
SLA-aware Resource Management for Application
Service Providers in the Cloud

Valeria Cardellini, Emiliano Casalicchio, Francesco Lo Presti, Luca Silvestri
Department of Computer Science, Systems and Production

University of Roma “Tor Vergata”, Roma, Italy
Email:{cardellini,casalicchio,silvestri}@ing.uniroma2.it, lopresti@info.uniroma2.it

Abstract—In the today Internet of Services, one of the
challenges of Application Service Providers (ASPs) is to
fulfill the QoS requirements stated in the Service Level
Agreements (SLAs) established with different consumers
and to minimize the investment and management costs.
Cloud computing is the promising solution for ASPs that
increasingly demand for an elastic infrastructure. In this
paper, we formulate the ASP resource management as
an optimization problem and propose both reactive and
proactive heuristic policies that approximate the optimal
solution. The proposed policies leverage on information
about the system performance history and can be applied
at runtime because of their reduced computational time.
Our experimental results show that some heuristics based
on prediction approximate the exact knowledge of the
workload.

I. INTRODUCTION

In the today Internet of Services, one of the
challenges of Application Service Providers (ASPs)
is to fulfill the QoS obligations defined in the
Service Level Agreements (SLAs) established with
different consumers and to minimize the investment
and management costs. To achieve these goals, the
ASPs need an infrastructure capable to rapidly scale
up in case of peak load, but flexible enough to
avoid resources over-provisioning in case of scarce
demand. Outsourcing of computational and storage
resources is a solution to this problem and the Cloud
computing paradigm [1] enables its implementation.
Relying on Cloud computing solutions, the ASPs
are relieved from the burden of setting up their own
data center (totally or in part), and are enabled to
instantiate an “elastic” set of resources that dynam-
ically adapt to their needs [2], [3].

Among all the challenges that Cloud computing
poses, in this paper we deal with the dynamic
QoS provisioning problem. According to the layers

of the Cloud stack (IaaS, PaaS, and SaaS), the
dynamic QoS provisioning problem can be managed
at infrastructure and platform levels (e.g., [4], [5],
[6], [7]) or at service level (e.g., [8], [9], [10]).
Service provisioning (or application-level resource
provisioning) is related to mapping applications to
application containers or applications directly to
virtual machines (VMs) in order to satisfy a SLA
agreed with the customers of the Cloud-based ap-
plications and to maximize revenues of the service
provider offering the applications.

Our work, framed in the context of application-
level resource provisioning, investigates policies and
mechanisms that an ASP can use to manage the
resources offered as a service by an IaaS provider.

Specifically, we propose an autonomic solution to
dynamically manage resources taking into account
both application QoS objectives and resource ex-
ploitation costs. We suppose that an ASP offering
a Cloud-based application chooses to lease compu-
tational power from an IaaS provider and to size
by its own the pool of allocated VMs. Therefore,
the ASP has to find out the number of VMs that
should be allocated to guarantee the SLA fulfillment
at application level, while minimizing the allocation
cost it pays for the computational resources over a
given time horizon T .

We formulate the optimal VM allocation as a
mixed integer linear optimization problem, where
the objective function accounts for the VM allo-
cation cost that will be charged in T , subject to
the fulfillment of the SLA constraints agreed with
the application customers. This approach has two
potential drawbacks. First, the problem is inherently
NP-hard. Second, in order to compute the opti-
mal solution the system workload should be either



known over the entire interval T or at least estimated
over such interval. To address these drawbacks, we
also propose and compare proactive and reactive
heuristics for resource provisioning which trade-off
computational complexity with system efficiency.
To evaluate the proposed policies we define a
stochastic workload model that reproduces the real
access patterns of Web application users. Differently
from previous works that consider SLAs defined on
average values of some performance metrics, our
autonomic resource management approach contem-
plates an SLA based on the maximum percentage of
violations of some Service Level Objective (SLO),
e.g., the response time, that the application cus-
tomers can tolerate. The SLA model we propose
is more indicated in a highly changing and unpre-
dictable environment because it contractualizes the
probability that SLOs are violated [11].

