
GOFS: Geo-distributed Scheduling in OpenFaaS
Fabiana Rossi, Simone Falvo, Valeria Cardellini

DICII, University of Rome Tor Vergata, Italy
{f.rossi,cardellini}@ing.uniroma2.it, falvosimone22@gmail.com

Abstract—OpenFaaS is a popular open-source serverless plat-
form in the academic and industrial world. Based on Ku-
bernetes, OpenFaaS includes a simple scheduling policy that
spreads functions on cluster computing resources. As such, it
is not well-suited for managing latency-sensitive applications in
a geo-distributed environment, where network latencies are non-
negligible and negatively affect the application response time.
To overcome this issue, in this paper we present GOFS (Geo-
distributed Scheduling in OpenFaaS), which extends OpenFaaS
with network-aware scheduling capabilities. GOFS addresses the
serverless application scheduling in a geo-distributed environ-
ment by either solving a suitable integer linear programming
problem or using a greedy network-aware heuristic. However, its
modular architecture facilitates the integration of other custom
scheduling policies. A wide set of prototype-based results shows
the advantages of the proposed network-aware solutions over
other benchmark scheduling policies.

Index Terms—OpenFaaS, Scheduling, Geo-distributed

I. INTRODUCTION

The serverless computing paradigm has recently attracted
ever-growing attention; it promises to simplify the devel-
opment and run-time management of applications through
the Function-as-a-Service (FaaS) offering. Compared to
Infrastructure-as-a-Service platforms, serverless architectures
provide different trade-offs in terms of control and flexibil-
ity. The developers do not need to provision and manage
servers, virtual machines (VMs), or containers as the basic
computational building block for offering distributed services.
Instead, they can only focus on the business logic, by defining
a set of functions whose composition enables the desired
application behavior. Serverless platforms can significantly
simplify the operational tasks of applications, such as provi-
sioning, scheduling, and scaling. However, they exhibit several
limitations, that are further emphasized in a geo-distributed
environment [1]. Today, OpenFaaS is one of the most used
open-source serverless platforms, due to its lightweight and
extensible architecture. Based on Kubernetes, OpenFaaS sim-
plifies the management of complex multi-functions applica-
tions. To obtain fast start-up and shutdown times, function
instances run within containers. The API gateway, one of the
main components of OpenFaaS, provides an interface to create,
delete, modify, monitor, and scale functions. It is also in charge
of accepting both external and internal requests, and routing
them to the appropriate function for processing.

Recent trends extend the traditional cloud resources with
edge computing resources, placed at the network edges. The
resulting environment can be beneficial for latency-sensitive
applications, whose response time can be reduced by mov-
ing computation closer to data sources and consumers. This

emerging environment includes fundamental aspects, which
are often ignored [2]. The presence of heterogeneous resources
and non-negligible network delays should be explicitly taken
into account while solving the so-called scheduling problem,
which defines the mapping between the application functions
and the computing resources. A careless mapping can be
detrimental for the resulting application response time. In a
geo-distributed FaaS environment, the functions should be
allocated as close as possible to the API gateway, so to
avoid performance degradation. However, using the Kuber-
netes scheduler, OpenFaaS spreads functions among the com-
puting nodes, not considering their geographic distribution. To
overcome this issue, in this paper, we present GOFS (Geo-
distributed Scheduling in OpenFaaS), a serverless scheduling
system that extends OpenFaaS to operate in a geo-distributed
environment. The main paper contributions are as follows:
• We design and implement GOFS; it introduces network-

aware deployment capabilities into the scheduling logic of
OpenFaaS. The modularity of GOFS allows us to easily
integrate custom scheduling policies.

• We integrate network-aware scheduling policies in GOFS.
To address the scheduling problem in a geo-distributed
environment, we propose an optimization problem for-
mulation and a greedy network-aware heuristic.

• To evaluate the proposed policies, we run a set of ex-
periments using a Word-count serverless application. The
experimental results show the benefits of a network-aware
application deployment over other benchmark scheduling
solutions (i.e., Greedy First Fit, Round Robin, and the
default Kubernetes scheduler).

