DynamicPart-DRdrop (Low)

Figure 5. Sensitivity of latency time to the client arrival
rate for QoWS-aware and QoWS-blind algorithms.

5.2 Setting stronger SLA requirements

Figure 5 shows that all the presented dynamic algorithms
are able to satisfy the SLA. We did not report in Figure 5

0

1

2

3

4

5

6

7

8

100 125 150 175 200

Pe
rc

en
ta

ge
 o

f 
dr

op
pe

d 
re

qu
es

ts

Clients per second [cps]

DynamicPart (Low)
DynamicPart-DRdrop (Low)
DynamicPart-HUdrop (Low)
DynamicPart-HUdrop (High)

Figure 6. Sensitivity of number of dropped requests to
the client arrival rate for QoWS-aware and QoWS-blind al-
gorithms.

the results achieved by DynamicPart-HUdrop as its behav-
ior is analogous to DynamicPart-DRdrop (the two curves
overlap). As the SLA for the high class is never violated,
DynamicPart-HUdrop does not activate the mechanism to
drop high class requests.

Adapting to changing conditions is critical to the success
of a QoWS-enabled system. There are many parameters and
workload characteristics that can change in the Web. Space
limits do not allow to carry out an extensive evaluation of
all feasible variations. Hence, in this section we focus on
behavior of QoWS policies when the SLA becomes more
severe than that evaluated in the previous section.

To test the system with a stricter SLA, we impose for
high class requests a new stricter SLA with an upper bound
of 2.5 seconds on the 95-percentile of latency time. If we
consider that the basic latency time for a dynamic request
in a under-utilized system is about 2 seconds, the new SLA
requires that a dynamic request has to be served in a mar-
gin of 25% on the basic latency time with 0.95 probability.
(When the SLA was previously set to 4 seconds, the margin
was 100% higher than the basic latency time.)

Figure 7 shows that the DynamicPart and DynamicPart-
DRdrop policies are not able to respect the new SLA set
to 2.5 seconds. Therefore, we analyze what happens when
we consider the DynamicPart-HUdrop policy that may even
drop high class requests, if actions on low class requests are
not sufficient to guarantee QoWS.

Figure 7 reports the latency time achieved by the
DynamicPart-HUdrop policy, in which any Web server
can drop high class requests if the SLA requirement for
these users cannot be satisfied. This figure shows that the
DynamicPart-HUdrop policy achieves a 95-percentile of la-



2

3

4

5

6

7

8

100 125 150 175 200

95
-p

er
ce

nt
ile

 o
f 

la
te

nc
y 

tim
e 

[s
ec

.]

Clients per second [cps]

CAP
DynamicPart (High)

DynamicPart-DRdrop (High)
DynamicPart-HUdrop (High)

DynamicPart (Low)
DynamicPart-DRdrop (Low)
DynamicPart-HUdrop (Low)

Figure 7. Latency time with SLA requirement stress.

tency time lower than 2.5 seconds, at the price of an ac-
ceptable percentage of dropped high class requests. The
percentage of dropped high class requests is 4%, while the
percentage of dropped requests in the low class is very high.
However, this result is acceptable, if one considers that low
class requests are served under a best effort policy and that
the system is highly overloaded. Indeed, the growth of the
latency time for the CAP policy shows that 125 clients per
second is the break-point of the system and we are over-
loading the system up to 200 clients per second.

6 Conclusions

In this paper we analyze mechanisms and policies for
enabling Quality of Service principles in cluster-based Web
systems. We first propose and compare various policies for
dynamic server partitioning that satisfy all QoS principles.
We then focus on the parameter to determine a set of confi-
dent SLAs and evaluate a Web cluster with different classes
of users and Web services. Our simulation experiments
show that the proposed class of policies that dynamic adapt
system resources devoted to the most demanding class of
users is able to meet the Service Level Agreement for dif-
ferent load and system conditions.

Acknowledgments

The authors acknowledge the support of the Ministry of
University and Scientific Research in the framework of the
project “Sistemi Web ad elevata qualità del servizio”. The
first two authors also acknowledge the support of Banca di
Roma (Res. contract BDR-2001 on “Advanced technolo-
gies”).

References

[1] M. F. Arlitt and T. Jin. A workload characterization study of
the 1998 World Cup Web site. IEEE Network, 14(3):30–37,
May/June 2000.

[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves:
A mechanism for resource management in cluster-based net-
work servers. In Proc. of ACM Sigmetrics 2000, Santa Clara,
CA, June 2000.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource containers:
A new facility for resource management in server systems.
World Wide Web, 2(1-2), 1999.

[4] N. Bhatti and R. Friedrich. Web server support for tiered
services. IEEE Network, 13(5):64–71, Sept./Oct. 1999.

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mam-
belli. Web switch support for differentiated services. ACM
Performance Evaluation Review, 29, 2001.

[6] E. Casalicchio and M. Colajanni. A client-aware dispatching
algorithm for Web clusters providing multiple services. In
Proc. of 10th Int’l World Wide Web Conf., Hong Kong, May
2001.

[7] X. Chen and P. Mohapatra. Providing differentiated ser-
vice from an Internet server. In Proc. IEEE Int’l Conf. on
Computer Communications and Networks, Boston, MA, Oct.
1999.

[8] L. Cherkasova and P. Phaal. Session based admission con-
trol: a mechanism for improving performance of commercial
Web sites. In Proc. Int’l Workshop on Quality of Service,
London, June 1999.

[9] V. Kanodia and E. W. Knightly. Multi-class latency-bounded
Web services. In Proc. of Int’l Workshop on Quality of Ser-
vice, Pittsburgh, PA, June 2000.

[10] D. Krishnamurthy and J. Rolia. Predicting the QoS of an
electronic commerce server: Those mean percentiles. In
Proc. of Workshop on Internet Server Performance, Madi-
son, WI, June 1998.

[11] J. F. Kurose and K. W. Ross. Computer Networking: A
top down approach featuring the Internet. Addison-Wesley
Longman, 2000.

[12] K. Li and S. Jamin. A measurement-based admission-
controlled Web server. In Proc. of IEEE Infocom 2000, Tel
Aviv, Israel, Mar. 2000.

[13] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and N. E. Locality-aware request distribu-
tion in cluster-based network servers. In Proc. of 8th ACM
Conf. on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, Oct. 1998.

[14] T. Schroeder, S. Goddard, and B. Ramamurthy. Scal-
able Web server clustering technologies. IEEE Network,
14(3):38–45, May/June 2000.

[15] H. Zhu, H. Tang, and T. Yang. Demand-driven service differ-
entiation in cluster-based network servers. In Proc. of IEEE
Infocom 2001, Anchorage, Alaska, Apr. 2001.


