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Università di Roma “Tor Vergata”

{cardellini,casalicchio}@ing.uniroma2.it, vgrassi@info.uniroma2.it

Raffaela Mirandola
Politecnico di Milano

mirandola@elet.polimi.it

Abstract

Service composition is one of the most promising advan-
tages of the service-oriented paradigm. In a service market
scenario, given a functional description of a service, dif-
ferent providers may offer diverse service implementations
that match such a functional description but differ for some
QoS attributes. A key point for the construction of a suit-
able composition is the selection of the services that best
meet the QoS requirements of the composite service users.

In this paper, we consider a broker-based architecture
for service composition, focusing on the service selection
problem and assuming that the broker supports different
QoS classes. We formulate the service selection as a con-
strained optimization problem, where each QoS class is
modeled by suitable constraints. Differently from most of
the existing approaches to service selection, in our ap-
proach the broker optimizes the overall QoS of a flow of
requests rather than of a single request.

1. Introduction

The Service-oriented Architecture (SOA) paradigm fore-
sees the creation of business applications from indepen-
dently developed services. In this vision, providers offer
similar competing services corresponding to a functional
description of a service (the first referred to as concrete
services and the latter as abstract service); these offerings
can differ significantly in some Quality of Service (QoS)
attributes [10]. On the other side, prospective users of ser-
vices dynamically choose the best offerings for their pur-
poses. Using the SOA paradigm to build applications, ser-
vices can be dynamically selected and integrated at runtime,
so enabling system properties like flexibility, adaptiveness,
and reusability. In this context, the key point is to build
applications through the composition of available services.
This composition involves several activities: i) the selection
of concrete services offering the required functionalities, ii)

the definition of an integration schema yielding to the tar-
get application, and iii) the fulfillment of global QoS con-
straints, such as application response time and cost (a global
constraint regards the whole composite service, while a lo-
cal constraint refers to a single service component). Due
to the high dynamism of the applications, the quality as-
sessment cannot be deferred at the end of the development
phase, but rather it should be incorporated in the selection
and integration activities, to guarantee the construction of
applications that satisfy the QoS constraints.

Current SOA approaches only partially address this
global vision. While services are described and listed in
public registries, there is little support for actually making
quality-based service selection and integration. Therefore,
QoS support for Web services has recently become a very
active area of research and standardization, involving major
challenges such as QoS-aware service description, compo-
sition, and selection (e.g., [6, 10]).

In this paper, we focus on the QoS-driven selection of
concrete services, that plays an important role in the service
composition problem. We propose a broker-based frame-
work which allows an optimal service selection satisfying a
set of global QoS constraints. In our framework, a broker
offers to prospective users a single service that is actually
realized as a composition of other services. Once discov-
ered the alternative concrete services (and their values of
the QoS attributes) that can be used to build the composi-
tion, the broker’s main tasks include accepting requests for
the advertised composite service and determining the op-
timal set of concrete services that maximizes some global
benefit while satisfying the QoS constraints. We assume
that the broker manages different, but fixed, global levels
for the QoS attributes characterizing the operated compos-
ite service, thus supporting multiple classes of requestors.

We formulate the selection of the concrete services from
a larger set of possible concrete services as a constrained
multi-criteria optimization problem, considering various
QoS attributes, such as execution time, cost, and reputation
of the composite service. We introduce a graph model for
the composite service considering both the abstract work-



flow and the concrete realization of the services and de-
scribe how the problem of optimally selecting the concrete
services can be formulated on this graph. The broker can
obtain the information needed to solve the optimization
problem (e.g., the probability to take each branch in the
workflow) by monitoring the composite service execution.
We evaluate the computational cost of solving the optimiza-
tion problem and show that it is acceptable even for a con-
sistent number of concrete services, especially considering
that in our approach the optimization problem needs to be
solved again only when some parameters used in the formu-
lation change significantly their values.

