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Abstract—Software containers are ever more adopted to man-
age and execute distributed applications. Indeed, they enable
to quickly scale the amount of computing resources by means
of horizontal and vertical elasticity. Most of the existing works
consider the deployment of containers in centralized data centers.
However, to exploit the diffused presence of edge/fog computing
resources, we need new solutions that deploy containers while
also considering their placement on decentralized resources.

In this paper, we present a two-step approach that manages
the run-time adaptation of container-based applications deployed
over geo-distributed virtual machines. In the first step, our
approach exploits Reinforcement Learning (RL) solutions to
control the horizontal and vertical elasticity of the containers.
In the second step, it addresses the container placement by
solving a suitable integer linear programming problem or using
a network-aware heuristic. A wide set of simulation results shows
the benefits and flexibility of the proposed approach, which can
satisfy stringent application requirements expressed in terms of
response time percentiles.

Index Terms—Containers, Elasticity, Placement,
adaptation, Geographically distributed resources
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I. INTRODUCTION

Software containers are changing the way cloud applica-
tions are designed, deployed, and executed [1]. Exploiting
a lightweight operating system-level virtualization, containers
allow to wrap up an application with its execution environment
(i.e., libraries, code), and to easily run it on any machine,
physical or virtual. Furthermore, containers allow to quickly
change the application deployment through horizontal and
vertical scaling [2]. By combining different dimensions of
elasticity, the application can react more quickly to small
workload variations through fine-grained vertical scaling, as
well as to sudden workload peaks through horizontal scaling.
Nevertheless, so far only few works have explored the benefits
of combining the two elasticity dimensions for container-
based applications (e.g., [2], [3]), while most of the existing
solutions consider either horizontal elasticity (e.g., [4]) or
vertical elasticity (e.g., [S]). Moreover, containers are usually
deployed in centralized cloud data centers, which could be
distant from users, data sources, and system actuators (e.g.,
in a IoT context). To improve application scalability and
reduce response time, the trend is to use cloud resources
in combination with edge/fog computing resources located
at the network edges. Such a geo-distributed environment
allows to decentralize the application execution, by moving
the computation closer to data sources and consumers, thus
reducing the expected application response time. Nonetheless,

to successfully exploit this computing environment, the non-
negligible network delays among computing resources running
different parts of the application should properly be taken
into account. Most works on container orchestration cannot
efficiently exploit the features of the emerging geo-distributed
environment. Indeed, they either operate at single level of ab-
straction (e.g., [5]), scale containers without considering their
placement (e.g., [3], [6]), or do not consider the geographic
distribution of cloud/fog environments (e.g., [7]).

In this paper, we propose a two-step approach to determine
and adapt the deployment of container-based applications on
geo-distributed virtual machines (VMs). In the first step, our
solution exploits Reinforcement Learning (RL) to horizontally
and vertically scale the application containers. In the second
step, it allocates the application containers on VMs intercon-
nected with non-negligible network delays. To this end, we
provide a general formulation of the application placement
problem that take multiple Quality of Service (QoS) attributes
into account (i.e., minimizing application performance penalty,
adaptation cost, and resource cost). Since the placement prob-
lem is NP-hard, we also present a network-aware heuristic
to determine more quickly the application containers place-
ment on geo-distributed resources. Differently from previous
works, we allow the application’s user to specify performance
requirements in terms of response time percentiles (instead of
average values). In such a way, our solution can identify an
adaptation policy that better satisfies the user-perceived QoS.

The main contributions of this paper are as follows. First,
we design RL algorithms to control the elasticity of container-
based applications taking into account the percentile bound
on the application response time. We use a model-based
RL solution and, for sake of comparison, we also consider
the classic model-free Q-learning (Sections III-IV). Then, we
present an Integer Linear Programming (ILP) formulation
and a network-aware heuristic, which solve the placement
problem for container-based applications (Section V). Finally,
we extensively evaluate the proposed approach by means
of simulations and show the flexibility and efficacy of the
designed deployment heuristics (Section VI).