An increasing number of research have recently
proposed solutions to manage dynamically the VM
allocation at application level. In [10], Cloud cus-
tomers are empowered with their own dynamic con-
troller that automatically adds/removes VMs when
the CPU utilization exceeds a target range. In [7]
the application level is able to access mechanisms
and define policies to automatically size the num-
ber of instances of containers, thus reducing the
application cost. A heuristic approach, based on a
QN model, to guide resource allocation decisions
is in [9]. The allocation of spot instances has been
proposed in [8] to improve the SLA satisfaction; we
observe that spot instances are an adequate solution
only to provide non-critical Cloud-based applica-
tions. With respect to [12], in this paper we propose
a completely revised formulation of the service
provisioning problem, we improve the workload
prediction model, and we provide a comprehensive
experimental evaluation using a workload with long
range dependencies and bursty arrivals.

Dynamic VM provisioning and management are
also provided by commercial solutions, such as
Amazon EC2 Auto Scaling and Elastic Beanstalk.
The drawback of commercial solutions is that the
application service provider is unaware of the used
policies and how them can be tuned for its specific
needs. Moreover, the service provider can not easily
map the SLA requirements negotiated with its users
into the SLA agreed with the IaaS provider.

The rest of the paper is organized as follows.
In Section II we describe the system architecture
of the ASP. In Section III we first define the SLA
offered by the ASP to its customers, then present the
formulation of the VM allocation as optimization
problem. We propose the heuristics policies for
VM allocation in Section IV and in section V we
analyze the experimental results. We conclude in
Section VI.

II. SYSTEM ARCHITECTURE

We consider an Application Service Provider
(ASP) that offers a service accessible through a
Web service interface (e.g., WSDL) or a Web inter-
face (e.g., HTTP). To guarantee the offered service
level, the ASP leases computational capacity from
an IaaS provider. IaaS providers not only allow
to instantiate, on-demand, an arbitrary number of
VMs running the same system image, but they also
offer a portfolio of services, that range from load
distribution and performance monitoring to auto-
matic VM allocation. To achieve a high degree of
flexibility in allocating the computational resources
minimizing leasing costs on one hand and to comply
to customers requirements specified in the SLAs on
the other, the components of a Cloud-based system
can be organized according to the autonomic loop
(e.g., [13], [14], [7]). Therefore, in this paper we
suppose the ASP realizes an autonomic architecture
in order to fully control the resource management.
















































Fig. 1. System architecture of the ASP.

Figure 1 illustrates the autonomic system archi-
tecture that we envision for the ASP. On the right
side of the figure, there are the IaaS components
that provide some services to the ASP. Specifically,



the IaaS Performance Monitoring Service collects
aggregated performance indexes related to the VMs
that the ASP leases (e.g., response time, network
traffic, requests count) and provides them to the
ASP. The IaaS Load Balancing Service distributes
the incoming requests among the leased resources,
maintaining user sessions. The IaaS VM Allocation
Service is in charge to manage the allocation and
deallocation requests for virtual machines leased by
the IaaS provider.

On the left side of Fig. 1 there are the sys-
tem components implemented and controlled by
the ASP. The Workload Monitor and Performance
Monitor periodically estimate and forecast, on the
bases of collected historical data, the request arrival
rate and the VMs performance level, including the
application response time. The SLA Analyzer deter-
mines whether a new allocation strategy has to be
planned because of violations of the SLO agreed
with the application customers and, if necessary,
triggers the Provisioning Manager. The latter is the
core component of the envisioned autonomic sys-
tem, because it plans provisioning decisions to re-
act to (or anticipate future) environmental changes.
It uses the estimated and forecasted system state
information to parameterize the IaaS system model
that is used as input to the provisioning policy to
determine whether new VMs should be allocated,
running VMs should be deallocated (or let expired),
or no action should be taken at all. The Provisioning
Manager executes the resource provisioning plan
by sending the proper commands to the IaaS VM
Allocation Manager. The VM allocation policies are
presented in Sections III and IV.

