
Self-adaptive Threshold-based Policy for
Microservices Elasticity

Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti
DICII, University of Rome Tor Vergata, Italy

{f.rossi,cardellini}@ing.uniroma2.it, lopresti@info.uniroma2.it

Abstract—The microservice architecture structures an ap-
plication as a collection of loosely coupled and distributed
services. Since application workloads usually change over time,
the number of replicas per microservice should be accordingly
scaled at run-time. The most widely adopted scaling policy
relies on statically defined thresholds, expressed in terms of
system-oriented metrics. This policy might not be well-suited to
scale multi-component and latency-sensitive applications, which
express requirements in terms of response time.

In this paper, we present a two-layered hierarchical solution for
controlling the elasticity of microservice-based applications. The
higher-level controller estimates the microservice contribution to
the application performance, and informs the lower-level compo-
nents. The latter accordingly scale the single microservices using
a dynamic threshold-based policy. So, we propose MB Threshold
and QL Threshold, two policies that employ respectively model-
based and model-free reinforcement learning approaches to learn
threshold update strategies. These policies can compute different
thresholds for the different application components, according
to the desired deployment objectives. A wide set of simulation
results shows the benefits and flexibility of the proposed solution,
emphasizing the advantages of using dynamic thresholds over the
most adopted policy that uses static thresholds.

Index Terms—Hierarchical Control, Elasticity, Self-adaptation,
Microservice, Reinforcement Learning

I. INTRODUCTION

To take advantage of cloud computing and to improve
efficiency and scalability of applications, most of the IT
companies (e.g., Amazon, Netflix, Spotify) are currently re-
shaping their applications from monolithic architectures to
microservices. According to the microservices architectural
style, an application can be split into many autonomous and
decoupled services, each providing a specific functionality.

Exploiting elasticity, each microservice can be dynamically
scaled, enabling to control the application deployment with a
fine granularity and to reduce the scaling cost compared to
conventional monolithic solutions. Besides controlling elastic-
ity of single components, microservice applications require to
efficiently coordinate the distributed scaling decisions so to
properly process varying workloads and meet application-level
Quality of Service (QoS) requirements. Although elasticity has
been widely explored in the context of cloud computing [1],
scaling microservice applications, where multiple components
loosely cooperate and interact with one another, has only
recently started to be investigated (e.g., [2]–[5]). In this setting,
the complexity of managing microservice applications which
include, among the others, the challenges posed by the need
to map application into microservices’ requirements as well as

the dynamism of the execution environments, demand novel
and autonomic solution to control microservices elasticity.
Today’s cloud providers that support multi-component ap-
plications (e.g., using containers and container orchestration
engines) allow to create multiple, decentralized auto-scaler in-
stances, each carrying out the adaptation of a single microser-
vice deployment. Policies to coordinate the scaling decisions
at the application level are missing. To determine the scaling
actions, most of existing auto-scalers use static thresholds on
system-oriented metrics (e.g., CPU utilization)1. The main idea
is to increase (or reduce) the microservices’ parallelism degree
as soon as the metric is above (or below) a critical scale-out (or
scale-in) value. Although this decentralized approach scales
well, we observe that manually tuning such scaling thresholds
is challenging, especially when we need to define multiple
thresholds, one for each microservice. A further challenge
arises from the need of specifying a critical value on a system-
oriented metric, whereas the application usually exposes its
requirements in terms of user-oriented metrics (e.g., response
time, throughput, cost).

In this paper, we design a self-adaptive threshold-based
scaling policy that can automatically learn and update the
scaling thresholds for each application component. Although
self-adaptive thresholds have been already studied in different
contexts (e.g., virtual machine consolidation [6], performance
management [7]), to the best of our knowledge, they have
never been applied to microservice applications. The main
contributions of the paper are as follows.

• We propose a two-layered hierarchical solution for con-
trolling elasticity. Having a complete system view, a
high-level centralized entity estimates at run-time the
relationship between application- and microservice-level
QoS requirements (global policy). At low level, decen-
tralized entities locally control the adaptation of single
microservices (local policy).

• As local policy, we propose QL Threshold and MB
Threshold, two dynamic threshold-based policies realized
using model-free and model-based Reinforcement Learn-
ing (RL) solutions, respectively. Intuitively, a model-
based approach allows us to account for the known (or es-
timated) system dynamic improving the algorithm learn-
ing speed. As global policy, we propose a simple heuristic

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

banto
Published in: Proceedings of the 28th IEEE Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2020), Nice, France, November 17-19 2020.
DOI: https://doi.org/10.1109/MASCOTS50786.2020.9285951

that dynamically estimates and adapts each microservice
contribution to the overall application performance.

• Using simulation, we demonstrate the benefits of a hi-
erarchical control, the advantages of the proposed MB
Threshold policy, and the flexibility of RL-based solu-
tions that can identify different trade-offs between im-
proving application performance and avoiding resource
wastage. We also compare our solution against the widely
adopted static threshold-based policy.

II. RELATED WORK

In this section, we analyze existing approaches proposed
in literature for the adaptive deployment of microservice-
based applications in cloud environment. We broaden the
view also to monolithic applications because, so far, only few
research works [2]–[5] have specifically targeted the elasticity
of microservice-based applications . Existing elasticity policies
range from model-free to model-based solutions, according
to the degree of system knowledge exploited to approximate
the application behavior. A model-free solution requires no
knowledge of the system dynamics; so it can take sub-optimal
decisions or may require manual parameter tuning. Different
model-based techniques have been proposed for application
scaling, such as control theory [8], queuing theory [3], time
series analysis [9], or a combination thereof [10]. The model-
based approaches usually need many training samples that can
be extract from historical data. In general, it is hard to perform
off-line model training of microservice-based applications be-
cause they can be complex and have highly dynamic behaviors.