Our approach differs from previous works which have
tackled the service selection as an optimization problem [1,
14, 15] in that our optimization is performed on a per-flow
rather than per-request basis. In case of high volumes of
service requests, per-request service selection approaches
may suffer from scalability problems because of the compu-
tational overhead for solving the optimization problem for
each single requests (also more times per request, according
to some proposal [15]). On the contrary, in our approach the
solution of the optimization problem (i.e., a given selection
of concrete services) holds for all the requests in a flow,
and is recalculated only when some significant event occurs
(e.g., a change in the availability or the QoS values of the
selected concrete services). Moreover, in our proposal the
broker solves the optimization problem taking into account
simultaneously the flows of requests generated by multiple
requestors, with possibly different QoS constraints.

On the other hand, our approach is able to give only a
statistical guarantee to each request that its QoS goal will
be actually met. Hence, our approach is suitable for scenar-
ios where “soft” rather than “hard” QoS goals must be sat-
isfied. Moreover, being our approach more broker- rather
than requestor-oriented, it does not allow the service re-
questors to define autonomously the QoS parameters for
their QoS class as in [15].

The rest of the paper is organized as follows. Sec-
tion 2 reviews related works. Section 3 describes the system
model and Section 4 presents the formulation of the opti-
mization problem for the service selection. Section 5 dis-
cusses some examples of solution of the optimization prob-
lem and analyzes its cost. Finally, Section 6 concludes.

2. Related Work

QoS-driven service discovery and selection have seen a
flurry of recent research activity. The different approaches
that have been followed so far span from the use of QoS on-
tology [9], to the definition of trust frameworks (e.g., [12])
and the use of data mining [7], the proposal of ad-hoc meth-
ods in some general framework (e.g., [11, 13]), and the
exploitation of different kinds of optimization algorithms

for the selection of concrete services in a composite ser-
vice [1, 5, 8, 14, 15]. We briefly review works belonging to
the latter class, since they are the closest to our approach.

Yu and Lin [14] discuss selection algorithms for multiple
QoS attributes defining the problem as a multi-dimension
multi-choice 0-1 knapsack one as well as a multi-constraint
optimal path problem. Zeng et al. [15] present a global plan-
ning approach to select an optimal execution plan by means
of integer programming. Ardagna and Pernici [1] model
the service composition as a mixed integer linear problem
where both local and global constraints are taken into ac-
count. Their approach is formulated as an optimization
problem handling the whole application instead of each ex-
ecution path separately. Claro et al. [8] propose the use of
multiobjective optimization techniques to find a set of op-
timal Pareto solutions from which a requestor can choose.
Finally, Canfora et al. [5] adopt a quite different strategy for
optimal selection based on genetic algorithms.

3. System Model

In this section, we present the broker-based architecture
for the service selection and introduce the graph model used
for the optimal selection of the concrete services.

3.1. Broker-based Architecture

Figure 1 illustrates a high-level architectural view of the
system model we consider. The service broker [11, 13] acts
as an intermediary between service requestors and providers
and its main goal is to select the concrete services of a com-
posite service on the basis of some QoS constraints negoti-
ated with the requestors. The broker is independently oper-
ated and maintained by a third party; it can be a Web service
itself and advertise the offered composite service in a public
registry [11]. Once the broker has discovered the concrete
services which are candidates for the selection and have ob-
tained their values of the QoS attributes (we do not focus on
these issues, addressed in [11, 13]), its main tasks include:
(i) accepting requests for a composite service and negotiat-
ing the QoS class with the requestors; (ii) determining the
optimal service selection that satisfies the QoS constraints.
In our architecture, the service broker manages different,
but fixed, QoS classes for the operated composite service.