III. VM ALLOCATION PROBLEM

In this section we present the VM allocation
problem. We assume time to be logically divided
into slots of equal length τ and that VM alloca-
tion/deallocation can only occur at slot boundaries.
We also assume that the different performance mea-
sures, e.g., expected response time, are computed
and averaged over a period of time of one slot.
Hereafter, for the sake of simplicity, we will assume
that all time intervals are integer multiples of a slot.

We consider an ASP that aims to determine a VM
allocation schedule over a time horizon of length
T . The allocation should minimize the allocation

cost paid by the ASP to the IaaS provider, while
guaranteeing some SLO defined in the SLA offered
by the ASP to its customers. The allocation sched-
ule takes the form of a sequence z1, z2, . . . , zi, . . .
where zi is the number of VMs allocated at the
beginning of time slot i. Without loss of generality,
we assume that a VM can be allocated for a period
which is a multiple of time intervals of length
Wa (corresponding to MWa

= Wa/τ time slots),
after which it is automatically deallocated (unless
implicitly renewed if a new VM is allocated at the
same time).

A. SLA Definition
We assume that the SLA offered by the appli-

cation service provider to its customers is a tu-
ple 〈Rmax,W, Vmax〉 where: Rmax is the maximum
value allowed for the average application response
time, i.e., the SLO; W is the length of the SLA
time window (we will denote by MW = W/τ
the corresponding number of slots); Vmax is the
maximum fraction of SLO violations allowed during
W (0 ≤ Vmax ≤ 1). The SLO is violated if
ri > Rmax, where ri is the expected application
response time at time slot i. If we suppose the SLA
is evaluated at each slot, the SLA is violated at
time slot i if a fraction Vi > Vmax violations have
been observed over the last time window W , i.e.,
over the last MW slots {i−MW +1, . . . , i}, where
Vi =

1

MW

∑i
j=i−MW+1

1 {rj > Rmax} , 0 ≤ Vi ≤ 1.
The ASP periodically monitors the performance

of the virtual machines (specifically, their service
rate µ) and the request arrival rate λ to the appli-
cation running in the Cloud through the Workload
Monitor and Performance Monitor components, as
described in Sec. II. Let us suppose that the ASP
system is also instrumented with a model to com-
pute the application response time as a function
of µ, λ, and the number x of allocated VMs.
Considering that the fraction of SLO violations can
be evaluated periodically by measuring how many
times the request response time exceeds the Rmax

threshold, we can evaluate the number x of VMs
that are needed to satisfy the SLA.

To this end, we model the IaaS system composed
by the Load Balancing Service and the set of
VMs as a network of M/M/1 queues. Under the
hypothesis that the flow of incoming requests is



equally distributed among the set of x VMs, the
expected application response time r is given by
r = 1

µ−λ/x .
Using this simple model, it is easy to compute

the number of VMs such that r ≤ Rmax (in our
model, we do not consider the delays introduced by
the ASP and the Load Balancing Service).

B. Problem Formulation
We now describe how to determine the optimal

virtual machine allocation over a time horizon T ,
starting from the problem constants and variables.

a) Constants:
• T is the time interval considered by the ASP

for the VM allocation problem; M is the cor-
responding number of slots;

• Wa is the VM allocation time period; MWa
is

the corresponding number of slots;
• λ̂i is the request arrival rate expected at time

slot i ∈ {1, . . . ,M};
• µ is the service rate of each VM. We as-

sume that the service time is exponentially
distributed and that all the VMs have the same
performance characteristics and therefore the
same service rate;

• xi,min is the minimum number of VMs needed
to guarantee a response time of Rmax. From
the response time formula we readily obtain:
xi,min =

λ̂iRmax

µRmax−1
.

