
Cooperative Architectures and Algorithms
for Discovery and Transcoding of Multi-version Content

Claudia Canali
University of Parma

claudia@weblab.ing.unimo.it

Valeria Cardellini
University of Roma “Tor Vergata”

cardellini@ing.uniroma2.it

Michele Colajanni
University of Modena

colajanni@unimo.it

Riccardo Lancellotti
University of Roma “Tor Vergata”

riccardo@weblab.ing.unimo.it

Philip S. Yu
IBM T.J. Watson Research Center

psyu@us.ibm.com

Abstract

A clear trend of the Web is that a variety of new consumer
devices with diverse processing powers, display capabili-
ties, and network connections is gaining access to the In-
ternet. Tailoring Web content to match the device char-
acteristics requires functionalities for content transforma-
tion, namelytranscoding, that are typically carried out by
the content provider or by some proxy server at the edge.
In this paper, we propose an alternative solution consist-
ing of an intermediate infrastructure of distributed servers
which collaborate in discovering, transcoding, and deliv-
ering multiple versions of Web resources to the clients.
We investigate different algorithms for cooperative dis-
covery and transcoding in the context of this intermediate
infrastructure where the servers are organized in hierar-
chical and flat peer-to-peer topologies. We compare the
performance of the proposed schemes through a flexible
prototype that implements all proposed mechanisms.

1 Introduction

The Web is rapidly evolving towards a highly heteroge-
neous accessed environment, due to the variety of con-
sumer devices that are increasingly gaining access to the
Internet. The emerging Web-connected devices, such as
handheld computers, PDAs, mobile phones, differ consid-
erably in network connectivity, processing power, storage,
display, and format handling capabilities. Hence, there is
a growing demand for solutions that enable the transfor-
mation of Web content for adapting and delivering it to

these diverse destination devices.

The content adaptation mechanism, calledtranscod-
ing, can be applied to transformations within media types
(e.g., reducing the color depth of an image), across media
types (e.g., video clip to image set) or to both of them.
The existing approaches to deploy Web content adapta-
tion fall into three broad categories depending on the en-
tity that performs the adaptation process [1, 12]:client-
based, edge-based(also calledproxy-based), andserver-
basedadaptation. A comprehensive analysis on related
work is in Section 2. The edge-based approach uses the
proxy server to analyze and adapt the content on-the-fly,
before delivering the result to the user. This component is
often callededge serveras in the delivery chain between
the client device and the content server it is generally lo-
cated close to the client. So far, the edge-based approach
has been typically carried out by some edge server that
directly connects to the clients. In this paper, we ex-
plore a different alternative that considers a distributed
system of cooperative servers which collaborate in dis-
covering, transcoding, and delivering Web content. Mini-
mizing the user response time and bounding its variability
are the main goals of this distributed cooperative architec-
ture. Indeed, the computational cost of transcoding can
be notably reduced by discovering the desired resource in
other servers and also by involving some other servers to
perform the task of content adaptation. Although the co-
operative transcoding is based on distributed schemes, it
is not a simple extension to cooperative caching because
two main issues have to be addressed to achieve a suit-
able solution. First, the presence of diverse consumer de-
vices requires to recognize, discover, and cache the multi-

ple variants of the same resource obtained by transcoding
operations. Moreover, the transcoding process is expen-
sive in terms of server computing resources. Issues related
to workload distribution, which are not usually considered
in Web caching, can become of fundamental importance
in the case of cooperative transcoding.

In this paper, we propose and investigate some architec-
tures and algorithms for cooperative discovery, transcod-
ing, and delivery, including servers organized in hier-
archical and flat topologies. We compare their perfor-
mance through a prototype called ColTrES (Collabora-
tive Transcoder Edge Services), which is a flexible testbed
based on Squid [19]. ColTrES implements all consid-
ered mechanisms by extending the traditional cooperative
caching systems to an environment characterized by het-
erogeneous client devices. The first extension transforms
a traditional cache server into an active intermediary,
which not only caches Web objects but also transcodes
them, stores the results, and allows multi-version lookup
operations [7, 18]. The second novel extension allows the
cooperation of the active intermediaries for caching and
transcoding. We take advantage of the scalability oppor-
tunities provided by cooperation to reduce the response
time experienced by the users of a heterogeneous client
environment.

We are not aware of any other research work deal-
ing with the study and implementation of cooperative
transcoding and caching systems with both hierarchical
and flat topologies. Through our prototypes, we demon-
strate that all proposed algorithms and cooperative ar-
chitecture are immediately applicable to the Web infras-
tructure. The real testbed allows us to evaluate the re-
duction of the user response time achievable by different
cooperative discovery and transcoding schemes. More-
over, we clearly demonstrate the advantages of coopera-
tive transcoding through flat topologies over hierarchical
schemes.

The rest of this paper is organized as follows. Section 2
analyzes related work. Section 3 discusses the main fea-
tures of a distributed system for cooperative transcoding.
Sections 4 and 5 explore different topologies and proto-
cols for cooperative discovery, transcoding, and delivery.
Section 6 describes the workload model used to exercise
the prototype. Section 7 presents the experimental results.
Section 8 concludes the paper with some final remarks.