As the broker generally acts on behalf of a significant
amount of requestors, it is able to identify recurrent requests
for typical compositions of services, as well as usage pat-
terns of these compositions. We assume that this knowledge
is embodied in a workflow, which models both a given set of
abstract services, needed to accomplish the composite ser-
vice, and its usage pattern. In the considered scenario, the
broker receives a flow of requests from the clients concern-
ing the composite service. Each request includes the indica-
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tion about some required QoS level. Requestors could also
not be aware of the set of abstract services needed to carry
out that composite service; however, this knowledge is nec-
essary if we want to include the possibility for requestors
to specify some local QoS requirement for single services
in that set. Our framework may be used to consider both
cases of requestor awareness and unawareness about the set
of needed services. However, in the following we assume
that the broker manages only global QoS constraints.

The main modules that the broker embeds are: the Com-
position Manager, the Selection Manager, the Optimization
Engine, the Execution Path Analyzer, and the QoS Moni-
tor. The main function of the Composition Manager is the
service composition and the discovery of the candidate con-
crete services. The Selection Manager is the broker front-
end to the service requestors. It is responsible for binding
each request to the concrete services that meet the required
QoS level; moreover, it may trigger a new solution of the
optimization problem, when some relevant environmental
change is detected. The Optimization Engine determines
the selection of the concrete services by solving the opti-
mization problem. In this paper we focus on methodolo-
gies underlying the implementation of this part of the bro-
ker architecture (shadowed in Figure 1). The solution of the
optimization problem is used by the Selection Manager to
determine the suitable concrete services for each QoS class.
Finally, the Execution Path Analyzer and the QoS Monitor
are responsible for collecting information about the service
usage and performance, and about the requestor perceived
performance. This information is used by the Selection
Manager to find out whether a new solution of the optimiza-
tion problem is required. In a dynamic environment, service
providers can change their services at any time in order to
remain competitive. This implies that there is no guarantee
that the QoS obtained at run time for a particular concrete
service is again a valid value. However, we do not focus on
this problem here, but rather assume that the broker can use
some QoS monitoring service.

3.2. Multi-Class Composite Service Model

The set of atomic services that form a composite service
and the relationships among them can be represented using
a workflow. We model it by a direct weighted graph, called
decisional service graph (DSG). Each macro-node i ∈ V in
this graph (depicted as a rectangular box in Figure 2) repre-
sents an atomic abstract service. The directed edge from the
macro-node r to the macro-node s represents a sequencing
constraint that is, it indicates that service r must complete
before service s may begin. The DSG has usually a source
node (modeling a root service) and a sink node (modeling
a collector service); an execution of the composite service
thus consists of the invocation of the services on a path from
the source to the sink.
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Figure 2. Example of DSG for two QoS
classes.

Multiple edges exiting from a macro-node r are
weighted by a probability, that provides a statistical infor-
mation about the next abstract service required by a client
of the composite service. The broker can use its observation
of the execution patterns generated by the clients to estimate
these probabilities1. As different QoS classes may lead to
stressing different execution paths in the workflow, we as-
sume that each edge from r to s has an associated proba-
bility vector prs = (p1

rs, ..., p
m
rs), where m is the number of

different QoS classes (m = 2 in Figure 2) and pk
rs denotes

the probability that service s is executed after the comple-
tion of service r for the QoS class k. For each macro-node
r, it holds that

∑
s∈succ(r) pk

rs = 1 for each class k. In case
of only one outgoing edge from r, the probability is equal
to 1 and we omit its value in the graph.

Each DSG macro-node contains the concrete services
(shown in Figure 2 as circles inside the rectangular box rep-
resenting the abstract service), that correspond to specific

1In this probabilistic model of the workflow execution pattern, we do
not include the parallel execution of services. We are currently working
toward the inclusion of this execution pattern in our model.



implementations of a given abstract service. Concrete ser-
vices for the same abstract service may be offered by dif-
ferent providers and may differ for the values of some QoS
attribute. We denote by Ii the set of all concrete services
that implement the abstract service i ∈ V (where ni = |Ii|)
and by i.j ∈ Ii the j-th concrete service for i.