II. RELATED WORK

The ability of cloud computing to provide resources on
demand encourages the development of elastic applications,
that can be dynamically adapted in face of changing working
conditions. Almost every application that is built is made of



distributed interactive components. Therefore, a key challenge
is to determine how and where to deploy each application com-
ponent so to meet stringent QoS requirements. The elasticity
problem exploits horizontal and vertical scaling to adapt at run-
time the number of application instances and the amount of
computing resources assigned to each of them. The application
placement problem maps each application instance to a specific
computing resource. Most of the existing solutions consider
the two problems separately and focus either on the placement
or on the elasticity problem of applications (e.g., [8], [9]). So
far, only a limited number of works have studied how to jointly
solve the two problems (e.g., [2], [10], [11]).

To determine or adapt at run-time the placement of ap-
plication instances (using containers or VMs), the existing
approaches recur to two main methodologies: mathemati-
cal programming and heuristics. Mathematical programming
approaches consider the initial deployment (e.g., [12]) as
well as its run-time adaptation (e.g., [8]). Mao et al. [12]
present an IP formulation of the initial container placement
aiming to maximize the available resources in each hosting
machine. Arkian et al. [8] solve a Mixed-ILP problem to
deploy application components (i.e., VMs) to fog nodes to sat-
isfy end-to-end delay constraints. The mostly used placement
heuristics range from meta-heuristics (e.g., [6]), to threshold-
based heuristics (e.g., [13]), to specifically designed solutions
(e.g., [14], [15]). For example, Huang et al. [14] model the
mapping of IoT services to edge/fog devices as a quadratic
programming problem, that, although simplified into an ILP
formulation, may suffer from scalability issues. To the best of
our knowledge, only Tang et al. [15] exploit RL techniques
to solve the application placement problem. After defining
a multi-dimensional Markov Decision Process to minimize
communication delay, power consumption and migration costs,
a Q-learning algorithm is proposed to control the migration of
application components in a fog environment.

We can classify the most used approaches to drive the ap-
plication elasticity in: custom solutions (e.g., [16]), threshold-
based (e.g., [5]), and RL-based solutions. Netto et al. [16]
present a state machine approach for replicating Docker
containers in Kubernetes aiming to provide high availability,
integrity, and strong consistency. Al-Dhuraibi et al. [S] propose
ELASTICDOCKER, which employs a threshold-based policy
to vertically scale CPU and memory resources assigned to
each container. RL has mostly been applied to devise policies
for VM allocation and provisioning (e.g., [9], [17]) and, in
a limited way, to manage containers (e.g., [4]). Arabnejad et
al. [17] combine Q-learning and SARSA RL algorithms with a
fuzzy inference system that drives VM auto-scaling. Horovitz
et al. [4] propose a threshold-based policy for horizontal
container elasticity using Q-learning to adapt the thresholds.
To tackle the slow convergence rate of classic model-free
algorithms [18], Tesauro et al. [9] propose a hybrid RL method
to dynamically allocate homogeneous servers to multiple
applications. We present in [3] RL policies to control the
horizontal and vertical elasticity of containers so to satisfy the
average application response time. Building on this work, we

Algorithm 1 Two-step deployment adaptation policy

I: Rmax: requirement on the application response time

2: for each discrete time step ¢ do

3 Si—1: current deployment; M; = monitored performance
4 k; = scale the application considering (S;—1, M;, Rmax)
5 S; = place the k; containers on geo-distributed VMs

6: end for

here propose a fully-fledged deployment policy that manages
the container placement on decentralized computing resources.

Few works jointly solve the elasticity and placement prob-
lem of container-based applications. Guan et al. [10] present
a LP formulation to determine the number of containers
and their placement on a static pool of physical resources;
nevertheless, vertical scaling operations are not considered.
Nardelli et al. [2] propose an ILP formulation of the elastic
provisioning of VMs for container deployment, while Guerrero
et al. [11] present a genetic algorithm for container horizontal
scaling and allocation on physical machines; both works take
explicitly into account the network delay between machines.