2 Related work

The client-based approach to content adaptation seems
not suitable for all the cases in which clients offer lim-
ited processing power and connection bandwidth. The
server-based approach, that adds content adaptation ser-
vices to traditional Web server functionalities [14], in-
creases the complexity of the server platform and soft-
ware, but remains a valid alternative. However, in this
paper we will focus on content adaptation carried out by
an intermediate architecture of distributed servers. The
advantages of proxy-based content adaptation have been
explored by many recent studies [4, 3, 5, 7, 9, 10, 13, 18].
This scheme can use one [10, 13, 18] or more [4, 3, 9]
servers to analyze and adapt the content on-the-fly, up
to fully distributed peer-to-peer networks as in [17] (al-
though the study of Shiet al. is more focused on personal-
ized contents). An intermediate adaptation can shift load
from content-providing servers and simplify their design.
Moreover, this solution is also viable because the large
majority of consumer devices requires some proxy to ac-
cess the Web. A transcoding service located at intermedi-
ary points of the network can also tailor resources coming
from different content servers. The intermediate server
plays also another important role that is, it can cache the
results of content adaptation, thus avoiding some round-
trips to the content server and costly transcoding opera-
tions when resources can be served from the cache [9, 18].

Most research has focused on handling the variations in
client bandwidth and display capabilities (e.g., [5, 9, 10]),
without focusing on caching aspects. In these proposals,
the edge server that directly connects to the clients typ-
ically reduces the object size (thus reducing bandwidth
consumption), apart from providing a version that fits the
client device capabilities. A limited number of recent pro-
posals have also exploited techniques to combine both
adaptation and caching to reduce the resource usage at the
edge server [7, 13, 18].

The large majority of research efforts have been de-
voted to the investigation of solutions in which the adap-
tation and caching functionalities are provided on stand-
alone edge servers that do not cooperate among them. The
main motivation that leaded us to study distributed archi-
tectures for intermediate services of caching and adap-
tation is the limited scalability of a single proxy-based
approach because of significant computational costs of
adaptation operations [12]. Foxet al.[9] address this scal-

ability issue by proposing a cluster of locally distributed
edge servers. This approach may solve the CPU-resource
constraint, but it tends to move the system bottleneck from
the server CPU to the interconnection of the cluster. On
the other hand, the proposes infrastructure is designed to
be distributed over a wide area network thus preventing
network bottlenecks.

In recent works we have started to examine how to ex-
tend traditional caching architectures to the active support
of cooperative transcoding. In [4] the authors have ob-
tained some preliminary simulation results that demon-
strated the importance of distributing the computational
load of transcoding in a cooperative hierarchical scheme.
Some preliminary experimental results on flat topologies
have been presented in [3], in which the authors demon-
strate that a cooperative distributed system consistently
outperforms in terms of user response times a system of
non-cooperative servers.

3 Main features of the intermediate in-
frastructure

The servers of a distributed system can be organized
and cooperate through a large set of alternatives. Each
node of the intermediate infrastructure may have one or
more functionalities that is, it can act as atranscoder, a
cacheor an edgeserver. Edgeservers receive requests
directly from the clients and deliver the requested re-
sources. Cacheservers provide caching functionalities
for both original and transcoded resources.Transcoder
servers perform content adaptation. In this paper we con-
sider hierarchical and flat topologies. In flat topologies all
nodes are peers and provide all functions, while in hier-
archical topologies the nodes may provide different func-
tionalities. In this section we outline the main common
operations that characterize an intermediate infrastructure
for cooperative transcoding, while the specific features of
hierarchical and flat organizations are described in Sec-
tions 4 and 5, respectively.

We identify three main phases that may require some
cooperation among the nodes of the intermediate infras-
tructure, namelydiscovery, transcoding, and delivery
phases. Even the traditional phases differ from the corre-
sponding ones of a standard cooperative caching scheme.
We describe the three phases in a reverse order.

Once the desired version of the requested object is

found (or generated), thedeliveryphase transfers the re-
source to the client. The final delivery is always carried
out by the edge server first contacted by the client. Hence,
if the resource is found in another node, the delivery phase
includes its transmission to the edge server. Although for
some applications a request can be satisfied with a lower
quality resource than that specified by the client, we do
not consider such possibility in this paper.

The transcodingphase is specific to the problem here
considered. We assume that any server of the coopera-
tive system is equipped with software that can perform
the transcoding operations required by any type of client
device that contacts an edge server. The features of client
devices vary widely in screen size and colors, process-
ing power, storage, user interface, software, and network
connections. Recently, the WAP Forum and the W3C
have also proposed the standards CC/PP and UAProf for
describing the client capabilities [1]. The client may
also include the resource type it can consume as a meta-
information in the HTTP request header. Hereafter, we
will refer to the information describing the capabilities of
the requesting client as therequester-specific capability
information(RCI). An object which has been previously
transcoded may be further adapted to yield a lower qual-
ity object. In particular, each version may be transcoded
from a subset of the higher quality versions. Different
versions of the same object (and the allowed transcod-
ing operations among them) can be represented through
a transcoding relation graph[4].

It is worth to observe that we consider a generic in-
frastructure that does not involve the content-providing
server in the transcoding process as the proposal of server-
directed transcoding [11]. Hence, we assume that the
content server always returns the original version of the
requested resource. Our cooperative architectures for
transcoding and caching can be integrated with content
server decisions or not, without altering main perfor-
mance considerations and conclusions of this paper.

During thediscoveryphase, the servers may cooperate
to search for the version of the Web object requested by
the client. Since multiple versions of the same object typ-
ically exist in the caches, in this phase it is necessary to
carry out a multi-version lookup process that may require
cooperation among the servers. The discovery phase in-
cludes a local lookup and may include an external lookup.
Once the edge server has determined the client capabili-
ties, it looks for a copy of the requested resource in its

cache. The local lookup may generate one of the fol-
lowing three events. (1)Local exact hit: the cache con-
tains the exact version of the requested object, that can
be immediately delivered to the client. (2)Local useful
hit: the cache contains a more detailed and transcodable
version of the object that can be transformed to match the
client request. Depending on the transcoding cooperation
scheme, the edge server can decide either to perform the
transcoding task locally or to activate an external lookup,
which is carried out through some cooperative discovery
protocol. (3)Local miss: the cache does not contain any
valid copy of the requested object. The edge server must
activate an external lookup to fulfill the request.