II. RELATED WORK

Among the well-known Cloud services and FaaS platforms
to manage serverless applications, we can find AWS Lambda,
OpenWhisk and OpenFaaS. In AWS Lambda, the scheduling
is addressed using a bin-packing strategy which aims at
placing a new function instance on an existing active VM to
maximize memory utilization [3]. OpenWhisk is a serverless
platform that executes functions using containers. To manage
them, it supports multiple orchestration frameworks, such as
Kubernetes and Apache Mesos. OpenFaaS uses the Kubernetes
scheduler to spread functions among computing nodes. All
these major serverless platforms treat functions as black-
boxes and assume that the computing resources are locally
distributed and interconnected by means of fast communica-
tion links (i.e., geographic distribution is neglected). Some
works aim to improve the performance of existing serverless

978-1-6654-2744-9/21/$31.00 ©2021 IEEE

banto
Presented at the 1st IEEE International Workshop on Distributed and Intelligent Systems (DistInSys)
To be published in: Proceedings of 26th IEEE Symposium on Computers and Communications (ISCC 2021)

platforms (e.g., [4]–[6]). For example, Rausch et al. [6] present
Skippy, an extension of the Kubernetes scheduler that includes
edge-aware constraints. Such constraints can be weighted
differently to achieve different objectives (e.g., minimizing
execution times). However, manually tuning the weights can
be challenging and may require a detailed application profiling.

So far, only few research works have specifically targeted
the serverless environment, especially with regards to the
scheduling issue. To better investigate the existing scheduling
approaches, we consider also those proposed for container-
based applications, not limiting our analysis to those specifi-
cally tailored for serveless.

Existing scheduling policies rely on different methodolo-
gies, such as mathematical programming, machine learning,
and greedy heuristics. Mathematical programming approaches
exploits methods from operational research in order to solve
the scheduling problem (e.g., [7]–[9]). Das et al. [9] present an
optimization problem to dynamically decide where to execute
tasks in a geo-distributed infrastructure, trying to optimize
execution time and billing costs. The scheduling problem
is known to be NP-hard, so other efficient approaches are
needed. In recent years, machine learning has become a
widespread approach to determine the application scheduling
(e.g., [10], [11]). Pinto et al. [10] propose an approach,
which relies on Multi-Armed Bandit, to decide the function-
node mapping. Although conceptually easy to design, machine
learning techniques may suffer from slow learning rate. To
overcome this issue, different heuristics have been proposed, as
surveyed in [2]. The most popular approaches resort to greedy
heuristics (e.g., [12]–[14]). They can be easily implemented
and often work sufficiently well, especially when the problem
size grows. Faticanti et al. [12], for example, propose a
throughput-aware greedy heuristic to allocate applications on
the available computing resources.

All of the above approaches neglect the presence of the API
gateway, which is a key component in serverless platforms
(e.g., OpenFaaS and OpenWhisk) to support communication.
Conceptually, we would like to allocate all functions as close
as possible to it, so to quickly exchange traffic. Hence, in
this paper we propose GOFS, an extension of OpenFaaS that
introduces network-aware deployment capabilities.

III. GOFS PROTOTYPE

A. Kubernetes and OpenFaaS

A pod is the smallest deployment unit in Kubernetes. It
consists of one or more tightly coupled containers that are
co-located and scaled as an atomic entity. When a new pod
is created, Kubernetes triggers the scheduler to identify a
suitable hosting node. The default Kubernetes scheduler is
kube-scheduler, which spreads pods on cluster resources. As
such, it is not well-suited to place pods in an geo-distributed
environment and to deal with non-negligible network de-
lays. OpenFaaS relies on Kubernetes for orchestrating and
managing serverless functions. In particular, Kubernetes is
used for service discovering, auto-scaling, pod scheduling,
load balancing, and network routing. Also, each function is

K8s
API server

K8s
metrics server

OpenFaaS
API Gateway Prometheus

custom
scheduler

scheduling
resolver

FaaS
monitor

NATS Streaming

pending
pods

pods,
nodes mapping

mapping

create/scale function

query

publish

Kubernetes (K8s)
OpenFaaS
GOFS

Fig. 1: High-level overview of GOFS.

deployed using a pod. OpenFaaS allows to develop complex
serverless applications as a composition of autonomous and
decoupled functions. The application workflow is defined in
an orchestration function; in such a way, the involved functions
remain unaware of their composition. In OpenFaaS, the API
gateway manages and scales functions, exposes them through
RESTful APIs, and collects function-level metrics through
Prometheus. It acts as a reverse proxy; any function can be
invoked by the API gateway synchronously or asynchronously
e.g., using a publish-subscribe system such as NATS Stream-
ing). Differently from others (e.g., OpenWhisk), OpenFaaS
allows to scale functions down to zero.