The main methodologies to adapt the application deploy-
ment are: threshold-based heuristics, fuzzy logic, queuing the-
ory, and machine learning-based solutions. The most popular
approach uses best-effort threshold to change the application
replication degree at run-time (e.g., [7], [10]). Most works pro-
pose a static threshold-based approach and use, as QoS metric,
the resource utilization of either the system nodes or the appli-
cation replicas (e.g., [4], [10], [11]). Although threshold-based
policies are simple to design, they require a manual threshold
tuning that, in general, is not a trivial task. To overcome this
issue, self-adaptive (or dynamic) threshold-based policies have
been proposed in literature. They have been used in different
contexts, such as performance management, virtual machines
consolidation, scaling of monolithic applications (e.g., [6],
[7], [12]); however, to the best of our knowledge, they have
never been applied in a microservices-based scenario. Fuzzy
logic approaches use pre-defined collections of if-then rules
that represent how to take decisions and control a system
according to the human knowledge (e.g., [13], [14]). When
the scale of the controlled system increases, determining robust
rules to combine conjunctive or disjunctive clauses becomes
hard, also because we cannot give different importance to the
factors to be combined. Queuing theory models an application
as a queuing network. This allows to predict the application
performance under different conditions of load and replication,
and accordingly drive the scaling operations (e.g., [3], [10],
[15]). Queuing models return only approximated behavior;

moreover, parameterizing them correctly requires an extensive
application profiling that can be time-consuming and costly.
Recently, machine learning policies are becoming appealing to
manage and adapt complex systems also in a fully decentral-
ized manner (e.g., [2], [5], [16]). In this field, reinforcement
learning is a special technique by which an agent can learn
how to make good decisions through a sequence of interactions
with the environment. Most of the works consider the model-
free RL (e.g., Q-learning) algorithms (e.g., [7], [14], [17])
which, however, suffer from slow learning rate. As such, the
auto-scaler performs poorly during the learning period. To
overcome the slow convergence rate of these solutions, model-
based RL approaches have been proposed. Tesauro et al. [18]
use queuing network to model the application performance.
In [16], we present a model-based solution that empirically
estimates the system model and scales monolithic applications.

In this paper, we resort to a threshold-based policy where
we use RL to automatically learn and adapt the scaling
thresholds at run-time. The work by Horovitz at al. [7] is the
most closely related to ours. We differ from their solution
from both the architectural and methodological standpoints.
First, Horovitz et al. propose a centralized heuristic based
on a model-free Q-learning approach to dynamically scale
monolithic applications. Conversely, we design a two-layered
hierarchical solution to adapt at run-time the deployment
of multi-component applications. Exploiting a full system
view, the high-level control entity estimates at run-time each
microservice contribution to the application response time and
accordingly notifies the low-level per-microservice managers.
Moreover, we propose a model-based RL solution that can
speed-up the learning phase of the RL agents by exploiting
the knowledge on the system dynamics. As such, we do not
rely on additional heuristics to determine whether to activate
the RL agent (as done in [7]).

III. SYSTEM ARCHITECTURE

A. Problem Definition

A microservice-based application results by the cooperation
of different independently deployable services. Nevertheless,
the overall application performance results by the smooth
integration and cooperation between its microservices. Without
loss of generality, we can model a microservice-based appli-
cation as directed acyclic graph (DAG), where the vertices
represent the application microservices and the edges the log-
ical links or dependencies between them [19].2 Two services
are interconnected if they directly communicate to reach a
common goal (i.e., to satisfy an external request). Let M be the
set of all the application microservices. We define the vertices
without incoming (internal) links as sources and those without
outgoing links as sinks. A front-end service (e.g., a gateway)
is a source, because it can forward the user requests to the
other microservices; a sink only returns a response, without

2The application DAG can be manually defined, e.g., in the deployment
specification, or can be estimated at run-time using, e.g., a service mesh.
Dependency cycles in microservice-based applications should be removed for
data integrity and to reduce the risk of outages [20].

M EA P

Microservice Manager

M EA P

Microservice Manager

M EA P

Application Manager

...

Fig. 1: High-level overview of the hierarchical control.

invoking other services. We define the set of all source-sink
paths as Π. Note that a single microservice can be a member
of multiple paths. Given a microservice m ∈ M , we denote
the set of all paths that include m as Πm ⊆ Π.

In this work, we consider latency-sensitive applications that
expose QoS requirements in terms of a target response time
that should not be exceeded (i.e., Tmax). Since the application
workload usually fluctuates over time, the number of replicas
of each microservice should be accordingly scaled at run-time
so to meet the Tmax requirement avoiding resource wastage.
Multiple microservice replicas can process incoming requests
in parallel, thus reducing the per-replica load and, in turn, the
processing latency.