• ci ∈ R is the cost to use a VM for Wa time
slots when the allocation is operated at time
slot i ∈ [1,M ]. Usually, ci is constant; however,
different billing models where the allocation
cost changes over time (e.g., due to energy
costs) can be considered.
b) Variables:

• zi ∈ N is the number of VMs to be allocated
at the beginning of time slot i ∈ {1, . . . ,M};

• xi ∈ N is the number of VMs available during
the time slot i ∈ {1, . . . ,M}. We have,

xi =

{
xi−1 + zi if 1 < i < MWa

xi−1 + zi − zi−MWa
if i ≥ MWa

(1)
i.e., the number of VMs available during slot i
is equal to: the number of VMs available during
the previous slot (xi−1) plus the number of new

allocated VMs (zi) minus the number of VMs
whose allocation period just ended (zi−MWa

);
• ξi is the number of additional VMs required to

ensure a response time equal to Rmax during
time slot i;

• ξ = maxi=1,...,M ξi is the maximum of the ξi
over the time horizon T ;

• yi ∈ {0, 1} is a binary variable equal to 1 if
there is a SLO violation at slot i, 0 otherwise.
c) Cost and Objective Function: Our goal is

to minimize the allocation cost over the interval T .
The VM allocation cost is C(z) =

∑M
i=1

cizi. Never-
theless, as objective function for the VM allocation
problem, we consider the following more general
objective function: F (z, ξ) =

∑M
i=1

cizi+Kξ which
allows us to explore the trade-off between allocation
cost and user perceived performance, expressed as
function of the degree of SLO violations. K is a
suitable non-negative constant: if K = 0, F (z, ξ) =
C(z); otherwise, F (z, ξ) is a weighted sum of
the allocation cost and the overall level of SLO
violation, here simply captured by the maximum
number of additional VMs which would be required
to ensure the SLO over T .

d) Optimization Problem: Under the assump-
tion that ri approximates the observed average re-
sponse time of the set of xi VMs, the optimal VM
allocation z = (z1, z2, ..., zM), which minimizes the
objective function F (z, ξ) while guaranteeing the
fulfillment of the SLA 〈Rmax,W, Vmax〉, is given by
the solution of the following optimization problem:

min F (z, ξ) =
M∑

i=1

cizi +Kξ

subject to:
xi = xi−1 + zi, 1 < i < MWa

(2)
xi = xi−1 + zi − zi−MWa

, i ≥ MWa
(3)

xi + ξi ≥ xi,min, i ∈ {1, . . . ,M} (4)
ξi ≤ yiB, i ∈ {1, . . . ,M} (5)
ξi ≤ ξ, i ∈ {1, . . . ,M} (6)

1

MW

i∑

j=i−MW +1

yj ≤ Vmax, i ∈ {MW , . . . ,M} (7)

xi ≤ Xmax, i ∈ {1, . . . ,M} (8)
zi, ξi, ξ ≥ 0, i ∈ {1, . . . ,M} (9)

xi, zi ∈ N, i ∈ {1, . . . ,M} (10)

(2)-(3) are just Eqs. (1) which relate the number
of available VMs xi with the number of allocated



VMs zi. Inequalities (4) are the SLO constraints:
if xi ≥ xi,min, the SLO is satisfied and ξ = 0; if,
instead, xi ≤ xi,min, there is a SLO violation and ξ is
the number of additional VMs which would ensure a
response time equal to Rmax. Inequalities (5) ensure
that yi = 1 whenever ξi > 0, i.e., when there is a
SLO violation, being B a large constant. (7) is the
SLA constraint on the maximum number of SLO
violations; the LHS corresponds to Vi, the number
of SLO violations in [i−MW +1, i]. Finally, Eqs. 8
are the functional constraints: here we assume that
the maximum number of VMs that can be allocated
at any given time cannot exceed a given constant
Xmax. We observe that, while we included them in
the constraints, it is not necessary to consider the
integrality constraints for the variables zi, which are
implicitly enforced by the constraints (2)-(3) and the
integrality constraints on the variables xi.