Differently from these works, we propose a two-step ap-
proach to dynamically adapt the deployment of container-
based applications in geo-distributed environments. The first
step relies on RL to horizontally and vertically scale the
application containers, thus changing the amount of assigned
computing resources [3]. As second step, we propose an ILP
formulation and a novel network-aware heuristic to determine
the container placement. Differently from existing solutions
(including [3]) that assume average QoS requirements, we
consider more stringent ones and guarantee performance on
the 95th percentile of the application response time, which
better expresses the user-perceived QoS [19].

III. SOLUTION OVERVIEW AND SYSTEM MODEL

Running elastic applications over a geo-distributed com-
puting infrastructure requires to determine where and how
to allocate computing resources. Moreover, being applications
subject to varying workloads and exposing stringent QoS re-
quirements, their deployment should also be properly adapted
at run-time. In this paper, we propose a general deployment
adaptation solution (see Algorithm 1), that proceeds in two
steps. First, we change the amount of computing resources
allocated to the application, exploiting both vertical and hori-
zontal elasticity of containers controlled by means of RL-based
policies (line 4). Then, we determine the container placement
on geo-distributed VMs (line 5). To this end, we rely on an ILP
formulation as well as on a novel network-aware placement
heuristic. The proposed solution is general, meaning that it can
be tuned to optimize different QoS metrics. In the following,
we focus on identifying deployment solutions that minimize
the amount of allocated computing resources, while meeting
QoS requirements on the response time percentiles.

Application Model: We consider the application as a
black-box entity that carries out specific tasks and exposes
stringent QoS requirements in terms of response time: its
95th percentile should not exceed a target value Ry ax. To



simplify management operations, the application is executed
using containers. Following the Docker model, a container is
an instance of a container image (structured as a series of
layers), which represents an application snapshot; it embeds
all the dependencies needed for the execution. The container
image layers can be downloaded from an external repository,
before running the application instance on a new hosting VM.
We refer to the set of application containers as E. Each
container e € FE is characterized by: c., the amount of required
CPU shares on the hosting VM; T, € [Thin, Tmax], its startup
time; and I, the set of container image layers. Each image
layer ¢ € I adds specific functionality and has size ;.

Resource Model: We consider VMs distributed over a
geo-distributed infrastructure. A VM offers computing re-
sources for the execution of containerized applications. Let V'
be the set of VMs. A virtual machine v € V' is characterized
by: C,, the amount of available computing resources (e.g.,
CPU cores); DR,, the download data rate from the container
image repository; and I,,, with I,, C I, the set of image layers
available in v. The (logical) network link (u,v) between each
pair of VMs u,v € V has a network delay d, ,.

IV. HORIZONTAL AND VERTICAL ELASTICITY

Aiming to run elastic applications, we want to dynamically
adapt the amount of allocated computing resources at run-time
by exploiting horizontal and vertical elasticity of containers.
To drive the adaptation actions, we rely on a RL agent whose
goal is to minimize an expected long-term cost. To this end,
the RL agent estimates the so-called Q-function. It consists
in Q(s, a) terms, which represent the expected long-term cost
that follows the execution of action a in state s.

We define the application state at time ¢ as s; = (k;, u;, ¢;),
where k; is the number of application instances (i.e., the
cardinality of FE), u; is the CPU utilization, and ¢; is the CPU
share granted to each container. We denote by S the set of all
the application states. We assume that k; € {1,2, ..., Kiax },
u; € {0,4,...,Lu}, and ¢; € {¢c,2¢,...,Mc}, where @ and
¢ are suitable quanta. For each state s € S, we define the
set of adaptation actions A(s) = {-r,—1,0,1,7}, where
+r denotes a vertical scaling (i.e., to add/remove r CPU
shares), £1 denotes a horizontal scaling (i.e., to scale-out/in
the number containers), and 0 is the do nothing decision.
Observe that not all the actions are available in any application
state, because of the upper and lower bounds on the number
of CPU shares and instances per application.