B. Hierarchical Control Architecture

To manage and coordinate the microservices auto-scaling so
to obtain desirable application performance, we need a deploy-
ment controller that provides self-adaptation mechanisms and
can be equipped with deployment policies. The MAPE loop
represents a prominent and well-know architectural pattern to
organize the deployment controllers, where four components
(Monitor, Analyze, Plan, and Execute) are responsible of self-
adaptation actions. As described in [21], different patterns
have been used in practice to decentralize the MAPE control
loop. Among them, the hierarchical control pattern structures
the adaptation logic as a hierarchy of MAPE control loops,
promising to exploit the benefits of both centralized and
decentralized architectures. In [3], we designed a hierarchical
approach where the centralized controller issues reconfigu-
ration requests to decentralized managers. In this paper, we
consider a different approach, where the centralized controller
only provides a feedback to the decentralized managers, which
autonomously perform the adaptation actions.

Figure 1 illustrates the deployment controller architecture,
highlighting the two-layered approach. The Application Man-
ager and Microservice Managers can work at different time
scales. Importantly, the Application Manager provides feed-
back to each Microservice Manager, which is then taken into
account by the Analyze and Plan components of its MAPE
loop cycle. At lower-level, we define multiple, decentralized,
and autonomous Microservice Managers, each controlling a
single microservice using what we call a local policy. The
Monitor collects data about the monitored microservice (i.e.,
response time and resource utilization). Then, the local Ana-
lyzer processes the monitored data and determines whether
an adaptation action is needed. If an updated is required,

the Planner identifies which adaptation action is beneficial
according to the local policy. Finally, the Executor enacts the
deployment changes. Exploiting a broader system view, the
high-level Application Manager steers the overall adaptation
by providing guidelines to the lower levels through a global
policy. First, it monitors the application performance (i.e.,
response time) and retrieves the microservice QoS metrics.
After their analysis, it uses its global policy to estimate
the relative contribution of each microservice to the overall
application performance. This information is then forwarded
to the Microservice Managers, which can accordingly update
the microservices deployment in parallel.

IV. LOCAL THRESHOLD-BASED SCALING POLICY

At the local control level, our goal is to rely on dynamic
thresholds and establish a method for automatically adapting
their value at run-time, so to efficiently scale each microser-
vice. We use reinforcement learning to learn the scaling thresh-
old adaptation strategy. A RL agent learns what to do (i.e.,
how to map situations to actions) through direct interaction
with the system [22]. It aims to learn an optimal adaptation
strategy, so to minimize a numerical cost signal. To minimize
the obtained cost, a RL agent must prefer actions that it found
to be effective in the past (exploitation). However, to discover
such actions, it has to explore new actions (exploration). One
of the main challenges in RL is to find at run-time a good
trade-off between the exploration and exploitation phases.

The Microservice Manager local policy implements the
Analyze and Plan steps of the decentralized MAPE loops.
For each Microservice Manager, we consider a RL agent in
charge of adapting at run-time the scale-out threshold for the
controlled microservice, aiming to minimize a long-term cost.
In this work, we do not dynamically update scale-in thresholds;
nevertheless, the proposed methodology can be easily extended
to account also for these thresholds. The RL agent interacts
with the microservice in discrete time steps. At each time
step, the agent observes the microservice state and performs
an action. One time step later, the microservice transits in a
new state, causing the payment of an immediate cost. Both
the paid cost and the next state transition usually depend on
external unknown factors, hence are stochastic. To minimize
the expected long-term cost, the agent estimates the so-called
Q-function. It consists in Q(s, a) terms, which represent the
expected long-term cost that follows the execution of action a
in state s. To update the scale-out threshold, given the system
state s, the agent performs the action a that minimizes Q(s, a).
By observing the incurred immediate costs, Q(s, a) is updated
over time, thus improving the threshold update policy.

State. For each microservice m, we define its state at time i
as si = (θi, ui), where θi is the scale-out threshold, and ui is
the average CPU utilization of the microservice. We denote by
S the set of all the microservice states. Being CPU utilization
(ui) a real number, we discretize it by assuming that ui ∈
{0, ū, ..., Lū}, where ū is a suitable quantum and L ∈ N s.t.
Lū = 1. We also assume that the scale-out threshold θi ranges
in the interval [Θmin,Θmax], where 0 < Θmin ≤ Θmax < 1.

Action. According to an action selection policy (e.g., ε-
greedy), the RL agent identifies the threshold adaptation action
to be perform. For each state s ∈ S, we have a set of feasible
adaptation actions A(s) ⊆ A, where A is the set of all actions.
Formally, the action model consists of A = {−δ, 0, δ}, where
δ ∈ (0, 1) is a suitable threshold quantum. In particular, ±δ
represents a threshold adaptation action (i.e., +δ to add a
threshold quantum and −δ to remove a threshold quantum),
and a = 0 is the do nothing decision. Obviously, not all the
actions are available in any microservice state: an action a is
valid in a state s = (θ, u) if Θmin ≤ θ + a ≤ Θmax.

Cost Function. We define an immediate cost function
c(s, a, s′) to capture the cost of carrying out action a when the
microservice state transits from s to s′. The RL agent wants to
minimize the cost so to jointly satisfy application performance
and limit resource wastage. For this purpose, the cost function
includes two different contributions:
• the performance penalty cperf, paid whenever the mi-

croservice response time tm is approaching (or exceeds)
the response time bound Tm,max. This latter parameter
is provided by the Application Manager as a function of
the overall application response time Tmax.

• the resource cost cres for running the microservice. We
can reasonable assume that the resource cost increases
when the scale-out threshold decreases, because the lower
the scale-out threshold, the higher the number of used
resources.