The proposed optimization problem is a Mixed
Integer Linear Programming (MILP) problem which
can be solved via standard techniques. Since the
complexity is exponential in the number of integer
variables, the computational cost might turn to be
prohibitive for online operations, unless we consider
a shorter time interval T and/or a coarser time gran-
ularity, i.e., a large τ . In the next section we present
some heuristics for the VM allocation problem.

IV. HEURISTIC VM ALLOCATION

In this paper, we propose both reactive and
proactive heuristic policies for the VM allocation.
Irrespectively from the policy, the heuristic VM
allocation process is in Algorithm 1, where reqVMi
is the number of required VMs and expVMi−1 is the
number of VMs whose billing period expires at the
end of the current time slot.

In this paper, we propose the following heuristic
allocation policies.
Exact knowledge (EK) assumes that the average

arrival rate λi in the upcoming time slot i is known
exactly at the beginning of that time slot and that the
arrivals are uniformly distributed within the single
time slots. The minimum number of VMs needed
to meet the SLO in every slot is given by xi,min,
defined in Section III. To prevent workload fluctu-
ations that will exceed λi and therefore that could
result in SLO violations, this policy overestimates

the arrival rate as follows: λ̂i = (1 + α)λi, where
α > 0.
Reactive 1 step early (r-1) measures the average

arrival rate λi−1 observed in the previous time slot
i − 1 and sizes the set of VMs assuming that the
estimated arrival rate in the following time slot will
be λ̂i = (1 + α)λi−1, where α > 0. As in the
EK policy, the number of needed resources in every
slot is given by xi,min, taking into account only the
constraint on the maximum response time Rmax.
Proactive 1 step ahead, Y% (p1-Y), our proactive

policy that uses a prediction algorithm based on Re-
cursive Least Square (RLS) to forecast the workload
in the next time slot of length τ . Specifically, the
prediction algorithm uses an autoregressive process
of order 2 AR(2), whose weights and white noise
process variance are continuously estimated using
the RLS method [15]. In particular, the p1-Y policy
predicts the one step ahead Y% upper bound of the
request arrival rate using the RLS-based prediction.
The number of needed VMs is given by xi,min,
assuming that the estimated arrival rate is given by
λ̂i = λ̃i + a(Y )σ̂2(i) where: λ̃i is the forecasted
average request arrival rate, σ̂2(i) is the white noise
variance of the process and a(Y ) is equal either
to 1.96 for the 95-percentile upper bound (Y =
0.95) or to 2.56 for the 99-percentile upper bound
(Y = 0.99). Since the prediction is carried out only
one step ahead, this policy is not capable to prevent
SLA violations but only to guarantee that the SLO
is honored in the current time slot.

Algorithm 1 Heuristic VM allocation
1: reqVMi =heuristicAlg(log);

{heuristicAlg(log) estimates the
number of VMs needed to avoid SLO
violations in the time slot i using one of the
heuristic policies}

2: if reqVMi > xi−1 then
3: xi = reqVMi;
4: else if reqVMi < xi−1 then
5: xi = min{(xi−1 − reqVMi), expVMi−1};

{expVMi−1 = number of VMs whose billing
period expires at the end of time slot i− 1 }

6: end if



V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed
heuristic policies versus the optimal VM allocation
we proceed as follows. First, we define a stochastic
workload model that presents long range depen-
dencies and bursty behavior. Second, we define an
appropriate set of performance metrics to evaluate
and compare the proposed policies. Finally, we
present a large set of simulation experiments to
evaluate the sensitivity of the heuristic policies to
their tunable parameters and to compare their per-
formance. The setting of the main parameters used
in the simulation experiments is shown in Tab. I.