When both exact and useful hits are found in the lo-
cal cache, the former is preferred because it does not re-
quire any adaptation task, and no external lookup is nec-
essary. We recognize that our architectures opens many
novel possibilities for push caching and object replace-
ment [7], that we do not consider in this paper.

In the case of local miss and sometimes of useful hit,
the edge server may activate some cooperative discovery
mechanism to locate a version on some other server. The
external lookup may provide one of the following results.
(1) Remote exact hit: a remote server holds the exact ver-
sion of the requested object, which is transferred to the
requesting server. (2)Remote useful hit: a remote server
contains a more detailed and transcodable version of the
requested object that can be transformed to meet the re-
quest. Depending on the transcoding cooperation scheme,
the cooperating server can decide either to perform the
transcoding task locally or to provide the useful version
to the requesting server, which will execute the transcod-
ing process. (3)Remote miss: no remote server contains
any valid copy of the object, that is aglobal cache missoc-
curs. The original version of the requested resource must
be fetched from the content server.

4 Hierarchical topologies

In this paper, we consider a pure hierarchical architecture
where sibling servers do not cooperate, and only the bot-
tom level nodes (calledleaf nodes) areedgeservers that
can be contacted by the clients [15]. We use the com-
monly adopted three-level tree from leaf nodes to the root
node, because hierarchical architectures follow the idea
of hierarchical Internet organization, with local, regional,

and international network providers.
Some schemes for distributing the transcoding load

among the servers organized in a hierarchy have been de-
scribed in [4]. In this paper we consider two approaches,
calledHierarchical root andHierarchical leaf coopera-
tion schemes. In the Hierarchical root scheme, each node
is both atranscoderand acacheserver. In the case of
local miss, the request is forwarded by the edge server up
to the hierarchy, until it is satisfied with either an exact or
useful hit. In the case of global miss (that is, no level holds
a valid copy of the requested resource), the root node re-
trieves the original resource from the content provider, if
necessary adapts it, and sends the exact version of the ob-
ject to the lower-level server. Each node experiencing a
local exact hit responds by sending the resource to the
requesting entity, which can be a client or a lower-level
server. In the case of useful hit, the contacted server per-
forms locally the content adaptation before sending the
exact version of the resource downwards the hierarchy. A
copy of the object is stored in the caches of all the nodes
along the request path.

As the root node must perform the transcoding ser-
vice for every global miss and content adaptation may
involve costly operations, there is a great risk of over-
loading this server. Indeed, different studies have shown
that pure hierarchical architectures, even when applied to
traditional cooperative caching, may suffer from scalabil-
ity and coverage problems, especially when the number
of nodes is large (e.g., [8, 20]). This situation can dra-
matically worsen in the case of cooperative transcoding.
For this reason, we propose theHierarchical leafscheme,
that differentiates the roles of the nodes in the interme-
diate infrastructure. The leaf nodes maintain the roles of
edge, cache and transcoding servers, while the upper-level
nodes provide just cache services for original versions of
the resources. When necessary, content adaptation is per-
formed locally by the leaf nodes.

5 Flat topologies

An alternative to hierarchical topology is the flat organi-
zation, in which all nodes arepeersand provide the func-
tionalities oftranscoder, cache, andedgeserver. This flat
organization allows us to explore various algorithms for
cooperative discovery and cooperative transcoding, which
are discussed in the following sections.

5.1 Cooperative discovery

Although the discovery phase in a flat topology can be
based on different protocols, we limit the research space
of alternatives to the most interesting and widely used sys-
tems. It is worth to remark that the cooperation protocols
for object discovery and delivery considered in this sec-
tion differ from the traditional ones because multiple ver-
sions of the same object may be present in the caches of
the cooperative edge servers. Moreover, there are three
possible results of the external lookup process: miss, ex-
act hit, and useful hit.

Cooperative lookup among distributed servers requires
a protocol to exchange local state information, which ba-
sically refers to the cache content, although when we con-
sider a CPU-bound task such as transcoding, other data
can be useful (e.g., server load). Cooperative resource dis-
covery has been studied for a while and many mechanisms
have been proposed to address the related issues [15].
Most of those mechanisms can be adapted to the lookup of
multiple versions. The two main and opposite approaches
for disseminating state information are well defined in the
literature on distributed systems:query-based protocols
in which exchanges of state information occur only in
response to an explicit request by a peer, anddirectory-
based protocolsin which state information is exchanged
among the peers in a periodic way or at the occurrence
of a significant event, with many possible variants in be-
tween. In the following, we consider a query-based pro-
tocol and a summary-based protocol (a simplified version
of the directory-based protocols).

Query-based protocols are conceptually simple. When
an edge server experiences a local miss or even a useful hit
(depending on the cooperative transcoding algorithm), it
sends a query message to all the peers to discover whether
any of them caches a copy of the requested resource. In
the positive case, the recipient edge server replies with an
exact hit or with a useful hit message; otherwise, it may
reply with a miss message or not reply at all. In the case
of useful hit, the response message should provide some
information about the available version of the resource to
allow its retrieval. As the protocol for our query-based
cooperation, we use the popular ICP adopted in NetCache
and Squid [19]. In our ColTrES prototype we added the
support for multi-version lookup into the Squid version of
ICP by including the version identifier to the URL con-
tained into the messages.