B. GOFS Architecture

Fig. 1 represents the architecture of GOFS, our extension
of OpenFaaS. GOFS consists of three main components:
the custom scheduler, the scheduling resolver, and the FaaS
monitor. When new functions (pods) should be executed,
OpenFaaS uses Kubernetes to allocate them on cluster nodes.
To integrate novel scheduling policies within Kubernetes, we
develop a custom scheduler and a scheduling resolver. The
latter computes the pod allocation. Moreover, we modify the
OpenFaaS source code so to use the custom scheduler, which
is deployed as a pod. After retrieving the status of the cluster
nodes and the list of pods to allocate, it interacts with the
scheduling resolver so to identify the pod-node mapping. The
scheduling resolver exposes the scheduling policy through
RESTful APIs. In this paper, we rely on network-aware
scheduling policies; nevertheless, other strategies can be easily
integrated. Ultimately, the custom-scheduler enacts the pod to
node allocation through the Kubernetes APIs. To monitor the
function life cycle and the cluster health, we develop the FaaS
monitor. It collects metrics from the OpenFaaS API gateway,
Prometheus, and the Metrics Server. The latter is a cluster-
level component that periodically collects CPU and memory
utilization from all pods and nodes. Faas monitor aggregates
the collected metrics and publishes them on NATS Streaming.
These metrics can be then used by the scheduling resolver to
analyze, at run-time, the serverless application performance.

IV. SYSTEM MODEL AND PROBLEM DEFINITION

We now focus on identifying network-aware scheduling
solutions for serverless applications. We consider a geo-
distributed cluster shared by multiple independent applica-
tions. For each application, we assume that its functions are
highly decoupled and that they communicate through the API
gateway. The API gateway is deployed on a cluster node g and

we do not reconfigure it at run-time. We assume that this node
is correctly sized, so that the API gateway can sustain all the
applications’ workloads without penalizing their performance.
We model the geo-distributed cluster as a graph G = (N,E),
where the set of nodes N represents the distributed computing
nodes and the set of links E represents the logical connectivity
between nodes. N contains all the cluster nodes except g, the
cluster node hosting the API gateway. Each node n ∈ N is
characterized by: Cn, the available computing resources in n;
Mn, the available memory in n. For each link (n,m) ∈ E, we
define as dn,m the network latency between the nodes n and
m. These attributes can be known a-priori or can be monitored
and estimated at run-time.

When a client submits a serverless application to the cluster
or when a new function instance is created as result of a
scaling action, the cluster scheduler is triggered to accordingly
identify a hosting node according to a scheduling policy. We
denote as A the set of all managed serverless applications.
An application A ∈ A consists of multiple functions f to be
allocated. Each function f exposes a resource demand in terms
of CPU Cf and memory Mf . In a geo-distributed environment,
we are interested in allocating functions close to the API
gateway, so that they can quickly receive service requests.
Therefore, each application A also exposes its requirements
in terms of the maximum network delay NDA

max between
the API gateway and each function. The scheduling policies,
that we describe in Section V, explicitly take account the
available computing resources, the non-negligible network
delays between nodes, and the NDA

max requirement while
allocating the functions of each application A.

V. SCHEDULING POLICIES

A. Network-aware Scheduling Policies

In this section, we formulate the serverless application
scheduling as an Integer Linear Programming (ILP) problem
that explicitly models the network delays between nodes.
Then, we propose a greedy network-aware scheduling heuristic
to solve the problem more quickly.

1) Optimization Problem Formulation: We model the func-
tion scheduling with binary variables xAf,n, f ∈ A, A ∈ A,
n ∈ N , where xAf,n = 1 if the function f of the application A
is placed on node n, and xAf,n = 0 otherwise. We denote the
application scheduling on the computing resources with the
vector x = 〈xAf,n〉, for every A ∈ A, f ∈ A, and n ∈ N .