TABLE I
VALUE SETTING FOR THE MAIN SYSTEM MODEL PARAMETERS

Parameter Notation Value
Time horizon T 168 hours
Length of VM allocation
time

Wa 1 hour

Time slot τ 5 min.
Service rate of each VM µ 10 req/sec
Allocation cost ci 0.1 $
Maximum response time Rmax 0.5 sec
Maximum fraction of
SLO violations

Vmax {0.1, 0.25, 0.35}

Length of SLA time
window

W {0.5Wa,Wa, 2Wa}

Weight of the overall
level of SLO violations

K 0 - 105

To evaluate our policies we consider a stochas-
tic workload model that reproduces the time de-
pendency and bursty characteristics of real work-
loads. Specifically, using standard techniques, we
first model an excerpt of the 1998 FIFA World
Cup traces [16] with a discrete time Markov chain
(DTMC). Then, through the obtained model, we
generate a synthetic trace that has the same stochas-
tic properties of the original trace. To evaluate
the heuristic policies we used 20 instances of a
long workload lasting 168 hours (Fig. 2). The 20
workload instances are obtained by changing the
random number sequences used to generate the
stochastic variables. We evaluate the optimal and
heuristic policies against the following metrics.

• The overall allocation cost C (measured in
$ and over T ) defined in Sec. III-B. In our

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
rri

va
l r

at
e

Workload instances

Fig. 2. The 20 instances of workload used in the experiments:
vertical dotted lines separate the runs, being the length of each run
168 hours.

experiments, we observed that the randomly
generated workload can have a highly variable
intensity (see Fig. 2) that results in VM alloca-
tion costs with a high variance. Therefore, to
take the worst cases into account we consider
the 95-percentile of C.

• The SLA satisfaction factor (SSF) over the time
horizon T defined as: SSF = 1 − Pr{Vi >
Vmax}, 0 ≤ SSF ≤ 1, where Pr{Vi >
Vmax} = 1

M−MWa+1

∑M
i=MWa+1

1 {Vi > Vmax}
and Vi is the fraction of SLO violations defined
in Sec. III-A.

• The fraction of SLO violations Vi at time slot
i. The latter metric allows us to evaluate the
behavior of the optimal allocation policy under
different combinations of tuning parameters.
While the optimal allocation policy achieves
SSF = 1 by definition, the number of SLO
violations can range from 0 to Vmax with a non
negligible impact on the allocation cost.

To evaluate the behavior of the heuristic policies
we set: T = 168 h, Rmax = 0.5 sec, Wa = 1 h,
W/Wa = {0.5, 1, 2}, and Vmax ∈ {0.1, 0.25, 0.35}.

We first analyze the sensitivity of the EK and
r-1 heuristics to the α parameter. Table II shows
the corresponding results. The EK strategy, that
assumes to know exactly the workload at time slot
i, obtains no violation at the same cost of the r-1
policy, because the same values of the α parameter
are used to over-estimate the request arrival rate. For
r-1, α = 0.1 turns out to be the best setting because
it allows to achieve the lowest cost-performance
ratio, i.e., C/(1 − Pr{V > Vmax}); therefore, we
will use it for the comparison.



TABLE II
EK AND r-1 HEURISTICS: SENSITIVITY TO α

Heu. α C SLA satisfaction factor
95-% Vmax=.1 Vmax=.25 Vmax=.35

0.1 181.4 0.9791 0.9982 1
r-1 0.2 196.55 0.962 1 1

0.3 212.47 0.9984 1 1
0.1 181.31 1 1 1

EK 0.2 196.51 1 1 1
0.3 212.34 1 1 1

After the choice of values of the tuning param-
eters, we compare the different heuristic allocation
policies, as shown in Fig. 3.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

EK r-1 p1-95 p1-99

SL
A

 sa
tis

fa
ct

io
n 

fa
ct

or

Heuristic policy

Vmax=10%
Vmax=25%
Vmax=35%

(a) SLA satisfaction factor

 0

 50

 100

 150

 200

 250

EK r-1 p1-95 p1-99

95
-p

er
c.

 o
f a

llo
ca

tio
n 

co
st 

($
)

Heuristic policy

Vmax=10%
Vmax=25%
Vmax=35%

(b) Allocation cost

Fig. 3. Comparison of heuristics.

