
Bidding Strategies in QoS-Aware Cloud Systems
Based on N-Armed Bandit Problems

Marco Abundo∗, Valerio Di Valerio†, Valeria Cardellini‡ and Francesco Lo Presti§

Department of Civil Engineering and Computer Science Engineering
University of Roma Tor Vergata, Italy

∗marco.abundo@gmail.com, †di.valerio@ing.uniroma2.it, ‡cardellini@ing.uniroma2.it, §lopresti@info.uniroma2.it

Abstract—In this paper we consider a set of Software as a
Service (SaaS) providers, that offer a set of Web services using
the Cloud facilities provided by an Infrastructure as a Service
(IaaS) provider. We assume that the IaaS provider offers a pay
only what you use scheme similar to the Amazon EC2 service,
comprising flat, on demand, and spot virtual machine instances.
We propose a two-stage provisioning scheme. In the first stage,
the SaaS providers determine the number of required flat
and on demand instances by means of standard optimization
techniques. In the second stage, the SaaS providers compete by
bidding for the spot instances which are instantiated using the
unused IaaS capacity. We put our focus on the bidding decision
process by the SaaS providers, which takes place during the
second stage, and apply N-armed bandit problems, in which
the player is faced repeatedly with a choice among N different
options, and every time he submits his decision evaluating
past feedbacks. Through numerical experiments, we analyze
proposed strategies under different scenarios and prove the
SaaS providers ability to refine their behavior round by round
and to determine the best bid so to maximize their revenue and
achieve as many spot resources as possible, also addressing the
importance of a trade-off between exploration and exploitation,
i.e., among greedy and non-greedy actions.

Keywords-Cloud computing, N-armed bandit problems, pro-
visioning, QoS, SLA, auctions

I. INTRODUCTION

In the past few years, cloud computing has been experi-
encing an ever increasing growth. More and more companies
are taking advantage of commercially available services
provided by Infrastructure as a Service (IaaS) providers,
that allow to scale up or down computing resources as
demand changes by allocating or deallocating rapidly virtual
computing and storage resources. IaaS services let Software
as a Service (SaaS) providers offer fresh applications, with
no need to maintain underlying infrastructures.

IaaS providers usually make resources available as Virtual
Machine (VM) instances to customers, and this process is
often governed by a pay-as-you-go model on a per-hour
basis at a fixed price (on demand VMs).

If resource utilization can be forecasted in advance, then
IaaS customers can also reserve flat VMs, paying a long-
term reservation fee in addition to a per-hour price depend-
ing on the effective resource usage, of course cheaper than
the on demand price. Since flat and on demand instances do

not saturate the IaaS provider capacity, he can sell the spare
capacity as spot VMs via an auction.

For SaaS providers, spot instances provide cost-effective
means to deal with unexpected load spikes and support
high computation-demanding applications, but at the risk
of a lower reliability than flat and on demand instances,
since the IaaS provider can deallocate spot instances without
notice due to price and demand fluctuations. For example,
Amazon’s Elastic Cloud Computing (EC2) service offers
three distinct types of VM instances (i.e., flat, on demand,
and spot VMs) [1], governed by different fees and reliability.

In this paper we consider a Cloud environment in which
an IaaS provider offers flat, on demand, and spot VM
instances to a set of SaaS providers. In turn, SaaS providers
make available to their end users Web services with Quality
of Service (QoS) constraints, through the IaaS resources
used to run the offered applications. Revenues and penalties
of each SaaS provider are regulated according to the respect
of an agreed performance level, specified in a Service Level
Agreement (SLA) contract stipulated with end users. As a
consequence, SaaS providers have to address the issue of
allocating the optimal number of VMs to satisfy their SLAs
while still maximizing their revenues.

We consider a two-stage resource provisioning and pricing
strategy. In the first stage, each SaaS provider independently
requests the number of flat and on demand VMs determined
by solving an optimization problem. In the second stage,
all the SaaS providers take part into an auction for the
still available IaaS provider capacity offered as spot VMs.
The bidding mechanism requires each SaaS provider to
specify the maximum price he is willing to pay for a spot
VM, and the number of requested VMs; then, the IaaS
provider computes the spot price. When the SaaS provider
bid is lower than the spot price, he will get no resource.
Otherwise, the SaaS provider will receive all requested
resources, paying them at the price set by the IaaS provider.

We study the SaaS provider bidding strategy under the
realistic assumption that, at each step, a SaaS user has no
knowledge of the behaviour of the other users, their number,
as well as the amount of spare resources the IaaS provider
wants to sell. Hence, we assume each SaaS provider can
only learn the bidding strategy through experience over



time. To this end, we resort to reinforcement learning (RL)
techniques [2].