Node Count. Relying on the application deployment vector
x, we define Z(x). It counts the number of computing nodes
used for running the applications. Formally, we have that:

Z(x) =
∑
n∈N

zn (1)

where the binary variables zn denote whether n ∈ N hosts at
least one function. We define zn,∀n ∈ N , as follows:∑

A∈A
∑

f∈A x
A
f,n + ζn

Γ
≤ zn ≤

∑
A∈A

∑
f∈A

xAf,n + ζn (2)

where Γ is a large number and ζn is a constant; ζn = 1 if n
already hosts at least one application function, 0 otherwise.

Application Constraints. Considering application-level re-
quirements, the scheduling policy explicitly models the net-
work delay between nodes. Note that functions communicate
through the API gateway deployed on g. As a consequence,
the scheduling policy has to allocate the functions of A only
on nodes n whose network delay with g is below NDA

max.
Formally: dg,n · xAf,n ≤ NDA

max,∀A ∈ A, f ∈ A.
Optimal Scheduling Problem Formulation. Our problem

formulation considers an objective function that maximizes
the node count. This allows us to spread serverless functions
across nodes, while satisfying the NDmax requirements. We
formulate the scheduling problem as an ILP model. Formally:

max
x

Z(x)

subject to:∑
n∈N

xAf,n = 1, ∀A ∈ A, ∀f ∈ A (3)∑
A∈A

∑
f∈A

Cf · xAf,n ≤ Cn, ∀n ∈ N (4)∑
A∈A

∑
f∈A

Mf · xAf,n ≤Mn, ∀n ∈ N (5)

dg,n · xAf,n ≤ NDA
max, ∀A ∈ A, f ∈ A,n ∈ N (6)

1

Γ

(∑
A∈A

∑
f∈A

xAf,n + ζn

)
≤ zn ∀n ∈ N (7)∑

A∈A

∑
f∈A

xAf,n + ζn ≥ zn ∀n ∈ N (8)

xAf,n ∈ {0, 1} ∀n ∈ N,A ∈ A, f ∈ A (9)
zn ∈ {0, 1} ∀n ∈ N (10)

where (3) guarantees that each function is placed on one
and only one node. Constraints (4) and (5) limit the function
scheduling on a computing node n ∈ N according to its avail-
able resources, while (6) expresses the NDmax constraints.
Finally, (7) and (8) define the variables constraints.

2) Greedy Network-aware Scheduling Heuristic: Taking
into account the available computing resources and the net-
work delays between nodes, the proposed greedy network-
aware scheduling heuristic (GNet, for short) solves a variant
of the bin-packing problem (see Algorithm 1). For each A ∈ A
and f ∈ A, the heuristic identifies Nf , the set of nodes that
can host the application function f , also having a network
delay to g below NDA

max (lines 9–10). If Nf is empty, the
application is discarded. Otherwise, the heuristic computes γn
for each n ∈ Nf : γn approximates the number of f instances
that can be executed on n (line 15). To balance the resource
usage, the computing node with the maximum value of γn is
selected for allocating f . If multiple nodes achieve the same
γn value, the one closest to g is selected (lines 16–17). These
steps are executed repeatedly until all functions are allocated.

B. Benchmark Scheduling Policies

In this section, we present the existing scheduling policies
against which we evaluate our network-aware solutions. To-

Algorithm 1 Greedy Network-aware Scheduling Heuristic
1: Input: A: Serverless Applications; N : Set of computing nodes;
2: Output: X: Application scheduling;
3: X = {}
4: for all A ∈ A do
5: applicationScheduling(A, N , X)
6: end for

7: function APPLICATIONSCHEDULING(A, N , X)
8: for all function f ∈ A do
9: Nf ← Filter n ∈ N on f resource requirements

10: Nf ← Filter n ∈ Nf on dg,n ≤ NDA
max

11: if Nf is empty then
12: discard application A
13: return
14: end if
15: Compute γn = min(bCn

Ci
c, bMn

Mi
c), ∀n ∈ Nf

16: L ← Select all nodes having maximum value of γ
17: xAf,n ← Allocate f on the node n ∈ L closest to g
18: X ← X ∪ xAf,n
19: end for
20: end function

gether with the kube-scheduler, we include two well-known
scheduling policies, namely Greedy First Fit and Round Robin.

1) Greedy First Fit Heuristic: It is one of the most popular
solutions used to solve the bin packing problem. It considers
the application functions as items to be (greedily) allocated
in bins, representing the computing nodes. Specifically, the
heuristic adds the available cluster nodes to a list and sorts it
in ascending order of available resources.