The EK policy, that at the beginning of each
time slot assumes to knows the average arrival rate
for that slot, outperforms all the other heuristics in
terms of SLA satisfaction and allocation cost. The
r-1 is the second best allocation policy offering,
in the worst case, a SLA satisfaction factor of the
98% at the same cost of the EK. A not expected
result is that the proactive heuristics (p1-95 and
p1-99) suffer in predicting both the arrival and
termination of bursts. When the workload is charac-

terized by intense fluctuations, the slow convergence
of the prediction algorithm first results in SLO
violations (when the burst of requests arrives) and
then in resource over-provisioning (when the burst
terminates). This behavior determines a lower SLA
satisfaction factor and a higher allocation cost with
respect to the reactive heuristic policy r-1.

VI. CONCLUSIONS

In this paper, we proposed an autonomic solution
that enables service providers offering a Cloud-
based application to handle the dynamic resource
provisioning at application level by taking into ac-
count both application QoS objectives and resource
exploitation costs.

The experimental evaluation gives some useful
insight into the optimal allocation policy and the
heuristics. First, we observed that the performance
of the optimal policy depends on the setting of the
parameters K, W , and Wa. Second, we observed
that the behavior of the r-1 and p1-Y heuristics is
comparable in terms of SLA satisfaction, while the
r-1 heuristic outperform the other policies in term
of allocation cost. The lessons learned is that while
the system behavior can be approximated with a
simple model, the r-1 resource management strategy
is the most appropriate choice that allows to obtain,
in the worst case, a SLA satisfaction factor only
two percent points less than the Exact Knowledge
solution.

In our future work, we plan to extend the system
model and to consider more non functional require-
ments in the SLA definition.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Gener. Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[2] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
“Elastic management of cluster-based services in the cloud,” in
Proc. ACDC ’09. ACM, 2009, pp. 19–24.

[3] T. Dornemann, E. Juhnke, and B. Freisleben, “On-demand
resource provisioning for BPEL workflows using Amazon’s
Elastic Compute Cloud,” in Proc. CCGRID ’09, 2009.

[4] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered
on-demand resource scheduling for vm-based data center,” in
Proc. CCGRID ’09, 2009, pp. 148–155.

[5] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive
and self-configured cpu resource provisioning for virtualized
servers using kalman filters,” in Proc. ICAC ’09. ACM, 2009.



[6] H. Nguyen Van, F. Dang Tran, and J.-M. Menaud, “SLA-aware
virtual resource management for Cloud infrastructures,” in Proc.
of CIT ’09, 2009.

[7] M. Litoiu, M. Woodside, J. Wong, J. Ng, and G. Iszlai, “A
business driven cloud optimization architecture,” in Proc. of
2010 ACM Symposium on Applied Computing, 2010.

[8] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud
computing under SLA constraints,” in Proc. MASCOTS ’10,
2010, pp. 257–266.

[9] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provision-
ing for cloud computing,” in Proc. CASCON ’09. ACM, 2009.

[10] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated
control in cloud computing: challenges and opportunities,” in
Proc. ACDC ’09. ACM, 2009, pp. 13–18.

[11] R. Powers, M. Goldszmidt, and I. Cohen, “Short term perfor-
mance forecasting in enterprise systems,” in Proc. KDD ’05.
ACM, 2005, pp. 801–807.

[12] E. Casalicchio and L. Silvestri, “Medium/long term SLA provi-
sioning in cloud-based service providers,” in Proc. of 2nd ICST
Int’l Conf. on Cloud Computing, 2010.

[13] I. Brandic, “Towards self-manageable cloud services,” in Proc.
COMPSAC ’09, vol. 2, 2009, pp. 128–133.

[14] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini,
“Qos-aware clouds,” in Proc. of 3rd IEEE Int’l Conf. on Cloud
Computing, 2010, pp. 321–328.

[15] S. Haykin, Adaptive Filter Theory, 3rd ed. Prentice-Hall, 1996.
[16] M. Arlitt and T. Jin, “A workload characterization study of the

1998 world cup web site,” IEEE Network, vol. 14, no. 3, pp.
30 –37, May 2000.