We combine the two cost contributions into a single
weighted cost function, where the distinct weights allow us to
express the relative importance of each cost term. Formally, we
define the immediate cost function c(s, a, s′) as the weighted
sum of the costs, normalized in the interval [0, 1]:

c(s, a, s′) = wperf · cperf(s, a, s
′) + wres · cres(s, a, s

′) (1)

where:

cperf(s, a, s
′) =

{
e
ξ
t′m−Tm,max
Tm,max t′m ≤ Tm,max

1 otherwise
cres(s, a, s

′) = (1− θ′)

with ξ is a parameter determining the exponential function
steepness, and t′m is the microservice response time in s′.

Intuitively, the cost function allows us to instruct the Mi-
croservice Manager to discriminate between the good system
configurations and actions and the bad configurations and
actions. As the Microservice Manager aims to minimize the
incurred cost, it is encouraged to (i) keep the response time
within the given bound and (ii) limit the resource usage. The
different weights allow us to express the relative importance
of each cost term. We note that this policy only indirectly
optimizes the microservice performance: it updates the scaling
threshold, which is then used by the Microservice Manager to
scale the microservice based on its average CPU utilization.

We also observe that the response time bounds Tm,max grant
a share of the global application response time bound Tmax to
each microservice, accordingly to its relative contribution. The

Tm,max terms could be set either statically after preliminary
profiling, or dynamically estimated and adapted at run-time by
the Application Manager. In Section V, we describe a simple
criterium to set these bounds for our reference application.

Q-function Update. To update the Q-function, we consider
two RL approaches that differ for the actual learning algorithm
adopted and on the assumptions about the system. We first con-
sider the simple model-free Q-learning algorithm that requires
no knowledge of the system dynamics. Then, we propose a
model-based approach, which exploits what is known (or can
be estimated) about system dynamics to accordingly update
the Q-function and speed-up the learning phase.

1) Q-learning Threshold (QL Threshold): Q-learning is a
model-free RL algorithm that does not require a knowledge
of the system dynamics. At time i, the Q-learning agent
observes the microservice m state si and selects ai using
an ε-greedy policy on Q(si, ai); the microservice transits in
si+1 and experiences an immediate cost ci. The ε-greedy
policy selects the best known action for a particular state
(i.e., ai = arg mina∈A(si)Q(si, a)) with probability 1 − ε,
whereas it favors the exploration of sub-optimal actions with
low probability. At the end of each time slot i, Q(si, ai) is
updated using a simple weighted average:

Q (si, ai)← (1− α)Q (si, ai) + α

[
ci + γ min

a′∈A(si+1)
Q(si+1, a

′)

]
(2)

where α ∈ [0, 1] is the learning rate parameter and γ ∈
[0, 1) is the discount factor.

2) Model-Based Threshold (MB Threshold): The RL agent
identifies the threshold adaptation action ai to perform for
microservice m in state si relying on a possibly approximated
system model. Differently from model-free solutions, the
model-based RL approach does not use an action selection
policy, but it always selects the best action in term of Q-values,
i.e., ai = arg mina∈A(si)Q(si, a). Moreover, in the model-
based RL approach we directly use the Bellman equation to
update the Q-function:

Q(s, a) =
∑
s′∈S

p(s′|s, a)
[
c(s, a, s′) + γ min

a′∈A(s′)
Q(s′, a′)

]
∀s∈S,

∀a∈A(s)

(3)

where we use estimates for the unknown or partially unknown
transition probabilities p(s′|s, a) and/or the cost function
c(s, a, s′), ∀s, s′ ∈ S.3

For the estimates of p(s′|s, a), it is sufficient to compute the
CPU utilization transition probabilities P [ui+1 = u′|ui = u].
Formally:

p(s′|s, a) = P [si+1 = (θ′, u′)|si = (θ, u), ai = δ]

=

{
P [ui+1 = u′|ui = u] θ′ = θ + δ
0 otherwise

(4)

3Intuitively, the model-based approach boils down to replacing the model-
free equation (2) with one step of the value iteration algorithm using estimates
for the unknown parameters.

Since u takes value in a discrete set, we will write Pj,j′ =
P [ui+1 = j′ū|ui = jū], j, j′ ∈ {0, . . . , L} for short. We
estimate p(s′|s, a) as the relative number of times the CPU
utilization changes from state jū to j′ū in the time interval
{1, . . . , i}.

For the estimates of the immediate cost c(s, a, s′), we
observe that it can be written as the sum of two terms,
respectively named as the known and the unknown cost:

c(s, a, s′) = ck(s, a) + cu(s′) (5)

The known cost ck(s, a) depends on the current state and
action; in our case, it accounts for resource costs. The unknown
cost cu(s′) depends on the next state s′. As in (1), cu(s′)
accounts for the performance penalty. As we assume that the
application model is not known, we have to estimate cu(s′)
at run-time. Therefore, at time i, the RL agent observes the
immediate cost ci, computes cu,i(s′) = ci − ck,i(s, a), and
updates the estimate of the unknown cost ĉu,i(s′), as follows:

ĉu,i(s
′)← (1− β)ĉu,i−1(s′) + βcu,i(s

′) (6)

where β ∈ [0, 1] is the smoothing factor. ĉu,i(s′) is used to
compute the cost of applying a in s according to (5). Given a
state s = (θ, u), we observe that in the next state s′ = (θ′, u′)
the expected cost due to Tm,max violation is not lower when
the scale-out threshold and/or the CPU utilization increases.
Vice versa is also true. Therefore, to speed-up the learning
phase, we can heuristically enforce the following properties
while updating ĉu,i(s), ∀s ∈ S:

ĉu,i(s) ≤ ĉu,i(s′) ∀θ ≤ θ′, u ≤ u′

ĉu,i(s) ≥ ĉu,i(s′) ∀θ ≥ θ′, u ≥ u′

V. GLOBAL SCALING POLICY

Hierarchical policies can scale well in the face of applica-
tions composed by a high number of microservices, because
of the clear separation of concerns and distribution. Exploiting
a system-wide view of the application execution, the Appli-
cation Manager can easily provide a feedback or proactively
notify the different Microservice Managers to improve their
cooperation and meet the application requirements.