2) Round Robin Heuristic: It organizes nodes in a circular
list, saving the latest node used for scheduling. This heuristic
allocates each function on the next node with enough re-
sources, starting from the current position on the list.

VI. EXPERIMENTAL RESULTS

A. Experimental Setting

We deploy GOFS on a cluster composed of 13 VMs of
Google Cloud Platform; each VM has 2 vCPUs and 4 GB
of RAM (type: e2-medium). To evaluate our solution in a
geo-distributed environment, we acquire VMs in 4 different
regions, where data centers are interconnected with non-
negligible delays (i.e., us-central, eu-west, eu-north, north-
america). The regions and the average network delays between
them are reported in Table I. We acquire 2 VMs for each
region, except for the central America (us-central), where we
have 7 VMs. However, only 2 of them are used to schedule
functions, while the other 5 VMs host OpenFaaS, the GOFS
components, and the API gateway. To evaluate the proposed
scheduling policies using GOFS, we implement Word-count, a
surrogate serverless application. For each incoming sentence,
the application extracts its words and returns the updated
counter, which keeps track of the word occurrences so far
received. Following the MapReduce approach, the Word-count
consists of three different parallelizable functions: mapper,
shuffle&sort, and reducer. Specifically, shuffle&sort is the
orchestration function. It transfers the mappers’ output to

TABLE I: Average network round-trip time (RTT) between
cluster regions. Delays are expressed in milliseconds.

us-central eu-west eu-north north-america
us-central 1 100 135 32
eu-west 100 1 33 82
eu-north 135 33 1 115

north-america 32 82 115 1

0
20
40
60
80

100

Da
ta

 ra
te

(re
qs

/s
)

0 200 400 600 800 1000 1200
Time (seconds)

0
2
4
6
8

10

Nu
m

be
r o

f
in

st
an

ce
s

mapper shuffle&sort reducer

Fig. 2: Workload and number of instances for Word-count.

reducers, merging their outputs. As regards the shuffle&sort
function, we deploy its instances using pods with 0.2 vCPU
and 64 MB of RAM. For each mapper and reducer instances,
instead, we use pods with 0.1 vCPU and 64 MB of RAM. The
Word-count application requires NDmax = 80 ms.

We run an extensive set of experiments aimed to evaluate
the proposed scheduling policies in face of changing operating
conditions. The Word-count application receives a number of
requests according to the synthetic workload pattern shown in
Fig. 2. To scale at run-time the Word-count application, we
use the default auto-scaler of OpenFaaS. It drives elasticity
by considering a statically-defined threshold on the request-
per-second (RPS) metric. For the experiments, we set the
static threshold to 15 RPS and a minimum and maximum
number of function instances to 1 and 10, respectively. When
the experiments start, all the functions have 0 instances.
We observe that the scaling actions strictly depend on the
workload pattern (see Fig. 2), whereas the scheduling policies
do not influence scaling actions. As scheduling policies, we
consider all the strategies presented in Section V and the kube-
scheduler.

B. Scheduling Policies Evaluation

To summarize the behavior of the evaluated scheduling
policies, we report in Fig. 3 the overall distribution of the
application response time using boxplots. Each boxplot reports
the 5th, 25th, 50th, 75th, and 95th percentile of the application
response time. The different policies obtain very different
allocations for the application, including solutions where the
functions are allocated far away from the API gateway. In such
a case, the application performance is negatively affected. The
Greedy First Fit, Round Robin, and kube-scheduler do not take
into account network delays while computing the application
scheduling; they obtain a median application response time
of 529.16 ms, 567.27 ms, and 542.99 ms, respectively. Con-
versely, as Fig. 3 shows, the network-aware policies obtain

FirstFit RoundRobin kube-sched ILP GNet
0

200

400

600

Re
sp

on
se

 ti
m

e
(m

s)

Fig. 3: Response time distribution of Word-count with the
different scheduling policies. Boxplots report 5th, 25th, 50th,
75th, and 95th percentile of the response time distribution.