Directory-based protocols are conceptually more com-
plex than query-based schemes, especially because they
include a large class of alternatives, being the the two
most important ones the presence of one centralized direc-
tory vs. multiple directories disseminated over the peers,
and the frequency for communicating a local change to
the directory/ies. It is impossible to discuss here all the
alternatives that have been the topics of many studies. We
consider distributed directory-based schemes because it is
a common view that in a geographically distributed sys-
tem any centralized solution does not scale, the central
directory server may represent a bottleneck and a single
point of failure, and it does not avoid the query delays
during the lookup process.

In a distributed directory-based scheme, each edge
server keeps a directory of the resources that are cached
in every other peer, and uses the directory as a filter to
reduce the number of queries. Distributing the directory
among all the cooperating peers avoids the polling of mul-
tiple edge servers during the discovery phase, and, in the
ideal case, makes object lookup extremely efficient. How-
ever, the ideal case is affected by large traffic overheads to
keep the directories up-to-date. Hence, real implementa-
tions use multiple relaxations, such as compressed direc-
tories (namely,summary) and less frequent information
exchanges for saving memory space and network band-
width. Examples of compression that reduce the message
size are the Bloom filters, used by Summary Cache [8]
and Cache Digests [16], that compress the cache indexes
so that a certain amount of false hits is allowed. For our
experiments, we choose Cache Digests as a representative
of the summary-based architectures, because of its popu-
larity and its implementation in the Squid software. Sup-
port for caching and discovery of multiple versions has
been added to our ColTrES prototype into the summary-
based lookup process through URL-encoding the resource
version identifier. Therefore, the basic mechanism of
Cache Digests cooperation is preserved. However, the
lookup process becomes more expensive because it has
to carry out a search for every possible useful version.

5.2 Cooperative transcoding algorithms

Cooperative transcoding is necessary only when a local or
a remote useful hit occurs, while misses and exact hits are
handled as described in Section 3 and they are unrelated to
the cooperative transcoding algorithms. We can identify

Local lookup

Local exact hit

Delivery

Cooperative
lookup

Retrieval
& delivery

Remote exact hit

Miss or
local
useful
hit

Miss

Retrieval from orig.
server, transcoding

& deliveryRemote
useful
hit

Remote transcoding,
retrieval &
delivery

(a) Blind-lazy algorithm.

Local lookup

Local exact hit

Local
useful
hitDelivery

Transcoding
& delivery

Cooperative
lookup

Retrieval
& delivery

Remote exact hit

Miss

Miss

Retrieval from orig.
server, transcoding

& deliveryRemote
useful
hit

Retrieval,
local transcoding

& delivery

(b) Blind-active algorithm.

Figure 1: Load-blind algorithms.

some alternatives in the case of local and remote useful
hits. Since transcoding a useful hit may be computation-
ally expensive, several load-balancing algorithms can be
used. In particular, we distinguish betweenload-blind
algorithms that do not take into account any load state in-
formation andlocal load-awarealgorithms, that use load
information about the local server itself to decide which
node will perform the transcoding task. We propose two
load-blind algorithms and a local load-aware algorithm.

The two load-blind algorithms are calledblind-lazyand
blind-active. Theblind-lazy algorithm, whose flow dia-
gram is shown in Figure 1(a), tends to limit the compu-
tational costs of transcoding by taking most advantage of
the cooperative peers. In the case of a local useful hit, the
edge server continues the discovery phase by activating an
external lookup process to look for an exact version of the
requested object in some peer proxy. In case of a remote
useful hit, the edge server always delegates the transcod-
ing task to the peer server that reported the useful hit. The
rational behind this approach is to exploit as much as pos-
sible the remote exact hits and to distribute in a nearly
random way the transcoding process. The price of the ex-
ternal lookup process is worth when the remote exact hit
is found and the network links are not saturated; other-

wise, a (guaranteed) local useful hit may be preferable to
a (possible) remote exact hit.

Theblind-active algorithm, shown in Figure 1(b), fol-
lows an approach opposite to its blind-lazy counterpart.
Whenever possible, it saves network usage for the exter-
nal lookup at the price of local computation. In the case
of a local useful hit, the edge server transcodes the useful
version found in its cache without continuing the discov-
ery phase. In the case of a remote useful hit, the resource
is retrieved from the peer and transcoded locally.

The load-awarealgorithm we propose in this paper is
based on load information at the local server. When a lo-
cal or a remote useful hit occurs, the node decides whether
to perform locally the transcoding operation or to continue
the discovery phase on the basis of its current load. This
is a typical threshold-based algorithm that follows one of
the two previous algorithms depending on the server load
(i.e., CPU utilization). When the CPU utilization of the
edge server surpasses a certain threshold, it behaves in a
lazymode, as the lazy approach tends to save local CPU
resources. Otherwise, the edge server adopts theactive
approach, because there is enough spare CPU power to
perform transcoding.

6 Workload model

In this section we describe the client and workload mod-
els used to evaluate the performance of the cooperative
schemes. We consider a classification of the client devices
on the basis of their capabilities of displaying different ob-
jects and connecting to the assigned edge server [4, 7].
The classes of devices range from high-end worksta-
tions/PCs which can consume every object in its original
form, to cellular phones with very limited bandwidth and
display capabilities. We introduced six classes of clients;
the description of the devices capabilities and the values
of their popularity can be found in [2]. In this paper, we
consider that most transcoding operations are applied to
image objects (GIF, JPEG, and BMP formats), as more
than 70% of the files requested in the Web still belong
to this class [6]. In our experiments we also consider a
workload scenario where the transcoding operations have
higher costs. This may be found in a near future when
the Web will provide a larger percentage of multimedia
resources.