Specifically, we formulate the bidding strategy as an N-
armed bandit problem [2]. In N-armed bandit problems, the
player is repeatedly faced with a choice among N different
actions, which in our setting represent possible bids, and,
every time he submits his decision, he receives a numerical
reward (or cost/regret) depending on the performed decision.
Such type of problems is particularly suitable to our setting,
since it requires no knowledge of the environment and its
dynamics. By observing the incurred regret depending on the
chosen action, the SaaS provider learns over time the bidding
strategy which minimizes the cost by judiciously trading off
exploitation of the past experience (the greedy choice of the
immediately best option) and exploration (selection of non-
greedy, hence possibly suboptimal actions). To the best of
our knowledge, N-armed bandit problems have not yet been
applied to cloud resource allocation problems.

We study the effectiveness of the resulting bidding strate-
gies through simulation experiments under different settings.
Specifically, we study the SaaS provider behaviour under
different IaaS provider pricing policies, namely clearing
market, constant, random or a combination of the above
approaches. We also consider the special case in which the
IaaS provider himself uses a N-armed bandit approach to
determine his pricing scheme. We also explore the trade-off
between exploration and exploitation.

Our results reveal that, through the appliance of N-
armed bandit problems and a thorough trade-off between
exploration and exploitation, SaaS providers succeed, round
by round, in refining their behaviour and allocating as many
spot resources as possible by means of the best bid.

The rest of the paper is organized as follows. In Section II
we review some related research efforts, while in Section III
we introduce N-armed bandit problems. In Section IV we
provide the problem statement and define the system model.
We describe the solution to the bidding problem, based on
the spot instances sale through an auction, in Section V. In
Section VI we analyze through numerical experiments the
behavior of the proposed strategies. Finally, we draw some
conclusions and give hints for future work in Section VII.

II. RELATED WORK

A considerable number of research efforts have focused on
resource allocation policies in dynamic environments and on
the adoption of auction mechanisms. Mastronarde and van
der Schaar addressed in [3] the issue of providing media
services to multiple autonomous wireless users at the edge
of a content delivery network in a setting where resources
are priced on the basis of real-time market demands. They
adopted the progressive second price auction mechanism and
dealt both with learning solutions that require an agent to
collect information about his opponents’ bids, and a greedy
solution that does not rely on it, as in this paper. Another

common point with our work is that no strict state model is
applied, and this is particularly important for actual dynamic
scenarios in which few hypotheses can be taken.

Two recent proposals in [4], [5] adopt action-based mech-
anisms to deal with spot instances. In [4] Song et al.
proposed a mechanism based on a repeated uniform price
auction and proved its truthfulness. To achieve a better
quality of service, they exploited the flexibility of adjusting
bids during job execution and discussed a related bidding
adjustment model. They showed that a uniform price action
achieves optimal efficiency among all single-price auctions
in a data center spot market. In [5] Wang et al. proposed
dynamic auctions where computing instances are period-
ically auctioned off to accommodate user demands over
time. They addressed the two main challenges of revenue
maximization and auction truthfulness, and encompassed an
allocation scheme to determine the amount of instances to
be auctioned off in each period, based on the approximated
solution of an analytical MDP, differently from our paper.

Learning strategies alternative to our approach were also
proposed in [6] (defining competitive behavior as a conjec-
tural equilibrium), [7] (focusing on cooperation strategies),
[8] (based on a stochastic game framework) and [9], [10]
(optimizing performance of distributed platforms via bandit-
based RL algorithms).

An interesting reverse engineering analysis of the price of
Amazon EC2 spot instances was conducted by Ben-Yehuda
et al. [11]. By analyzing the spot price history, they built
a model generating prices consistent with existing price
traces. Their findings suggest prices are not market-driven
(differently from what stated in [12], [13]), but are rather
likely generated most of the time at random within a tight
price range via a dynamic hidden reserve price mechanism.

N-armed bandit problems [14], [15] have been applied to
many settings, but to the best of our knowledge they have
been never applied to cloud resource allocation scenarios,
as done in this paper. In [16], Kalathil et al. studied the
problem of distributed online learning with multiple players
in multi-armed bandits and proposed an online index-based
distributed learning policy. In [17], N-armed bandits have
been applied in pay-per-click auctions for Internet advertis-
ing, while in [18] for truthful sponsored search auctions and
in [19] for keywords selection by search-based advertising.

III. PRELIMINARIES: N-ARMED BANDIT PROBLEMS

The N-armed bandit problem is the problem a decision
maker faces when deciding, repeatedly, which action to play
among a set of N actions. Each action has a mean cost
associated to it and the player goal is to minimize the sum
of the costs paid through a sequence of actions. However,
the player does not know the cost associated to each action,
otherwise the problem would be trivial, but it is assumed
he can estimate such value. Through subsequent rounds, the



player aims at refining his estimation to learn which are the
best actions and concentrate his choice on them.