0
200
400
600
800

1000

Re
sp

on
se

 ti
m

e
(m

s)

0
50

100
150

No
de

 d
el

ay
s

(m
s)

avg_delay min_delay max_delay

0
2
4
6
8

No
de

 c
ou

nt

us-central north-america eu-north eu-west

0 200 400 600 800 1000 1200
Time (seconds)

0
20
40
60

No
de

 u
til

iza
tio

n
(%

)

us-central north-america eu-north eu-west

Fig. 4: Application performance with Greedy First Fit policy.

0
200
400
600
800

1000

Re
sp

on
se

 ti
m

e
(m

s)

0
50

100
150

No
de

 d
el

ay
s

(m
s)

avg_delay min_delay max_delay

0
2
4
6
8

No
de

 c
ou

nt

us-central north-america eu-north eu-west

0 200 400 600 800 1000 1200
Time (seconds)

0
20
40
60

No
de

 u
til

iza
tio

n
(%

)

us-central north-america eu-north eu-west

Fig. 5: Application performance with Round Robin policy.

0
200
400
600
800

1000

Re
sp

on
se

 ti
m

e
(m

s)

0
50

100
150

No
de

 d
el

ay
s

(m
s)

avg_delay min_delay max_delay

0
2
4
6
8

No
de

 c
ou

nt

us-central north-america eu-north eu-west

0 200 400 600 800 1000 1200
Time (seconds)

0
20
40
60

No
de

 u
til

iza
tio

n
(%

)

us-central north-america eu-north eu-west

Fig. 6: Application performance with kube-scheduler.

0
200
400
600
800

1000

Re
sp

on
se

 ti
m

e
(m

s)

0
50

100
150

No
de

 d
el

ay
s

(m
s)

avg_delay min_delay max_delay

0
2
4
6
8

No
de

 c
ou

nt

us-central north-america eu-north eu-west

0 200 400 600 800 1000 1200
Time (seconds)

0
20
40
60

No
de

 u
til

iza
tio

n
(%

)

us-central north-america eu-north eu-west

Fig. 7: Application performance with ILP policy.

0
200
400
600
800

1000

Re
sp

on
se

 ti
m

e
(m

s)

0
50

100
150

No
de

 d
el

ay
s

(m
s)

avg_delay min_delay max_delay

0
2
4
6
8

No
de

 c
ou

nt

us-central north-america eu-north eu-west

0 200 400 600 800 1000 1200
Time (seconds)

0
20
40
60

No
de

 u
til

iza
tio

n
(%

)

us-central north-america eu-north eu-west

Fig. 8: Application performance with GNet policy.

a better response time distribution, with median value of
128.88 ms for the ILP solution and 117.41 ms for GNet.
The Greedy First Fit heuristic tries to minimize at run-time
the number of active nodes, placing (if possible) the newly
added function pods on nodes that already host at least one pod
(see Fig. 4). The application uses on average 2 cluster nodes,
spreading the functions between Europe and America. The
Round Robin and kube-scheduler spread the application pods
on 6 cluster nodes. Round Robin spreads the functions across
all the regions (as shown in Fig. 5), registering an average
and a maximum network delay between nodes of 67.03 ms
and 135 ms, respectively. Similarly, kube-scheduler spreads
the functions between Europe and America; the maximum
network delay exceeds NDmax most of the time during the
experiment (see Fig. 6). This affects the node utilization that
is, on average, equal to 8%. The ILP solution finds a good
application scheduling, although it sometimes hosts functions
in the North America region, registering a slight increase in
the application response time. Anyway, it always meets the
network delay requirements NDmax, registering a significant
improvement in terms of application response time compared
to all previous benchmark scheduling policies. On average,
the ILP scheduling policy takes 13.27 ms to compute the
allocation; this time however increases in the worst case,
up to 74 ms. Being the scheduling problem NP-hard, we
expect that this time exponentially increases as the number of
applications increases as well: hence, in large-scale settings,
this policy may prove to be not well suited, in favor of efficient
and network-aware heuristics. The GNet heuristic allows to
obtain application performance close to that achieved by the
ILP scheduling policy (see Fig. 8), while reducing the policy
resolution time. GNet registers a maximum resolution time
of 34 ms and an average value of 10.75 ms. This policy
schedules the application pods on cluster nodes interconnected
with an average network delay of 13.82 ms and maximum
delay of 33 ms (thus satisfying the NDmax requirement). Also
in this case, the scheduling policy deploys the application in
American regions, using on average 3.46 nodes. From Fig. 8,
we observe that the node utilization by region is very close
to the behaviour observed with the ILP policy. However, the
GNet heuristic performs slightly better than the ILP solution in
terms of application response time. When multiple nodes are
suitable for hosting the newly added pods, the GNet heuristic
selects always the one closest to the API gateway.