We associate an immediate cost function c(s, a, s’) to each
tuple (s, a, s’), which captures the cost of carrying out action a
when the application state transits from s to s’. The cost func-
tion includes three different contributions: the performance
penalty cperf, the resource cost ces, and the adaptation cost
Cadp- The performance penalty cperr is paid whenever the
95th percentile of the application response time exceeds the
target value Ry,.x. The resource cost ces 1S proportional
to the number of application instances and assigned CPU
share. The adaptation cost caqp captures the time needed to
reconfigure the application deployment D(-) (i.e., adaptation

time). Formally, we define ¢(s,a,s’) as the weighted sum of
the costs, normalized in the interval [0, 1]; the different weights
allow us to express the relative importance of each term:

c(s, a, 51) = wperfﬂ{R(kH;,u/,<:+£~)>Rmax} +
(k+E)(c+¢)
+Wres Kmax + Wadp Dmax (l)

where 1.y is the indicator function, wadp, Wpert and Wres,
Wadp + Wperf +Wres = 1, are non negative weights for the dif-
ferent costs, and R(k, u, c) is the 95th percentile of the appli-
cation response time in s = (k, u, ¢). Furthermore, we decom-
pose action ¢ in terms of number of containers added/removed,
I~€, and amount of CPU share increased/decreased, c.

We consider two different RL approaches for estimating the
Q-function, namely Q-learning and Model-based algorithms.

Q-learning. Q-learning is a model-free algorithm that re-
quires no knowledge of the application dynamics [18]. At time
1, Q-learning observes the application state s; and selects a;
using an e-greedy policy on Q(s;, a;); the application transits
in s;4+1 and experiences an immediate cost ¢; (see (1)). Then,
Q-learning updates @ (s;, a;) using a simple weighted average:

Q(si,ai) + (1—a)Q(si,ai) +a|ci+y  min  Q(siy1,a’)

a’€A(siy1)
where « € [0, 1] is the learning rate parameter and v € [0, 1)
the discount factor.
Model-Based RL. In the model-based approach, we exploit
the known system dynamics and compute the Q-function using
directly the Bellman equation:

Q(s,a) = > p(s']s,a) [( a,8') + v min Q(s', ') | ueS
s'eS
2

We observe that the paid cost and the next state transition
depend on known and unknown application dynamics. So, we
replace the unknown transition probabilities p(s’|s, a) and the
unknown cost function ¢(s, a,s’), Vs, s’ € S and a € A(s), by
their empirical estimates. We estimate p(s’|s, a) as the relative
number of times the CPU utilization changes from state ju to
j'@ in the interval {1,...,7}.

For the estimates of the immediate cost c(s,a,s’), we
observe that it can be written as the sum of two terms, named
as the known and the unknown cost. The known cost c(s, a)
depends on the current state and action; in our case, it accounts
for the adaptation and resource costs. To quickly approximate
the adaptation cost, we observe that c,qp 7 0 only when either
a scale-out or a scale-up operation should be performed (i.e.,
a € {+1,+r}), because it can require to download container
images or waiting containers boot time.

The unknown cost ¢, (s’) captures performance penalties
(1), and is needed to compute and update (s, a). Therefore, at
time ¢, the RL agent observes the immediate cost ¢;, computes
cu,i(s") = ¢ — c,i(s,a), and updates the estimate of the
unknown cost &, ;(s’), as follows:

Cui(8) — (1 —a)eyi—1(s") + acyi(s") 3)



Further details on the RL-based policy can be found in [3].

V. CONTAINER PLACEMENT

At time ¢, the RL agents determine the number of containers
k; in E and the amount of computing resources per container
¢; to allocate for running the application. Then, as second step,
our approach solves the problem of determining the containers
placement on geo-distributed computing resources.

We model the application container placement with binary
variables z.,, e € E, v € V: x., = 1 if container e
is deployed on VM v and z., = 0 otherwise. For short,
we denote by x the placement vector for containers, where
x = (Tey), Ve € E, Yv € V. Since we solve the container
placement problem at each discrete time step ¢, we find
convenient to define binary variables x;, ,, which store the
placement of e € E on v € V, as determined at time step
i — 1. Leveraging on w, ,,, we also define the binary variables
Je,v» Which indicate whether a container e € E has a different
placement with respect to the configuration in ¢ — 1, i.e.,
de,n = 1, if e was turned off or was allocated on a VM u # v,
with u,v € V. Observe that x;, , and d. , enable to model the
run-time re-allocation of containers on VMs.