The first workload, namelylight trans-load, aims
at capturing a realistic Web scenario with a reduced
transcoding load. The set of resources used in this work-
load are based on proxy traces belonging to the nodes of
the IRCache infrastructure. Some characterizations per-
formed on the images of this workload, such as file size,
JPEG quality factor, and colors of GIF images, evidenced
that they are very close to the characteristics reported
in [6]. The measured costs of transcoding operations re-
quired by this set of resources on the machines used for
our experiments gave the following results: 0.04 and 0.22
seconds for the median and the 90-percentile service time,
respectively.

The second workload model (calledheavy trans-load)
aims at denoting a scenario where the transcoding process
has a major cost. As the trend of the Web is towards a
growing demand for multimedia resources, this workload
can represent a situation with a large amount of multime-
dia objects, such as video and audio. In this scenario, the
costs for transcoding operations are 0.27 and 1.72 seconds
for the median and the 90-percentile service time, respec-
tively. In both workload models, the client request distri-
bution among the edge servers is uniform, with each node
receiving the same number of client requests. However,
the types of requests in each trace can differ substantially,
because the file size follows a heavy-tailed distribution,

especially for the light trans-load working set.
From the file list of each workload model, we obtained

80 different traces that were used in parallel during the
experiments. Each trace consists of 1000 requests with a
random delay that elapses between two consecutive re-
quests. The total size of the original resources for all
workloads is similar. It is 10% higher than the sum of the
cache sizes of the nodes used in our experiments. On the
other hand, the mean file size of the two workloads dif-
fers considerably. Hence, the light workload determines
higher cache hit rates than the heavy one. We have also
introduced a popularity resource distribution by defining a
set of hot resources (corresponding to 1% of the working
set): 10% of requests refers to this hot set.

To study the performance of the cooperative transcod-
ing algorithms, we had to consider a scenario where the
servers of the intermediate infrastructure are under heavy
stress. To this purpose, we used two workload models
(called uniform and bimodal) which are based on the
heavy trans-load, but are characterized by different client
request distributions. In the uniform scenario each edge
server receives the same number of requests, while the
bimodal scenario is characterized by an uneven request
distribution among the edge servers, where 50% of the
servers receive 90% of the client requests and the remain-
ing half of the nodes handle only 10% of the traffic.

7 Experimental results

In this section we first outline the performance metrics
and the server-side experimental setup and then discuss
the experimental results. As main performance metrics
we consider thecache hit rates(local, global, exact, use-
ful), the CPU utilization of the servers, and thesystem
response timethat corresponds to the interval elapsed be-
tween the instant in which the client sends a request to the
edge server and the instant in which the client receives all
the response.

As our main target is to enable heterogeneous devices
to access Web content, the servers transcode the object
to best fit the client capabilities, while we do not explore
object compression to reduce transmission time as done
in [10]. We also consider only complete transcoding re-
lation graphs, where each version can be obtained from
any higher quality version [4]. In our experiments we set
up a system of 16 servers. The servers are equipped with

ColTrES and configured to cooperate through different
architectures and discovery protocols.

7.1 Comparison of the architectures

In this section we compare the performance of the hier-
archical and flat architectures of servers that collaborate
in discovering, transcoding, and delivering Web objects.
We set up a scenario where all servers are well connected
among them and with the clients. The content servers
are placed in a remote location, connected through a geo-
graphic link with 14 hops in between, a mean round-trip
time of 60 ms, and a maximum bandwidth of 2Mb/sec.
We verified that in this scenario the network path to the
content servers (reached in case of global miss) was a pos-
sible system bottleneck. Hence, the global cache hit rate
may impact the response time.

We consider theHierarchical leaf and Hierarchical
root schemes for the hierarchical architecture, the query-
based (Flat query-based) and summary-based (Flat
summary-based) for the flat architecture.

The hierarchical architectures are configured on the ba-
sis of a three-level hierarchy with 12 leaves, 3 intermedi-
ate servers (with a nodal out-degree of 4), and one root
node. The client are redistributed to let only the leave
nodes receive their requests. The configuration for Flat
query-based and Flat summary-based are based on ICP
and Cache Digests protocols, respectively, and a flat co-
operation scheme, where all edge servers have sibling re-
lationships among them. For a fair comparison, in this set
of experiments the flat schemes use the blind-active algo-
rithm as the hierarchical schemes.

In these experiments we use both light trans-load and
heavy trans-load workloads. First, we evaluate the cache
hit rates, and then we focus on the system response time,
which is the crucial performance metric to the end users.

Tables 1 and 2 show the cache hit rates for light trans-
load and heavy trans-load workloads, respectively. For
each cooperation scheme, we report the local exact and
useful hit rates (columns 2 and 3, respectively) as well as
the remote hit rates (columns 4 and 5). The last column
shows the global hit rate, which is the sum of the vari-
ous hit rates. For the hierarchical leaf scheme, we do not
report the remote useful hits, because the requests to the
parent nodes refer only to the original version of the re-
sources.