The Application Manager global policy implements the
Analyze and Plan steps of the centralized MAPE loop. Its main
goal is to conveniently pinpoint the bottleneck microservices
so to not exceed the target application response time Tmax.
To avoid over-complicating the hierarchical policy design, we
resort to a simple global policy that dynamically estimates
and adapts at run-time the relative microservice contribution
to the overall application response time. At each iteration of
the MAPE loop and for each microservice m, the Applica-
tion Manager estimates its target response time Tm,max as
Tm,max = νm · Tmax, where νm is the (average) contribution
of microservice m to the overall application response time. To
determine νm for each microservice, the Application Manager
uses the application DAG. Hence, νm is updated using a simple
exponential weighted average:

νm ← (1− φ)νm + φ
t̄m
t̄Πm

(7)

where φ ∈ [0, 1] is the smoothing factor, t̄m is the average
microservice response time and t̄Πm =

∑
π∈Πm

pπ·tπ∑
π∈Πm

pπ
, being

t̄Πm the weighted average of the response times of all sink-
source paths including m with Πm ⊆ Π, and pπ ∈ [0, 1]
the probability that a service request invokes path π. We
estimate pπ as the relative number of times the incoming
request invokes the microservices belonging to path π. The
Application Manager then sends the Tm,max value to the
Microservice Manager in charge of controlling m. Relying
on its local policy, the Microservice Manager can accordingly
update its scaling strategy.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed deployment adaptation solu-
tions by means of simulations. To capture the variability of
microservice-based applications, we consider three different
types of application DAG, namely sequential, diamond, and
complex, as shown in Figure 2. They have the same number of
microservices. Within each microservice m, Figure 2 reports
its service rate µm; on top of each microservice, we show
the ratio between the overall outgoing request rate and the
incoming request rate; and on the outgoing edges of m, we
show the invocation probability of the successor microservices
of m, considering a probabilistic microservice invocation [23].
Moreover, we compare the proposed dynamic-threshold ap-
proaches (i.e., MB Threshold and QL Threshold) against a
static threshold-based policy (i.e., Static Threshold), which
represents the most widely adopted auto-scaling solution in
container orchestration frameworks (e.g., Kubernetes).

Without lack of generality, at each discrete time step i, we
model each microservice as an M/M/ki queue, where ki is the
number of microservice replicas.

We set the basic service rate µ shown in Figure 2 to
140 requests/s. Each application requires its overall response
time to be below Tmax = |Π̃|/µ̄ ms, where |Π̃| is the length of
the longest application path and µ̄ is the lowest components’
service rate: thus, the complex application requires Tmax =
59.5 ms, the sequential one Tmax = 83.3 ms, and the diamond
one Tmax = 35.7 ms. We consider that the application receives
an incoming request rate that changes over time according to
the workload pattern shown in Figure 3. The RL algorithms
use the following parameters: Θmin = 0.5, Θmax = 0.9,
ξ = 10, discount factor γ = 0.99; QL Threshold also uses
α = 0.1 and ε = 0.1 and MB Threshold uses β = 0.1. For
the global policy, we set φ = 0.1. We use small values of the
smoothing factors (i.e., α, β, and φ) so to weigh more recent
samples and improve the agents ability to react to system
changes.

To discretize the application state, we use ū = 0.1. The
scale-in threshold is set to 20% of CPU utilization. Our simu-
lator is written in Java and uses one class for each microservice
that, in turn, is modeled as an M/M/k queue. Two main classes,
Application Manager and Microservice Manager, implement
the layered MAPE loop. At each time step, the simulator
calls the MAPE components of the Application Manager and,
then, of the Microservice Managers. The Application Manager

TABLE I: Application performance using different threshold-based scaling policies.
Topology Policy Configuration Average threshold Standard deviation Threshold Median response Tmax violations Average CPU Average replicas

value (%) of the threshold value adaptations (%) time (ms) (%) utilization (%) per service
complex MB Threshold wperf = 1, wres = 0 50.21 1.30 2.29 33.17 0.05 30.81 2.44

wperf = 0.50, wres = 0.50 89.44 2.64 4.39 38.90 2.62 40.70 1.82
wperf = 0, wres = 1 89.96 0.57 1.02 41.95 17.62 44.16 1.70

QL Threshold wperf = 1, wres = 0 71.35 12.36 61.18 35.76 1.57 34.35 2.21
wperf = 0.50, wres = 0.50 76.72 11.51 62.22 35.42 1.34 35 2.15

wperf = 0, wres = 1 76.99 11.47 62.37 34.87 2.70 35.15 2.15
Static Threshold 50% of CPU utilization 50 0 0 33.14 0.05 30.78 2.44