The goal of the broker is to select, for each QoS class,
the concrete service i.j that must be used to fulfill a re-
quest for the abstract service i. We model this selection
by associating with each DSG macro-node i a vector xi =
(x1

i , ...,x
m
i ), where xk

i = [xk
ij ] and i.j ∈ Ii. Each entry

xk
ij of xk

i denotes the probability that the concrete service
i.j will be invoked by the class-k request when the work-
flow reaches the stage indicated by the macro-node i. It
holds the constraint that

∑
j∈Ii

xk
ij = 1, for each class k

and i ∈ V . With this model, we assume that, in general,
the broker can probabilistically route to different concrete
services the requests (belonging to a same QoS class k) for
an abstract service i. The deterministic selection of a single
concrete service corresponds to the case xk

ij = 1 for a given
i.j ∈ Ii.

4. Optimal Service Selection

4.1. General Optimization Problem

We denote by K the set of QoS classes, with m = |K|.
Class-k requests (k ∈ K) for the composite service arrive
at the broker at rate γk, being γ = (γ1, ..., γm) the overall
arrival rate from outside to the broker. For each class-k re-
quest, the Selection Manager in the broker has to assign a
concrete service i.j for each abstract service i in the DSG,
under given global QoS constraints. We recall that, in gen-
eral, the assignment can also be probabilistic. Therefore,
given the DSG our objective is to determine the optimal val-
ues for the vector x = (x1, ...,xn) with n = |V|, in such
a way that the Selection Manager can use these values to
select the concrete services fulfilling its QoS goals.

Let λk
i be the rate of class-k requests that arrive at the

abstract service i ∈ V . Using well-known flow conservation
arguments, we get the following set of linear equations for
the request rates, that can be used to calculate λk

i :

λk = PkTλk + γk e1 for each k ∈ K (1)

where λk = (λk
1 , ..., λk

n) and e1 = (1, 0, ..., 0) are column
vectors and Pk = [pk

rs] is the n × n routing probability
matrix for class-k requests. We assume that a request may
not change dynamically its class during the fulfillment of
the composite service. Given a flow of requests λk

i for the
abstract service i, the broker splits it among the correspond-
ing concrete services i.j ∈ Ii according to the xk

i = [xk
ij ]

probabilities. Hence, xk
ijλ

k
i is the flow of requests for the

concrete service i.j generated by clients in the QoS class k.
Each concrete service is characterized by a set of QoS

attributes, such as the execution time, the cost, and the repu-
tation [10, 15]. We assume that the broker knows the values
of these attributes for all the concrete services, which are
advertised by the service providers.

The global QoS that is experienced by the broker clients
depends on both the total request flow xk

ijλ
k
i addressed to

each concrete service, and by the value of the service QoS
attributes. The broker can affect this QoS by appropriately
setting the xk

ij values, which are under its control. Given
a vector x = (x1, ...,xn), we denote by F (x) the corre-
sponding global QoS. Hence, the broker goal is to deter-
mine the value of x that minimizes (or maximizes) F (x).
Toward this end, it must also take into account some con-
straints that limit the set of feasible values for x. This can
be expressed by the following optimization problem:

Minimize F (x) (2)

subject to Qα(x) ≤ Qα
max

Qβ(x) ≥ Qβ
min

x ∈ A

where we denote by Qα(x) and Qβ(x) the QoS constraints,
and by x ∈ A a set of functional constraints (e.g., this latter
set includes the constraint

∑
j∈Ii

xk
ij = 1).

4.2. An Instance of the General Optimiza-
tion Problem

In this section, we build an instance of the general op-
timization problem introduced in the previous section, to
give a concrete example of the kind of problem that must be
solved by the broker. For this purpose, we assume that the
broker knows the value of the following QoS attributes for
each concrete service i.j:

• the service rates µij = (µ1
ij , ..., µ

m
ij ), where (µk

ij)
−1

is the mean execution time of the concrete service i.j
for the class k (without considering possible queueing
delays);

• the cost cij = (c1
ij , ..., c

m
ij ), where ck

ij is the price that
a class-k request has to pay for each invocation of the
concrete service i.j;

• the reputation rij = (r1
ij , ..., r

m
ij ), which is a measure

of the trustworthiness of the concrete service i.j. and
is a general opinion i.e., it aggregates the ratings of the
service by other principals.