We describe Table 1 and use the results in Table 2 to

Table 1: Cache hit rates (light trans-load).
Local Local Remote Remote Global
exact useful exact useful

Flat query-based 19.4% 16.9% 13.8% 19.3% 69.4%
Flat summary-based 21.2% 11.9% 11.5% 11.5% 56.1%

Hierarchical root 17.9% 6.8% 7.1% 7.7% 39.5%
Hierarchical leaf 10.2% 8.2% 19.6% n/a 38.0%

confirm our observations or to evidence differences. From
the last column of Table 1 we can observe that there are
some significant differences in the global hit rates, de-
pending on the used cooperation mechanism. In partic-
ular, Flat query-based provides the best results, while Flat
summary-based turns out to be less effective in finding
hits. Flat summary-based performance deteriorates be-
cause the Cache Digests protocol tends to become impre-
cise (i.e., the accuracy of the exchanged cache digests de-
creases) and its remote hit rates diminish. This is partic-
ularly evident for the heavy workload, but it can be also
observed for the light workload: the presence of larger
objects causes faster changes in the caches, having as a
consequence a reduction of the accuracy of the exchanged
digests. Columns 4 and 5 in Table 1 show that the reduc-
tion in the global hit rate is caused by a reduction of the
remote hit rate.

Table 2: Cache hit rates (heavy trans-load).
Local Local Remote Remote Global
exact useful exact useful

Flat query-based 5.1% 4.7% 20.3% 22.1% 52.2%
Flat summary-based 5.3% 4.6% 10.3% 8.9% 29.1%

Hierarchical root 6.3% 4.7% 5.2 % 4.4 % 20.6%
Hierarchical leaf 6.1% 4.3% 11.6% n/a 22.0%

The two hierarchical schemes achieve similar global hit
rates (last column of Table 1). However, their global hit
rates are lower than those of flat architectures. The most
evident and expected result observed from comparing Ta-
bles 1 and 2 is the higher hit rates obtained under the light
trans-load model, because the object sizes in the heavy
trans-load model are much larger. The lower hit rate of
the heavy trans-load model increases the replacement ac-
tivity, thus reducing the hit rate of Flat summary-based.
For this reason, the reduction in remote hit rates of this
scheme, which has been already observed for the light
trans-load model, is even more evident from columns 4
and 5 of Table 2.

We now pass to consider the response time. Figures 2
and 3 show the cumulative distribution of system response

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time [ms]

Flat query-based
Flat summary-based

Hierarchical leaf
Hierarchical root

Figure 2: Cumulative distributions of system
response times (light trans-load).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time [ms]

Flat query-based
Flat summary-based

Hierarchical leaf
Hierarchical root

Figure 3: Cumulative distributions of system
response times (heavy trans-load).

time for the considered schemes under the light trans-load
and heavy trans-load workloads, respectively. Most of the
curves shows several steps as a consequence of the differ-
ent kinds of cache hit (that is, remote vs local, and useful
vs exact) during the discovery phase. All the schemes
present a first step (located on the left side of each graph)
due to local exact hits that are nearly instantaneous with
respect to other hits and misses. Useful local hits have
longer response times, which are typically comparable to
the ones of remote exact hits. Remote useful hits have
even longer response times, but do not show evident steps
on the response time curve because of the larger variance
in the response time. Misses generate the highest response
times, hence they are typically located in the right side of
each curve.

The two figures confirm that the hierarchical leaf
scheme clearly outperforms the hierarchical root archi-
tecture. However, none of the hierarchical schemes can
compete with flat architectures. The expected bad per-
formance of the hierarchical root scheme is due to the
bottleneck of the root node. We observed that the higher
levels of the hierarchy are often overloaded because they
have to handle transcoding operations of all misses from
the lower levels. Measurements on the CPU load show
that the mean load of the root node is nearly 0.90 and
0.99 for light trans-load and heavy trans-load model, re-
spectively, as this node has to process every miss occurred
in the lower levels. On the other hand, leaf edge servers
are often idle (the corresponding mean CPU load is less
than 0.02 for both workload models), thus waiting for the
upper-level nodes to process their requests.

The hierarchical leaf scheme achieves better perfor-

mance: the response times in Figures 2 and 3 are much
lower than those obtained by the hierarchical root. How-
ever, even the hierarchical leaf scheme is penalized with
respect to the flat schemes. There are two reasons for this
result. In hierarchical leaf scheme, the upper hierarchy
levels can only act as pure cache servers (in our testbed
prototypes, 4 nodes over 16 do not contribute in transcod-
ing operations). Moreover, as shown in the Tables 1 and 2,
the flat cooperation schemes achieve the highest cache hit
rates.

Flat architectures offer the best results. A prelimi-
nary performance comparison between Flat query-based
and Flat summary-based is in [3]. With the experiments
carried out in this paper we confirm the previous obser-
vations: the higher global hit rates of Flat query-based
tend to reduce the response time of the resources that
are found in the nodes of the intermediate architecture.
On the other hand, due to the faster lookup mechanism
of Flat summary-based, remote hits are typically served
faster than those of Flat query-based. For this reason, it
seems interesting to analyze the cumulative distribution
of the response time. Table 3 provides a summary of data
in Figures 2 and 3. It shows the median (50-percentile)
and 90-percentile of the response time for each coopera-
tion scheme and both workload models.

Figure 2 shows that the difference between the two
curves of Flat query-based and Flat summary-based is
slight, with the former only slightly superior to the lat-
ter on the right side of the graph. This result occurs even
if the global hit rate of the two flat schemes differs sig-
nificantly (69.4% vs. 56.1%). Moreover, if we analyze
the median response time, we can see that Flat summary-

Table 3: Median and 90-percentile of system response
times [sec].

Light trans-load Heavy trans-load
median 90-perc. median 90-perc.