The proposed network-aware policies can be easily adjusted
to minimize the number of used nodes. To this end, in the ILP
formulation we need to minimize the objective function (rather
than maximizing it). In GNet, we choose the first candidate
node that minimizes the γ value. In this case, the network-
aware policies can allocate functions by using on average 2
nodes and registering, on average, a reduced network delay
between nodes (14.99 ms for ILP and 4.91 ms for GNet).

VII. CONCLUSION

The last few years have seen the increasing adoption of
serverless platforms, such as OpenFaaS, to simplify the de-

ployment of serverless applications. Based on Kubernetes,
OpenFaaS has been originally designed to operate in a locally-
distributed cluster, so it includes a scheduling policy that
simply spreads its functions among the computing nodes. This
approach is not well-suited to tackle the heterogeneity of
the new emerging geo-distributed environment, such as edge
computing. In this paper, we proposed GOFS, an extension of
OpenFaaS that introduces network-aware scheduling capabili-
ties. The GOFS architecture allows to employ custom schedul-
ing policies. Therefore, we designed an optimal scheduling
policy and a greedy network-aware heuristic, specifically tai-
lored for serverless applications. The experimental evaluation
showed the benefits of network-aware scheduling policies
when OpenFaaS is deployed in a geo-distributed environment.
As future work, we plan to extend the current heuristics
modeling other performance metrics (e.g., fault tolerance,
network usage, energy consumption, cold-start times), which
can be of utmost importance for latency-sensitive serverless
applications running on geographically distributed resources.

REFERENCES

[1] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira et al., “What
serverless computing is and should become: The next phase of cloud
computing,” Commun. ACM, vol. 64, no. 5, p. 76–84, 2021.

[2] V. Cardellini, F. Lo Presti, M. Nardelli, and F. Rossi, “Self-adaptive
container deployment in the fog: A survey,” in Algorithmic Aspects of
Cloud Computing, ser. LNCS, vol. 12041. Springer, 2020, pp. 77–102.

[3] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. USENIX ATC ’18, 2018.

[4] L. Baresi and D. Filgueira Mendonça, “Towards a serverless platform
for edge computing,” in Proc. IEEE ICFC ’19, 2019, pp. 1–10.

[5] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
KubeEdge,” in Proc. IEEE/ACM SEC ’18, 2018, pp. 373–377.

[6] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container scheduling
for data-intensive serverless edge computing,” Future Gener. Comput.
Syst., vol. 114, pp. 259–271, 2021.

[7] Z. Huang, K.-J. Lin, S.-Y. Yu, and J. Y. jen Hsu, “Co-locating services in
IoT systems to minimize the communication energy cost,” J. Innovation
Digital Ecosyst., vol. 1, no. 1, pp. 47–57, 2014.

[8] D. Zhao, M. Mohamed, and H. Ludwig, “Locality-aware scheduling for
containers in cloud computing,” IEEE Trans. Cloud Comput., 2018.

[9] A. Das, S. Imai, S. Patterson, and M. P. Wittie, “Performance optimiza-
tion for edge-cloud serverless platforms via dynamic task placement,”
in Proc. IEEE/ACM CCGRID ’20, 2020, pp. 41–50.

[10] D. Pinto, J. P. Dias, and H. Sereno Ferreira, “Dynamic allocation of
serverless functions in IoT environments,” in Proc. IEEE EUC ’18, 2018.

[11] C. Cho, S. Shin, H. Jeon, and S. Yoon, “Qos-aware workload distribution
in hierarchical edge clouds: A reinforcement learning approach,” IEEE
Access, vol. 8, pp. 193 297–193 313, 2020.

[12] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti,
“Throughput-aware partitioning and placement of applications in fog
computing,” IEEE Trans. on Netw. and Service Manag., vol. 17, no. 4,
pp. 2436–2450, 2020.

[13] S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based IoT
application placement within heterogeneous and resource constrained
fog computing environments,” in Proc. IEEE/ACM UCC ’19, 2019, p.
71–81.

[14] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with Kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