Other QoS attributes can be considered for the service
selection. We focus on the attributes listed above without



any loss of generality of the proposed approach for service
selection. The broker therefore characterizes the composite
service it manages by the following QoS attributes for each
class k ∈ K:

• the execution time Ek, which is the time needed to
fulfil a class-k request for the composite service;

• the execution cost Ck, which is the price to be paid to
fulfil a class-k request;

• the reputation Rk, which measures the trustworthiness
of the composite service for a class-k request.

In this paper, as aggregated class-k functions for Ek, Ck,
and Rk we choose respectively the average of the execution
time, execution cost, and reputation. Specifically, we con-
sider the following functions expressed in terms of the vari-
ables xk

ij , the request arrival rates λk
i , and the QoS attributes

of the concrete services:

Ek(x) =
∑

i∈V

λk∗
i

γk

∑

j∈Ii

xk
ij/µk

ij

1 − ∑
c∈K xc

ijλ
c∗
i /µc

ij

(3)

Ck(x) =
∑

i∈V

λk∗
i

γk

∑

j∈Ii

xk
ijc

k
ij (4)

Rk(x) =
1

∑
i∈V

λk∗
i

γk

∑

i∈V

λk∗
i

γk

∑

j∈Ii

xk
ijr

k
ij = (5)

=
1∑

i∈V λk∗
i

∑

i∈V
λk∗

i

∑

j∈Ii

xk
ijr

k
ij

where λk∗ is the solution of (1) and λk∗
i /γk is the mean

number of class-k invocations to the i-th abstract service.
The expressions for Ck and Rk are self-explanatory. The

expression for Ek i.e., the mean execution time for class-
k requests, has been obtained under the hypothesis of the
BCMP theorem [4]. If the queueing discipline is FCFS (the
clients are served by the concrete services in the order in
which they arrive), it is necessary to impose the restriction
that all the classes have the same mean service rate for each
invocation (i.e., the service rates are class-independent) that
is, µ1

ij = ... = µm
ij and that the service times are exponen-

tially distributed2.
As already pointed out, we focus on execution time, cost,

and reputation; however, our problem formulation can be
generalized and easily extended to take into account other
QoS attributes, such as availability and reputation, applying,
if necessary, a linearization method as in [6, 15].

2If the conditions of the BCMP theorem do not hold, (3) can be still
used as a measure of the congestion at the concrete service i.j, that can be
used to avoid highly congested nodes [3].

We assume that the broker wants, in general, to optimize
multiple QoS attributes (which can be either mutually inde-
pendent or possibly conflicting); therefore, the optimal ser-
vice selection results in a multi-objective optimization. We
tackle the multi-objective problem by transforming it into
a single objective problem through the weighted sum ap-
proach, which is the most widely used scalarization method.
Specifically, we consider as objective function a weighted
sum of the mean execution time, the mean reputation, and
the mean cost of the composite service averaged over all
the classes, subject to the QoS constraints on the execution
time, the cost, and the reputation of the composite service
for each class. Therefore, the objective function to be mini-
mized is expressed as follows:

F (x) = we
E(x) − Emin

Emax − Emin
+ wc

C(x) − Cmin

Cmax − Cmin
+

+ wr
Rmax − R(x)
Rmax − Rmin

(6)

where we, wc, wr are the weighting coefficients represent-
ing respectively the relative importance of execution time,
cost, and reputation in the service composition; it holds
we, wc, wr ≥ 0 and we + wc + wr = 1. Note that the
expression for the reputation has been converted to a min-
imization form. Emax (Emin), Cmax (Cmin) and Rmax

(Rmin) denote respectively the maximum (minimum) value
for the execution time, the cost, and the reputation. We
explain how to determine them after having introduced the
constraints of the optimization problem.