Flat query-based 0.11 0.64 0.62 2.24
Flat summary-based 0.07 0.78 0.56 3.76

Hierarchical root 0.86 2.82 5.52 14.57
Hierarchical leaf 0.30 1.74 1.07 5.11

based is faster than Flat query-based (also shown in the
column 2 of Table 3). This can be explained by the high
lookup time required by the Flat query-based scheme. On
the other hand, under the heavy trans-load model (Fig-
ure 3) the curves of response times are more differenti-
ated, with Flat query-based outperforming Flat summary-
based. This result is due to the higher difference in their
cache hit rates (52.2% vs. 29.1%) that cannot be compen-
sated by the faster lookup of Flat summary-based. How-
ever, even in this case the median response time for Flat
summary-based is the lowest.

Table 3 summarizes the results that can be get from the
previous figures: the hierarchical root scheme is the slow-
est; flat architectures outperform hierarchical schemes;
Flat query-based is the fastest scheme to serve the large
majority of the requests, even if Flat summary-based can
be faster than Flat query-based to serve half of the re-
quests for both workloads.

7.2 Cooperative transcoding algorithms

In this section we compare the performance of the coop-
erative transcoding algorithms for flat architectures de-
scribed in Section 5.2. For this set of experiments we
choose the Flat flat-based scheme, because it typically of-
fers the highest cache hit rates and lowest response times.
Indeed, the flat-based scheme performs well for a wide
range of workload models, at least until the system is un-
der heavy stress, as noted in [3]. Under low and medium
load, the difference between the various transcoding al-
gorithms is very small. Therefore, it is more interesting
to explore the performance gain achievable with the pro-
posed cooperative transcoding algorithms when the server
CPUs are nearly always busy due to transcoding opera-
tions. To this purpose, we used the bimodal and uniform
workloads described in Section 6.

Figure 4 shows the cumulative distribution of response
time for the load-blind and load-aware algorithms with the
bimodal workload, while Figure 5 refers to the uniform

workload. It is worth to note that the load-aware algo-
rithm is a typical threshold-based policy that uses the CPU
utilization as the activation parameter. We performed ex-
periments for different thresholds ranging from 0.1 to 0.9
and found that for bimodal workload the typical common-
sense value of 0.66 for the threshold offers the most sta-
ble performance in terms of the 90-percentile of response
time. Therefore, Figure 4 shows only the curve related to
this threshold value. On the other hand, for the uniform
workload we found that no “best” threshold value exists:
the 90-percentile of the response time grows monoton-
ically as the threshold value decreases from 0.9 to 0.1.
In Figure 5 the curve of the load-aware algorithm corre-
sponds to the same load threshold value (0.66) used in
Figure 4. Under the uniform workload, the curve corre-
sponding to the best threshold value (0.9) is in between
the curve of the blind-active algorithm and the one for
threshold equal to 0.66.

Response time curves achieved by blind-active and
load-aware algorithms are similar, with the load-aware
algorithm providing better response times in the case of
bimodal workload and the blind-active algorithm being
faster in the case of uniform workload. On the other hand,
the blind-lazy algorithm shows a different behavior. It is
able to reduce the response time for most requests, but it
becomes unacceptably slow for up 30% of the requests,
depending on the workload.

To better present the performance differences, in Ta-
ble 4 we report the median and the 90-percentile of the
response time.

Table 4: System response times for load-blind and load-
aware algorithms [sec].

Bimodal workload Uniform workload
median 90-percentile median 90-percentile

Blind-active 1.03 4.88 0.36 1.56
Blind-lazy 0.25 121.12 0.07 239.79

Load-aware 0.89 3.98 0.46 1.90

The blind-lazy algorithm bets on finding either a use-
ful hit or an exact remote hit on a less loaded peer. If it
succeeds, it can reduce the response time. However, if
no remote hit is found or, even worse, if the peer having
a remote useful hit is overloaded, the response time can
increase significantly. This explain why the blind-lazy al-
gorithm can successfully reduce the median response time
(as shown in columns 2 and 4 of Table 4), but it tends
to have poor performance when considering 90-percentile

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time [ms]

Blind-active
Blind-lazy

Load-aware

Figure 4: Cumulative distributions of system
response times (bimodal workload).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Response time [ms]

Blind-active
Blind-lazy

Load-aware

Figure 5: Cumulative distributions of system
response times (uniform workload).

due to the high number of pathological cases (columns 3
and 5 of Table 4). The problem is more evident when the
load is evenly distributed (column 5 of Table 4), because
in this case there is a higher probability of finding a peer
with a heavier load. On the other hand, the blind-active
algorithm seems to offer better performance because the
transcoding load is only related to the client requests be-
ing served and not to the requests directed to other peers.
The response time has a more definite upper bound, thus
reducing the 90-percentile of the response time with re-
spect to the blind-lazy algorithm. On the other hand, the
median response is higher than that of the lazy policy.

The load-aware algorithm offers some performance
gains when the load is unevenly distributed (bimodal
workload), because it can act smarter than the load-blind
algorithms. In particular, it reduces of about 22% the 90-
percentile (as shown in column 3 of Table 4) and about
14% the median response time (column 2 of Table 4) with
respect to the blind-active algorithm. On the other hand,
in the case of uniform workload the load-aware algorithm
is ineffective in reducing the response time, and there is
a performance loss on both 90-percentile and median re-
sponse time. Indeed, when the skew of the workload
is low, we need a more sophisticate algorithm, possibly
based on information on the load of a larger (maybe en-
tire) set of servers of the intermediate architecture.