Adaptation Time. We define the adaptation time of con-
tainers D(-) as the time needed to deploy every container in
E. This term accounts for the time needed to retrieve container
images and finally start the containers. Given the placement
vector @, we have:

D@)=> > Dey(w) (4)
ecEveV

where D, , () denotes the time needed to deploy e on v:

l;
De,v(m) = Z DR Tenw + Te§e,1)- (5)

i€\,

The term _, Dl]i%v models the time needed to download the
container image layers not yet on v (i.e., not in [,), and T, is
the time needed to start a new container ¢ on v.

Virtual Machines Cost. The virtual machines cost Z(x)

counts the number of VMs used for running the application:

Z(@) =z (6)

veV

where the binary variables z, denote whether v € V' hosts at
least one container. Formally, we have z, = Vecg, vevTe,v-

Application Constraints. The application runs on geo-
distributed VMs and exposes strict requirements on response
time (i.e., its 95th percentile should be smaller than R, .x). To
meet this requirement, the RL agent conveniently scales the
amount of computing resources for the application at run-time.
Furthermore, the placement policy explicitly models the net-
work delay between VMs, and allocates the application only in
VMs whose network delay is below the critical value N Dy,,.
Formally, we have that dy, - Zy,0 < N Dpaz, Vu,v € V, where
Zy,» 18 a binary variable representing whether v and v run the
application (i.e., Zy,v = 2y - 2v).

Optimal Placement Problem Formulation. We formulate
the placement problem as an ILP model that, solved at time ¢,
determines the optimal mapping of the k; application contain-
ers onto the geo-distributed VMs. Our problem formulation
considers an objective function that minimizes the adaptation
time and the VM cost. We define the objective function F'(x)
as the sum of the normalized QoS metrics to be minimized,
as follows:

D(x)  Z(z)
DIIIQ.X ZIIIEIX

where D ax and Z,.x denote the maximum value for the
overall expected adaptation time and cost, respectively. After
normalization, each metric ranges between the best possible
case (i.e., 0) and the worst case (i.e., 1). The Optimal Place-
ment problem is formulated as follows:

F(z) = )

min F(x) subject to:
Z Tew = 1 Vee E (8)
veV
> et < Cy YweV (9
ecE
d(u,'u) * Zu,v < NDmax V’LL,’U ev (10)
1
f Z Tew S 2y S er,v YveV (11)
ecE eelR
zu+zv71§2u,v§% Vu,o eV o (12)
66,1} 2 Te,w — x;,v Ve € E,V’U eV (13)
1-— : e,v
B < % Vee BYweV (14
ée,v € {0, 1},1'5,1) € {O, 1} Ve € E,V’U evVv (15)
2o € {0,1}, 200 € {0,1} Yu,o €V (16)

Equations (8) and (9) allow to find a correct placement.
The former requires that a container e is allocated on one and
only one VM, whereas the latter ensures that a hosting VM ex-
poses only its available resources. Equation (10) expresses the
application constraint on network delay between the hosting
VMs. The latter are identified by means of z, and %, ,,, whose
definition is provided by Equations (11) and (12). I is a large
constant, such that I' > K, .x. Equations (13) and (14) model
whether a container e has a different allocation with respect
to the placement defined in x ,,.

Theorem. The Optimal Placement problem is NP-hard:
In order to verify the NP-hardness of the Optimal Placement
problem, it suffices to prove that the corresponding decision
problem is NP-hard. To prove the NP-hardness of this decision
problem, let us consider the special case where: £ is the num-
ber of application containers and ¢ the amount of resources
requires by each container. We suppose that: ¢ is an integer;
the network has only two nodes, V' = {u, v}, with capacity
Cy = C, = (k- c)/2; there are no network delays, that is
dy,w = dy = 0 (this allows us to ignore the variables Z, .,
2y, and z,); and containers can be placed on both VMs. It is
easy to realize that the resulting problem is the well known
Partition problem which is known to be NP-hard. Since this



special case is NP-hard, the general decision problem is NP-
hard as well. And since the original optimization problem is at
least as hard as the decision problem, it follows that Optimal
Placement problem is NP-hard as well.