The overall mean execution time, cost, and reputation of
the composite service are given by, respectively:

E(x) =
1
Γ

∑

k∈K

γkEk(x)

C(x) =
1
Γ

∑

k∈K

γkCk(x)

R(x) =
1
Γ

∑

k∈K

γkRk(x)

where Γ = γ1 + ... + γm and Ek(x), Ck(x), and Rk(x)
are given by (3), (4), and (5). The decision variables of the
optimization problem are the variables xk

ij (k ∈ K, i ∈ V ,
j ∈ Ii), that are subject to the following constraints:

xk
ij ≥ 0 for i ∈ V , j ∈ Ii, k ∈ K (7)

∑

j∈Ii

xk
ij = 1 for i ∈ V , k ∈ K (8)

∑

k∈K

xk
ijλ

k
i

µk
ij

< 1 for i ∈ V , j ∈ Ii (9)



Ek(x) ≤ ek
max for k ∈ K (10)

Ck(x) ≤ ck
max for k ∈ K (11)

Rk(x) ≥ rk
min for k ∈ K (12)

Equations (7)-(9) are functional constraints, correspond-
ing to those generically indicated as x ∈ A in (2); specif-
ically, the latter is the condition that guarantees the sys-
tem stability. Equations (10)-(12) are the QoS constraints
on execution time, cost, and reputation, where ek

max, ck
max

and rk
min are respectively the maximum execution time, the

maximum cost, and the minimum reputation accepted by
the class-k clients. These constraints are instances of the
generic QoS constraints indicated in (2).

The maximum and minimum values of the QoS at-
tributes in the objective function (6) are determined as fol-
lows. Emax, Cmax, and Rmin are simply expressed respec-
tively in terms of ek

max, ck
max, and rk

min. For example, the
maximum execution time Emax is given by:

Emax =
1
Γ

∑

k∈K

γkek
max

Similar expressions hold for Cmax and Rmin. The val-
ues for Emin, Cmin, and Rmax are determined by solving
a constrained optimization problem in which the objective
function is the QoS attribute of interest for the correspond-
ing minimum (maximum) value, subject to the functional
constraints (7)-(9). For example, the minimum execution
time Emin is given by the solution of the following con-
strained optimization problem:

Minimize E(x)

subject to xk
ij ≥ 0 for i ∈ V , j ∈ Ii, k ∈ K

∑

j∈Ii

xk
ij = 1 for i ∈ V , k ∈ K

∑

k∈K

xk
ijλ

k
i

µk
ij

< 1 for i ∈ V , j ∈ Ii

Similar optimization problems have to be solved to ob-
tain the values for Cmin and Rmax. In the latter case, the
objective function R(x) has to be maximized.

The constrained optimization problem we formulate is
easily solved with standard optimization techniques of non-
linear programming [2], as both the objective function and
the constraint sets are convex. We omit the demonstration
for space reasons; anyway, the only function whose convex-
ity has to be proved is the one for the execution time, being
the functions for the cost and the reputation linear.

4.3 Service Selection Process

When the Selection Manager triggers the solution of the
optimization problem, the Optimization Engine executes
the following steps. First, it solves the system of linear
equations (1); then, it solves the optimization problem (6),
constrained by (7)-(12).

To carry out the service selection, the Selection Manager
uses the solution of the optimization problem as follows.
First, it negotiates with the requestor his service class: let k
be the service class. Then, it considers only the elements of
the solution vector x that pertains to class k. If for a given
abstract service i there is more than one xk

ij �= 0, the Selec-
tion Manager selects randomly, using the probability values
xk

ij , one concrete service to which it binds the requestor.
The service selection provided by the Optimization En-

gine is valid until some event that requires a new solution
of the optimization problem occurs. Indeed, if the DSG
changes, the optimal service selection has to be recomputed.
This happens in the following cases. First, some routing
probability pk

rs changes; these probabilities are periodically
recomputed by the Execution Path Analyzer. Second, the
service composition changes, because either an abstract ser-
vice or a concrete service is added or removed. Finally, the
QoS Monitor identifies some significant change in the QoS
level provided by the concrete services.