60% of CPU utilization 60 0 0 35.31 0.70 34.82 2.15
70% of CPU utilization 70 0 0 37.10 2.15 38.30 1.95
80% of CPU utilization 80 0 0 27.02 19.92 37.02 1.52

diamond MB Threshold wperf = 1, wres = 0 50.17 1.17 0.99 22.75 0.12 28.17 2.02
wperf = 0.50, wres = 0.50 87.91 6.69 5.34 25.35 3.05 34.04 1.64

wperf = 0, wres = 1 89.96 0.57 0.94 33.22 45.54 39.86 1.41
QL Threshold wperf = 1, wres = 0 69.73 12.10 63.76 23.62 1.62 29.84 1.91

wperf = 0.50, wres = 0.50 76.12 11.68 62.89 23.82 2.10 30.60 1.87
wperf = 0, wres = 1 76.92 11.49 62.67 24.12 3.07 30.90 1.84

Static Threshold 50% of CPU utilization 50 0 0 22.75 0.12 28.16 2.02
60% of CPU utilization 60 0 0 24.40 1.12 31.80 1.79
70% of CPU utilization 70 0 0 26.29 7.62 35.27 1.61
80% of CPU utilization 80 0 0 27.02 19.92 37.02 1.52

sequence MB Threshold wperf = 1, wres = 0 50.11 1.17 1.34 46.80 0.05 32.79 3.92
wperf = 0.50, wres = 0.50 86.35 5.76 9.07 53.48 0.65 43.15 2.94

wperf = 0, wres = 1 89.96 0.56 0.92 60.98 16.82 49.64 2.60
QL Threshold wperf = 1, wres = 0 69.73 12.10 63.76 47.91 1.62 29.84 1.91

wperf = 0.50, wres = 0.50 75.98 11.67 63.16 48.40 0.45 37.34 3.52
wperf = 0, wres = 1 77.40 11.29 62.32 48.69 2.15 38.11 3.47

Static Threshold 50% of CPU utilization 50 0 0 33.14 0.05 30.78 2.44
60% of CPU utilization 60 0 0 35.31 0.70 34.82 2.15
70% of CPU utilization 70 0 0 37.10 2.15 38.30 1.95
80% of CPU utilization 80 0 0 54.64 3.45 44.81 2.85

μ

0.6μ

0.8

μ

0.8

0.5

3μ

1

1

μ

0.33

0.33

0.33

1

0.5

1

1

μ μ

1.1μ

0.8

1

0.8μ

0.6μ

μ

1.2μ

1.4μ

0.9

0.9

0.9

0.9

0.9

5μ

1

μ

0.2

0.2

0.2

0.2

0.2

1

1

1

1

1

1
μ

1

1

1.1μ
1

0.8

2μ
1

0.8

μ
1

0.9

1.1μ
1

0.9

0.6μ

1

3μ

Sequential Application

Complex Application

Diamond Application

1

1

1

Fig. 2: Sequential, diamond and complex applications.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

D
a

ta
 r

a
te

 (
re

q
u

e
s
ts

/s
)

Simulation Time

Fig. 3: Workload used for the reference applications.

communicates with the Microservice Managers only to update
the Tm,max terms, at most once per time step. We execute all
simulations on a machine equipped with Intel Core i7-8550U
and 16 GB of RAM. Table I summarizes the simulation results.

A. Different Application Topologies and Configurations

The first set of experiments aims to show the flexibil-
ity of RL-based solutions to dynamically adapt the scaling

thresholds for microservice-based applications. Due to space
limitations, we mainly focus the discussion on the complex
application; nevertheless, Table I reports the results for the
other topologies, as well. Overall, we can see that, for a
specific topology, the application performances change under
the different scale-out threshold policies. The Static Threshold
policy is application-unaware and not flexible, meaning that it
is not easy to satisfy QoS requirements of latency-sensitive
applications by setting a threshold on CPU utilization. From
Table I, we can observe that small threshold changes may
lead to a significant performance deterioration. Conversely,
the dynamic thresholds can be trained to optimize different
deployment objectives, e.g., see the response time median,
Tmax violations, or the average number of replicas. The model-
based RL solution can successfully learn a different strategy
to update the scaling thresholds for the different application
topologies. We note that, although the thresholds have similar
value for all the topologies, their standard deviation changes,
especially for multi-objective optimizations. This indicates a
diversification of the thresholds per application components,
whose value has been empirically determined by the RL
agents. Figure 4 shows the application performance during
the whole experiment, when the model-based solution updates
the scaling thresholds for each application microservice (i.e.,
MB Threshold is used). We can see that the application has
a different performance when different weights for the cost
function are used (Eq. 1). When the cost function penalizes
response time violations (i.e., with wperf = 1), the median of
the application response time is 33 ms (0% of Tmax violations)
and, on average, each microservice runs with 2.4 replicas.
Conversely, when we aim to save resources (i.e., wres = 1),
the application response time median grows to 42 ms (18%
of Tmax violations) and, on average, each microservice runs
with 1.7 replicas. The different behavior is also clear by com-
paring the overall number of microservices replicas during the

0

50

100

150

200

 R
e
s
p
o
n
s
e
 t

im
e

(m
s
)

 0
 25
 50
 75

 100

 C
P

U
 U

ti
liz

a
ti
o
n

(p
e
rc

e
n
ta

g
e

)

0
5

10
15
20
25
30

0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e

r
o

f
re

p
lic

a
s

Simulation Time

(a) Weights: wres = 0 and wperf = 1.