Network-aware Greedy Heuristic. The ILP formulation
models an NP-hard problem; so, it does not scale well as
the problem instance increases in size. To overcome this
limitation, we propose a network-aware greedy heuristic,
which exploits the deployment objective function and the
system model to determine the placement of the application
containers. The heuristic solves a variant of the bin-packing
problem. For each application container to deploy, the heuris-
tics selects the hosting VMs from a sorted list using a greedy
approach. The list is sorted in ascending order, using the
objective function as distance metric: the first VMs of the
list minimizes the adaptation time. Moreover, to satisfy the
application requirements, the heuristic selects only the VMs
having network delay from the active VMs below N Dy ax.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed deployment adaptation solutions
by means of simulations. First, we compare the model-based
RL approach against the model-free approach, aiming to iden-
tify a suitable application elasticity policy. Then, we consider
the placement problem and investigate the behavior of the
deployment adaptation policy, when the RL policy is coupled
with the placement policies proposed in Section V.

At each discrete time step i, we consider the reference
application modeled as an M/D/k; queue, because we can
reasonably assume that: the application receives random and
independent (M) requests, its service time is deterministic (D),
and the number of servers is equal to the number of containers
(k;). Each application instance can serve p = 200 - ¢; re-
quests/s, where ¢; € (0, 1] is the assigned CPU share. Further-
more, each application container image uses 3 layers, each of
which has size [; uniformly defined in [200,800] MB. The
container boot time 7T, is selected uniformly in [8.5,11.5] s.
The application requires that the 95th percentile of its response
time is below R,.x = 50 ms. We consider that the application
receives a number of requests that changes over time according
to the workload pattern shown in Figure 1. The RL algorithms
use the following parameters: K,.x = 10, discount factor
v = 0.99 and, for Q-learning, learning rate a = 0.1 and
e = 1/i. To discretize the application state, we use & = 0.1

1000
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1000 1500
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Fig. 1: Application workload used in simulation.

and ¢ = 10%. We run the simulation on a machine with an
Intel Xeon E5504 (2.00 Ghz) and 16 GB of RAM. To solve
the optimal ILP formulation, we use CPLEX 12.8.

Application Elasticity. In the first set of experiments, we
compare the model-based RL policy against Q-learning, when
different cost function weights are considered (see Eq. 1).
To this end, containers are allocated on VMs which are
interconnected with a negligible network delay. Moreover, we
use the optimal ILP formulation to compute the containers
placement. Table I reports the experimental results.

When we consider the set of weights wperr = 0.90, Wyes =
0.09 and waqp = 0.01, optimizing the application response
time is more important than saving resources or avoiding re-
configurations. Q-learning frequently changes the application
deployment (i.e., 78.11% of the time); as a consequence, the
application response time exceeds Ry.x for 30.93% of the
time (see Table I). Taking advantage of the system knowledge,
the model-based solution drastically reduces to 3.15% the
number of R,.x violations. Differently from Q-learning, the
model-based policy uses a higher number of medium-size
containers and, in general, learns a more robust adaptation
strategy, as suggested by the small number of deployment
reconfigurations reported in Table I.

We now consider the case when saving resources is more
important than the other objectives, i.e., Wperf = 0.09, Wyes =
0.90, and waqp = 0.01. Intuitively, the agent should learn how
to improve resource utilization at the cost of a high application
response time (i.e., violating R,.x). From Table I, we can see
that the model-based solution successfully does it. It runs the
application with 1.20 instances, on average, that can access
only to 11.71% of CPU resources. It also avoids run-time
adaptations. As a consequence, the application is overloaded,
and the resulting median response time is in the order of
10 seconds. Instead, Q-learning continuously reconfigures the
application deployment and uses on average a higher number
of containers that can access to more computing resources.