5. Numerical Results

In this section, we use an example-driven approach to
show how the service selection behaves for different objec-
tive functions. We also discuss the computational cost of
the proposed optimization problem.

We consider a simple, but general enough, DSG com-
posed of 4 abstract services and 7 concrete services. The
DSG resembles that of Figure 2, where n1 = n2 = n3 = 2
and n4 = 1. Requests for the composite service are classi-
fied as silver and gold, denoted by the superscripts 1 and 2.
The routing probability matrixes for the two QoS classes are

P1 =
0 0.7 0.3 0

0.2 0 0 0.8
0 0 0 1
0 0 0 0

and P2 =
0 0.5 0.5 0

0.1 0 0 0.9
0 0 0 1
0 0 0 0

. Users in the

gold class accept to pay a higher cost (c2
max) to get better

execution time (e2
max) and reputation (r2

min), while users in
the silver class accept possible worse execution time (e1

max)
and reputation (r1

min) to gain a lower cost (c1
max). The con-

crete services differ in terms of service rate, cost, and repu-
tation. Table 1 summarizes the system parameters.

In the first set of experiments, we analyze the behavior
of the decisional process operated by the service broker. We
consider 4 different objective functions (see Figure 3) that
the broker could want to optimize: in case 1 it wants to min-
imize the mean execution time (we = 1); in case 2 it wants
to minimize the mean cost (wc = 1); in case 3 and case



Table 1. Parameters of the example.
Parameters Values
(γ1, γ2) (0.1, 0.01)
(µ1

11, µ
1
12, µ

1
21, µ

1
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1
31, µ

1
32, µ

1
41, (0.2, 0.8, 0.5, 0.5, 0.4, 0.6, 1,

µ2
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2
12, µ
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21, µ

2
22, µ

2
31, µ

2
32, µ

2
41) 0.4, 1.6, 1, 1, 0.8, 1.2, 2)

(c1
11, c

1
12, c

1
21, c

1
22, c

1
31, c

1
32, c

1
41, (0.3, 0.8, 0.4, 0.6, 0.4, 0.5, 1,

c2
11, c

2
12, c

2
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2
22, c

2
31, c

2
32, c

2
41) 0.6, 1.6, 0.8, 1.2, 0.9, 1, 2)

(r1
11, r

1
12, r

1
21, r

1
22, r

1
31, r

1
32, r

1
41, (3, 3, 4, 1, 2, 2, 1,

r2
11, r

2
12, r

2
21, r

2
22, r

2
31, r

2
32, r

2
41) 6, 6, 8, 2, 4, 4, 2)

(e1
max, e2

max) (10, 6)
(c1

max, c2
max) (2.5, 5)

(r1
min, r2

min) (2, 3)

4 it wants to minimize both the mean execution time and
the mean cost with the same (we = wc = 0.5) and different
(we = 0.3, wc = 0.7) weights, respectively. Figure 3 shows
the solution of the optimization problem in the four cases;
the values within the graphs are those of the variables xk

ij

when different from 1.
In case 1, the broker always selects the fastest concrete

service 1.2. The services 2.1 and 2.2 have the same ser-
vice rate but different costs: the request flow is partitioned
between the two, assigning more to the cheapest one.

In case 2, silver and gold requests are managed differ-
ently. For gold requests, the cheapest concrete services 1.1
and 2.1 are selected, while the request flow is partitioned
between the two concrete services that implement 3. In-
deed, 80% of gold requests are assigned to 3.1, which has
the lower cost, but the remaining 20% is assigned to 3.2,
that provides an higher performance. This allows to sat-
isfy the constraint on the execution time for the gold class.
For silver requests, the cheapest concrete services 2.1 and
3.2 are deterministically selected. The requests for service
1 are instead almost equally assigned to 1.1 (58%) and 1.2
(42%). This selection allows to balance the load between
the concrete services (considering that all the gold requests
are assigned to 1.1) as well as to satisfy the time constraint.