0

50

100

150

200

 R
e
s
p
o
n
s
e
 t

im
e

(m
s
)

 0
 25
 50
 75

 100

 C
P

U
 U

ti
liz

a
ti
o
n

(p
e
rc

e
n
ta

g
e

)

0
5

10
15
20
25
30

0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e

r
o

f
re

p
lic

a
s

Simulation Time

(b) Weights: wres = 0.5 and wperf = 0.5.

0

50

100

150

200

 R
e
s
p
o
n
s
e
 t

im
e

(m
s
)

 0
 25
 50
 75

 100

 C
P

U
 U

ti
liz

a
ti
o
n

(p
e
rc

e
n
ta

g
e

)

0
5

10
15
20
25
30

0 500 1000 1500 2000 2500 3000 3500 4000

N
u
m

b
e

r
o

f
re

p
lic

a
s

Simulation Time

(c) Weights: wres = 1 and wperf = 0.

Fig. 4: Performance for complex application using MB Threshold.

45

60

75

90

T
h

re
s
h

o
ld

(p
e

rc
e

n
ta

g
e

)

MB Threshold

45

60

75

90

0 500 1000 1500 2000 2500 3000 3500 4000

T
h

re
s
h

o
ld

(p
e

rc
e

n
ta

g
e

)

Simulation Time

QL Threshold

Fig. 5: Scale-out threshold updates computed by the RL-based
heuristics for the first microservice of the complex application.

experiment (see Figures 4a and 4c). Figure 4c also shows that
the application response time follows the incoming workload,
with different response time peaks when CPU utilization is
approaching 75%. On the other hand, Figure 4a shows the
benefits of replication: since the application is readily scaled,
the resulting response time is below Tmax and has also a
reduced variance.

Besides the weight configurations at the opposite ends, we
can obtain a wide set of adaptation strategies that differ by
the relative importance of the two deployment goals. Here,
we propose a simple case, where we set wperf = 0.50 and
wres = 0.50. The median application response time is 39 ms,
with about 3% of Tmax violations. In this case, we obtain
an average threshold value that is rather close to the case of
wperf = 1, even though there is a higher variance due to
the different thresholds computed for the different application
microservices.

The MB Threshold policy is flexible enough to host differ-
ent sets of weights, thus allowing to explore diverse trade-
offs between improving performance and saving resource.
Importantly, the RL approach can automatically learn the most
suitable strategy to satisfy the user preferences, estimating the
mapping between user- and system-oriented metrics.

B. Comparing QL and MB Thresholds

We now compare the model-based RL approach against
the simple and model-free Q-learning solution. Both the RL
strategies are used to update the scale-out thresholds in a
distributed manner, for each application microservice. The two

approaches resort on the cost function (Eq. 1) to receive a
feedback of the performed action and update their Q-value
estimations. To visualize the update of the scaling threshold by
the two RL policies, we report in Figure 5 the threshold value
for the first microservice (with 3µ) of the complex application,
when we want to optimize the performance (wperf = 1).
Intuitively, the best threshold should be the lowest possible,
so to use as many replicas as possible. The model-based
RL solution benefits from the system model to quickly learn
how to update the scaling thresholds. This holds true for all
the application topologies and cost function configurations
(see Table I). Conversely, Q-learning continuously updates
the scaling thresholds, meaning that it is still exploring the
best actions to perform. This behavior is also reflected on
the application response time, whose median value does not
change under the different cost function configurations.

C. Hierarchical Application Control

In this section, we investigate the global policy, used to
provide an adaptation feedback to the decentralized RL agents.

When a static threshold policy is used to scale a complex
application, we usually set a single threshold value for all
the application components. Tuning different thresholds for
the different components is costly, so it is not usually done
in practice. Conversely, the cooperation between the Appli-
cation Manager and the decentralized Microservice Managers
allows to automatically adapt the thresholds for the different
application components, according to their run-time behavior.
Figure 6 reports the utilization, scale-out threshold, and num-
ber of replicas of two components of the diamond application,
microservice 1 (with 0.6µ) and microservice 5 (with 1.4µ). In
this case, the MB Threshold policy computes the thresholds
under the weights configuration wperf = wres = 0.5. We
observe that the two microservices have a different degree
of replication, with the bottleneck component, microservice 1,
running with more replicas than microservice 5 (on average, 2
and 1, respectively). Apparently, the RL agent prefers to use
a high value as the threshold rest value, which is promptly
updated when scaling actions are needed or the application
runs under heavy workload conditions (see the time interval
between 2000 and 3000 time units). To further investigate the

 0
 25
 50
 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
) microservice 1 threshold 1

 0
 25
 50
 75

 100

 C
P

U
 U

ti
liz

a
ti
o

n
(p

e
rc

e
n

ta
g

e
) microservice 5 threshold 5

0

1

2

3

4

0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b

e
r

o
f

re
p

lic
a

s

Simulation Time

microservice 1 microservice 5

Fig. 6: Threshold diversification for microservices with service
rate 0.6µ and 1.4µ of the diamond application. Thresholds
computed using model-based RL and wperf = wres = 0.5.

global policy, we run another experiment where we turned off
the Application Manager and statically set Tm,max = Tmax/3,
∀m ∈M . As a result, the median application response time is
31 ms, violating Tmax 37% of the time (instead of 25 ms and
3% of bound violations as in the previous setting). We observe
that the distributed RL agents more slowly learn to distinguish
the bottleneck components and diversify the thresholds: e.g.,
the bottleneck component runs with 1.6 replicas (instead of 2).
The Application Manager helps to capture the heterogeneity
of the application microservices, leading to the definition of
different thresholds that better optimize performance and avoid
resource over-/under-provisioning.