As third case, we balance the importance of three deploy-
ment goals, i.e., Wperf = Wres = Wadp = 0.33. Table I
shows that the RL policies try to find a trade-off between the
previous settings. Q-learning has 45.53% of Rp,.x violations
and 72.72% average resource utilization. Also in this case,
the model-based solution learns a better adaptation strategy;
indeed, it reduces R, violations to 22.59%, with a 66.57%
of average resource utilization. To achieve such trade-off, the
model-based RL strategy adapts the application deployment
less than 13% of the time.

This set of experiments has shown the importance of pro-
viding system knowledge to improve the learning task. The
reduced number of application reconfigurations suggests that
the model-based agent learns a robust adaptation policy, which
allows to guarantee the stringent QoS requirements (i.e., 95th
percentile of the application response time below R,ax).

Application Elasticity and Placement. In this second set
of experiments, we combine the model-based RL policy with
different placement policies. We consider 20 VMs uniformly
distributed across 4 data centers. Each VM has C,, = 2 vCPUs



TABLE I: Comparison between the RL policies to drive the application elasticity under different configurations of cost weights.

Weights RL Policy Rmax violations | Average CPU | Average CPU | Average number | Median R | Adaptations
(%) utilization (%) share (%) of containers (ms) (%)

Wperf = 0.90, Wres = 0.09, waqp = 0.01 Q-learning 30.93 64.66 68.73 3.83 42.14 78.11
Model-based 3.15 55.12 90.47 3.91 40.56 21.79

Wpert = 0.09, Wres = 0.90, waqp = 0.01 Q-learning 43.18 70.07 58.35 2.81 26.00 76.91
Model-based 99.80 99.84 11.71 1.20 9101.90 6.30

Wperf = Wres = Waap = 0.33 Q-learning 1553 7272 64.68 3.26 14.33 77.66
Model-based 22.59 66.57 78.74 3.74 41.56 12.69

TABLE II: Comparison among the placement policies, when the model-based RL policy manages the application elasticity.

Weights Placement Rumax violations | Average CPU | Average CPU | Average number | Median R | Adaptations | Average number | N Dmax violations
policy (%) utilization (%) share (%) of containers (ms) (%) of VMs (%)
Wperf = 0.90, wres = 0.09, waqp = 0.01 OPT 2.80 55.17 80.23 4.71 28 20.59 2.23 0.0
NetAware 3 58.06 80.89 4.49 24.56 24.19 2.38 0.0
Greedy First-fit 3.40 55.33 78.81 4.39 36.56 23.89 2.51 3.10
Round Robin 6.95 26.97 99.19 7.86 51.73 12.29 7.50 99.35
Wporf = Wres = Wadp = 0.33 OPT 20.94 65.98 o1.77 2.9 37.70 11.44 172 0.0
NetAware 25.74 71.51 62.76 4.95 41 13.54 2.12 0.0
Greedy First-fit 26.44 70.35 55.13 5.29 41.14 12.89 2.42 1.54
Round Robin 24.59 65.65 85.92 3.34 49 12.74 3.15 26.49
Wperf = 0.09, wres = 0.90, waqp = 0.01 OPT 99.80 99.89 11.60 1.15 13949.94 6.30 1.0 0.0
NetAware 99.80 99.87 11.71 1.20 13948.50 6.30 1.0 0.0
Greedy First-fit 99.80 99.87 11.71 1.20 13950.15 6.30 1.0 0.0
Round Robin 99.80 99.87 11.65 1.19 14076 6.10 1.18 4.45
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Fig. 2: Application performance and run-time deployment adaptation (wperf = 0.90, Wres = 0.09, waqp = 0.01).