8 Conclusions

In this paper, we have proposed an intermediate
distributed architecture for cooperative caching and

transcoding that can be implemented in the existing Web
infrastructure. We have investigated various schemes
that use different server organizations (hierarchical, flat),
and different cooperation mechanisms for resource dis-
covery (query-based, summary-based) and transcoding
(load-blind, load aware). We have compared their per-
formance through ColTrES , a flexible prototype testbed
based on Squid that implements all proposed mechanisms.
From the performance evaluation, we have found that flat
peer-to-peer topologies are always better than hierarchi-
cal schemes, because of bottleneck risks in the higher
levels of the hierarchy combined with limited cache hit
rates. Among the flat cooperation schemes, we evalu-
ated multi-version lookup extensions of Cache Digests
and ICP and found that, ICP tends to have better perfor-
mance due to the lower cache hit rates of Cache Digests.
As a further contribution of this paper, we verified that
the proposed load-aware algorithm can achieve some per-
formance gains only when the client load is unevenly dis-
tributed among the edge servers of the intermediate infras-
tructure. On the other hand, in the case of rather uniform
load distribution, the load-aware algorithm does not seem
to achieve any significant improvement.

An intermediate infrastructure of distributed servers
that cooperate in multi-version content caching, discov-
ery, and transcoding opens many research topics. A lim-
ited number of issues have been investigated in this work,
that to the best of our knowledge represents the first im-
plementation of cooperative transcoding and caching sys-
tems for both hierarchical and flat topologies. There are
other research issues that this paper opens up, such as
cooperative cache replacement policies for multi-version

content, transcoding policies based on global information
on server load and available network bandwidths, and in-
tegration with server-direct transcoding to preserve the
end-to-end content semantics.

Acknowledgements

The first four authors acknowledge the support of MIUR-
Cofin 2001 “High-quality Web systems” and MIUR-FIRB
“Wide-scale, Broadband, Middleware for Network Dis-
tributed Services”.

References

[1] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. Device
independence and the Web.IEEE Internet Computing,
6(5):81–86, Sept./Oct. 2002.

[2] C. Canali, V. Cardellini, and R. Lancellotti. Squid-based
proxy server for content adaptation. Technical Report
TR-2003-03, Dept. of Comp. Eng., Univ. of Roma “Tor
Vergata”, Jan. 2003.http://weblab.ing.unimo.
it/research/trans_caching.shtml .

[3] V. Cardellini, M. Colajanni, R. Lancellotti, and P. S. Yu.
A distributed architecture of edge proxy servers for coop-
erative transcoding. InProc. of 3rd IEEE Workshop on
Internet Applications, pages 66–70, June 2003.

[4] V. Cardellini, P. S. Yu, and Y. W. Huang. Collaborative
proxy system for distributed Web content transcoding. In
Proc. of 9th ACM Int’l Conf. on Information and Knowl-
edge Management, pages 520–527, Nov. 2000.

[5] S. Chandra, C. S. Ellis, and A. Vahdat. Application-
level differentiated multimedia Web services using qual-
ity aware transcoding.IEEE J. on Selected Areas in Com-
munication, 18(12):2544–2465, Dec. 2000.

[6] S. Chandra, A. Gehani, C. S. Ellis, and A. Vahdat.
Transcoding characteristics of Web images. InProc. of
Multimedia Computing and Net. Conf., Jan. 2001.

[7] C.-Y. Chang and M.-S. Chen. On exploring aggregate ef-
fect for efficient cache replacement in transcoding prox-
ies. IEEE Trans. on Parallel and Distributed Systems,
14(6):611–624, June 2003.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: A scalable wide-area Web cache sharing proto-
col. IEEE/ACM Trans. on Networking, 8(3):281–293,
June 2000.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-based scalable network services. In
Proc. of 16th ACM Symp. on Operating Systems Princ.,
pages 78–91, Oct. 1997.

[10] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret,
and J. Rubas. Dynamic adaptation in an image transcod-
ing proxy for mobile Web browsing.IEEE Personal Com-
munications, 5(6):8–17, Dec. 1998.

[11] B. Knutsson, H. Lu, and J. Mogul. Architectures and
pragmatics of server-directed transcoding. InProc. of 7th
Int’l Workshop on Web Content Caching and Distribution,
Aug. 2002.

[12] W. Y. Lum and F. C. M. Lau. On balancing between
transcoding overhead and spatial consumption in content
adaptation. InProc. of ACM Mobicom 2002, pages 239–
250, Sept. 2002.

[13] A. Maheshwari, A. Sharma, K. Ramamritham, and
P. Shenoy. TransSquid: Transcoding and caching proxy
for heterogeneous e-commerce environments. InProc. of
12th IEEE Int’l Workshop on Research Issues in Data En-
gineering, pages 50–59, Feb. 2002.

[14] R. Mohan, J. R. Smith, and C.-S. Li. Adapting multime-
dia Internet content for universal access.IEEE Trans. on
Multimedia, 1(1):104–114, Mar. 1999.

[15] M. Rabinovich and O. Spatscheck.Web Caching and
Replication. Addison Wesley, 2002.

[16] A. Rousskov and D. Wessels. Cache Digests.Computer
Networks, 30(22-23):2155–2168, 1998.

[17] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: a
peer-to-peer caching system. InProc. of the 2003 Int’l
Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’03), Las Vegas, NV, June 2003.

[18] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy.
PTC: Proxies that transcode and cache in heterogeneous
Web client environments.World Wide Web, 2003.

[19] Squid Internet Object Cache. http://www.
squid-cache.org .

[20] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the scale and performance
of cooperative Web proxy caching. InProc. of 17th ACM
Symp. On Operating Systems Princ., Dec. 1999.