In case 3, the broker aims at minimizing both the execu-
tion time and the cost. Silver requests invoke the concrete
service with the lower cost for services 1 and 2 (2.1 is as-
signed 95% of time). This choice allows to maintain the
execution time close to the optimal value (see case 1) and
produces a small increase with respect to the optimal cost
(see case 2). For gold requestors, the choice operated by the
broker allows to maintain the global cost close to the opti-
mal value (see case 2). However, even if the constraints on
the execution time are largely satisfied, the corresponding
global value is far from the minimum one (see case 1).

In case 4, the service selection resembles that of case 2
for both the two classes, being the only difference in the
request partitioning. For the gold class, more requests are
assigned to the concrete service 3.2 to reduce the execu-
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Figure 3. Solution of the optimization prob-
lem in the four cases.

tion time. For the same reason, more silver requests are
assigned to 1.2, and 3.2 is also used. This choice allows to
drastically reduce the execution time, with a small increase
in the cost. This case confirms that the optimal selection
behaves as expected: an objective function where the cost
weights more than the execution time allows to achieve a
good performance paying a cost close to the minimum one.

In the second set of experiments, we estimate the compu-
tation cost of solving the optimization problem by evaluat-
ing the number of iterations needed to find the solution. The
experiments have been carried out by increasing the number
of concrete services available for the selection, under the
hypothesis that the concrete services are uniformly distrib-
uted among the abstract services. We solve the optimization
problem using two tools: the Matlab function fmincon
and SNOPT, which is a Fortran routine integrated into the
Tomlab package for Matlab. Both tools are based on the Se-
quential Quadratic Programming methods [2], but use dif-
ferent merit functions in the line search phase.

The analysis has been conducted considering both lin-
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Figure 4. Number of iterations vs number of
variables in the optimization problem.

ear (we = 0) and non-linear (we �= 0) objective func-
tions, with only linear constraints and with both linear and
non-linear constraints. For space reasons we report only
the worst case, that corresponds to have a non-linear ob-
jective function and both linear and non-linear constraints.
Figure 4 shows that the number of iterations needed to
solve the problem using SNOPT is one third of the itera-
tions required by fmincon. For 500 variables, the average
number of iterations is 19.75 with SNOPT and 67.55 with
fmincon. The execution time to solve the problem obvi-
ously depends on the characteristics of the machine used; in
our case (AMD Athlon 2.2Ghz, 1Gb RAM) and a 500 vari-
ables problem, we measured on average 33.8 seconds with
SNOPT and 511.86 seconds with fmincon.

6. Conclusions

We have addressed the problem of selecting service im-
plementations in a composite service managed by a broker
which supports multiple QoS classes. We have defined a
graph that models the candidate concrete services among
which the broker can statistically divide the flow of requests
for the composite service. Using this graph, we have for-
mulated a constrained multi-criteria optimization problem
which embeds various QoS attributes that may be mutually
independent or possibly conflicting. Our problem formula-
tion is extensible and can be modified to take into account
other QoS attributes.

We have analyzed the solution of the optimization prob-
lem in a simple and intuitive service scenario and evaluated
its computational cost. Our results show that, using an opti-
mized routine, we have obtained a low computational cost.
This makes suitable our approach to manage service selec-
tion in a real operating broker-based architecture, where the
broker efficiency in replying to the requestors cannot be ne-

glected. This paper is part of an ongoing research; future
work concerns the inclusions of other execution patterns in
our workflow model, the realization of the broker-based ar-
chitecture, and the analysis and modeling of a multi-broker
scenario, where the brokers cooperate or compete in the use
of the same concrete services.
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