and DR, = 100 Mbps. The data centers are interconnected
with a network delay that ranges in [10,70] ms interval;
the intra-data center network delay is 2 ms. The application
requires the network delay to be below N Dy, = 40 ms. As
placement policies, we consider the optimal ILP formulation
(OPT) and the network-aware greedy heuristic (NetAware)
presented in Section V, as well as a simple Greedy First-fit
and a Round Robin heuristic. The latter spreads uniformly
the application containers across the VMs. Table II reports
the experimental results. We first consider the set of weights
Wperf = 0.90, wres = 0.09, and waqp, = 0.01. Figure 2 shows
the effects on performance of combining the elasticity and

placement policies. First of all, we can see that the model-
based RL policy is robust enough to successfully scale the ap-
plication deployment even when the Round Robin placement
policy is used. Figure 2 also shows the importance of using
network-aware placement heuristics in a geo-distributed envi-
ronment. Indeed, the learned adaptation policy differs largely
when OPT or Round Robin is used. In particular, Round
Robin determines a disadvantageous placement, which uses
on average 7.5 VMs, selected from all the data centers. This
results in a placement that always violates the N Dy,,x bound
and has a high number of R,,.x violations (see Table II). The
Greedy First-fit heuristic inherently allocates the application



containers on fewer VMs (2.5, in this case). Nevertheless, it
places the application instances on VMs which can be distant
with one another, thus improving the variance of the appli-
cation response time (which makes it difficult to guarantee
requirements on percentiles). Indeed, the median response
time is higher than that obtained by OPT and NetAware.
OPT and NetAware successfully deploy the application on
average on 2 VMs, interconnected with network delay below
N Dpax. This efficiently supports the scaling decisions by the
RL agent, which registers a very low number of violations on
the 95th percentile of the application response time. When
the deployment goals are equally important, i.e., Wperf =
Wres = Wadp = 0.33, the network-aware placement policies
confirm their benefits. Indeed, they help the elasticity policy
and allocate the application containers on VMs close with one
another. Furthermore, they reduce the average number of used
VMs to run the application, identifying a trade-off between the
computing resource usage and R,.x Vviolations. The Round
Robin tendency to spread containers negatively affects the
performance also in simple scenarios (i.e., Wperr = 0.09,
Wres = 0.90, wagp = 0.01). In the initial RL learning phase,
Round Robin uses up to 7 VMs; as a consequence, it violates
the N Dyp.x requirement for 4.45% of the time. Conversely,
the other policies minimize the number of used VMs, thus
resulting in less N Dy,.x violations.

From these experiments, we can conclude that a good
deployment policy can be achieved by combining the model-
based RL policy, for dynamically scaling containers, and
the NetAware heuristic, for allocating containers on geo-
distributed VMs. NetAware approximates the optimal formu-
lation behavior, limiting the delays between the VMs used
to run the application and optimizing user-defined objective
functions. To conclude, we observe that OPT requires to solve
the ILP formulation, an NP-hard problem, whereas NetAware
uses a heuristic to find an intuitively good solution. This dif-
ference clearly appears from the computational time required
by the two policies. On average, in our experiments, OPT
takes 50.82 ms to compute the placement solution, whereas
NetAware (as the other heuristics) requires only 1 ms.

VII. CONCLUSIONS

In this paper, we have proposed a two-step approach to
jointly optimize the elasticity of application containers as well
as their allocation on geo-distributed computing resources. To
manage elasticity, we have designed and evaluated model-
free and model-based RL solutions, which exploit different
degree of knowledge about the system dynamics. To define
the containers placement, we have equipped the proposed RL
policies with an ILP formulation, as well as with a network-
aware placement heuristic. The latter defines the placement
of containers on VMs that communicate with non-negligible
network latencies. Our results have shown the flexibility
and benefits of the proposed approach. The model-based RL
approach can successfully learn the best elasticity policy,
according to the user-defined deployment goals. Then, the
network-aware placement heuristic allocates the application

containers on VMs close each another, thus enabling to meet
stringent QoS requirements expressed as the 95th percentile
of the application response time.

As future work, we plan to further investigate the proposed
approach according to two main directions. First, we will
extend our heuristics so to efficiently control the deployment
of multi-component applications (e.g., microservices). Then,
we will include other QoS metrics (e.g., availability, network
usage), taking into account the specific features of edge/fog
computing environments.
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