VII. CONCLUSIONS

In this paper, we presented a novel self-adaptive threshold-
based policy for scaling microservice-based applications.
Specifically, we designed a two-layered hierarchical control
architecture where, at the lower level, decentralized controllers
scale microservices using dynamic thresholds and, at the
higher level, a centralized controller analyzes the relative mi-
croservice contribution to the overall application performance.
To update the scaling thresholds at run-time, we rely on
model-free and model-based RL algorithms, obtaining QL
Threshold and MB Threshold, respectively. As regards the
global policy, we proposed a simple yet effective heuris-
tic to empirically estimate the microservice contribution to
the application performance. Using simulation, we evaluated
the proposed solutions and compared them against a static
threshold-based policy, which is the most widely adopted
scaling strategy. While the QL Threshold policy suffers from
slow learning rate, our MB Threshold clearly outperforms all
the other approaches. Differently from a static threshold-based
approach, the MB solution not only differentiates the scaling
threshold for the different microservices, but can also improves
the policy flexibility, because it can learn different threshold
update strategies according to the deployment goals.

As future work, we will integrate the proposed solutions
in Kubernetes, so to evaluate them in a real environment.

Moreover, we plan to design novel hierarchical policies that
can jointly control the scaling and placement of microservice-
based applications in a geo-distributed computing environ-
ment.

REFERENCES

[1] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
cloud computing: State of the art and research challenges,” IEEE Trans.
Serv. Comput., vol. 11, pp. 430–447, 2018.

[2] N. Cruz Coulson, S. Sotiriadis, and N. Bessis, “Adaptive microservice
scaling for elastic applications,” IEEE Internet of Things J., vol. 7, no. 5,
pp. 4195–4202, 2020.

[3] F. Rossi, V. Cardellini, and F. Lo Presti, “Hierarchical scaling of
microservices in Kubernetes,” in Proc. of IEEE ACSOS ’20, 2020, pp.
28–37.

[4] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment using
containers with auto-scaling for microservices in cloud environment,” J.
Netw. Comput. Appl., vol. 160, 2020.

[5] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Cost-effective scaling for
microservice applications in the cloud with an online learning approach,”
IEEE Trans. Cloud Comput., 2020.

[6] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
in Proc. of MGC ’10. ACM, 2010.

[7] S. Horovitz and Y. Arian, “Efficient cloud auto-scaling with SLA
objective using Q-learning,” in Proc. of IEEE FiCloud ’18, 2018.

[8] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-time
feedback controller for containerized cloud applications,” in Proc. of
ACM SIGSOFT FSE ’16, 2016, pp. 217–228.

[9] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Future Gener. Comput.
Syst., vol. 28, no. 1, pp. 155–162, 2012.

[10] A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, and S. Kounev,
“Chamulteon: Coordinated auto-scaling of micro-services,” in Proc. of
IEEE ICDCS ’19, 2019, pp. 2015–2025.

[11] C. Kan, “DoCloud: An elastic cloud platform for web applications based
on Docker,” in Proc. of ICACT ’16. IEEE, 2016, pp. 478–483.

[12] D. Breitgand, M. Goldstein, E. Henis, and O. Shehory, “Efficient
control of false negative and false positive errors with separate adaptive
thresholds,” IEEE Trans. Netw. Service Manag., vol. 8, no. 2, 2011.

[13] V. Persico, D. Grimaldi, A. Pescapè, A. Salvi, and S. Santini, “A fuzzy
approach based on heterogeneous metrics for scaling out public clouds,”
IEEE Trans. Parallel Distrb. Syst., vol. 28, no. 8, pp. 2117–2130, 2017.

[14] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A comparison of
reinforcement learning techniques for fuzzy cloud auto-scaling,” in Proc.
of IEEE/ACM CCGrid ’17, 2017, pp. 64–73.

[15] A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven au-
toscaling for microservices,” in Proc. of IEEE ICDCS ’19, 2019, pp.
1994–2004.

[16] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement learning,” in Proc.
of IEEE CLOUD ’19, 2019, pp. 329–338.

[17] S. M. R. Nouri, H. Li, S. Venugopal, W. Guo et al., “Autonomic
decentralized elasticity based on a reinforcement learning controller for
cloud applications,” Future Gener. Comput. Syst., vol. 94, 2019.

[18] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid
reinforcement learning approach to autonomic resource allocation,” in
Proc. of IEEE ICAC ’06, 2006, pp. 65–73.

[19] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn et al., “GrandSLAm:
Guaranteeing SLAs for jobs in microservices execution frameworks,” in
Proc. of EuroSys ’19. ACM, 2019.

[20] S. Esparrachiari, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies,” ACM Queue, vol. 16, no. 4, 2018.

[21] D. Weyns, B. Schmerl, V. Grassi, S. Malek et al., “On patterns for
decentralized control in self-adaptive systems,” in Software Engineering
for Self-Adaptive Systems II, ser. LNCS. Springer, 2013, vol. 7475.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA: MIT Press, 2018.

[23] D. A. Menasce, “Composing web services: A QoS view,” IEEE Internet
Comput., vol. 8, no. 6, pp. 88–90, 2004.