Suppose that at time t action ai is chosen for the n-th
time and the resultant cost is qn(ai). The estimation of the
mean value of ai can be simply defined as follows:

Qt(ai) =

∑n
j=1 qj(ai)

n
(1)

At any time there is at least one action whose estimated
value Qt(ai) is the lowest: the greedy action. When the
player chooses it, then he exploits his experience. If instead
the player selects one of the non-greedy actions, then we
say he is exploring: he is improving the estimation Qt(ai)
of the non-greedy action’s value. Exploitation is the best
way to minimize the expected cost on a single round, while
exploration lets refine the experience information base and
achieve a lower cost on the long run. It is clear how to learn
the best actions and still minimize paid costs requires to
carefully trade-off between exploitation and exploration.

A common approach to get at this is to use the ε-
greedy heuristic [2], switching many times from selecting
the greedy action and taking one of the others. Formally,
the player acts greedily with probability 1 − ε and non-
greedily with probability ε, choosing a random non-greedy
action from a uniform distribution. This lets, on the long run,
update estimated action costs and re-think wrong approaches
that seemed effective. We adopted, among others, an ε-
greedy strategy because, as stated in [2], despite its simplic-
ity, it is still the best among practically useful algorithms.

N-armed bandit problems are a basic but effective variant
of reinforcement learning [2], particularly suitable to settings
in which the action performed in the current decision round
has no influence on future costs, system states, and decisions.
Indeed, evaluative feedback in N-armed bandit problems
only looks at the past but it is not forward-looking like in
reinforcement learning, i.e., it does not take into account
future rounds and future states, but only the current situation.

IV. SYSTEM MODEL

We consider a set U of SaaS providers, each one offering
a set of Web services/applications Au, u ∈ U by taking
advantage of the VM resources offered by an IaaS provider.
Let each Web service k ∈ Au be featured by a SLA that
determines its QoS levels, i.e., the service response time, and
the associated cost/penalty for its usage. The Web services
are hosted on virtual machines instantiated by the IaaS
provider. For the sake of simplicity, we assume the IaaS
provider offers only one size of VMs, so that all VMs have
the same capacity. We further assume that each VM hosts
only one Web service. In turn, the same service can be hosted
on multiple VMs; in that case, the workload is evenly shared
among hosting VMs. The single-layer modeling, although
with horizontal scaling, is a simplification, because modern
applications are based on front-end and back-end logics,
with different specialized layers.

The IaaS provider can offer to his users up to S VMs,
selling them as flat, on demand, and spot instances. Flat
instances are featured by a one-time payment plus a payment
of ϕ units per hour of actual use. On demand instances have
no one-time payment and are sold at a price δ, strictly greater
than ϕ. Finally, spot instances are sold at a price σ. However,
their price σ is not fixed, rather it varies over time according
to users bids and the IaaS provider pricing strategy.

Each SaaS provider determines for each Web service k
the number of flat fu,k, on demand du,k, and spot su,k
VMs to be allocated which maximizes his revenue, given
the predicted arrival rate Λu,k and the application SLA.
We assume the SaaS providers’ SLA consists of an upper
bound on the application response time Ru,k. Moreover, we

assume the user per-request cost Cu,k = Cu,k

(
1−

Ru,k

Rmax
u,k

)
to be a decreasing linear function of Ru,k, that becomes
negative (hence, the SaaS provider incurs a penalty) when
Ru,k > Rmax

u,k . We denote with mu,k = − Cu,k

Rmax
u,k

the slope of
this function. Modeling the cost as a linear function of the
response time is an approximation: a fixed penalty whenever
the maximum response time is exceeded would be more
realistic; in addition, usually revenue does not scale linearly
since stocks may give rise to discounts. Nevertheless, this
allows us: (1) to consider a soft constraint on the response
time, which enables the SaaS provider to trade-off revenues
and infrastructural costs [20], [21]; (2) to model the SaaS
providers gain to let them buy more VMs than the bare es-
sential in order to satisfy the SLA, to increase the application
reliability and performance and, in turn, their reputation.

We model each Web service on a VM as an M/G/1/PS
queue with an application dependent service rate µu,k. Under
the assumption of perfect load sharing among multiple VMs
assigned to the same application, we have the following
general expression for the per-hour SaaS profit (see [20],
[21]); the first term represents the SaaS provider revenue,
while the others the cost to use the IaaS provider facilities:

Θu =
∑
k∈Au

mu,kΛu,k
(
fu,k + du,k + su,k

)
µu,k

(
fu,k + du,k + su,k

)
− Λu,k

+

−ϕ
∑
k∈Au

fu,k − δ
∑
k∈Au

du,k − σ
∑
k∈Au

su,k (2)

A. Provisioning Scheme

We assume that every hour SaaS providers allocate and
deallocate VMs relying on a future workload prediction. In
this paper we follow the approach proposed in [21] and
we consider a two-stage allocation procedure. In the first
one, each SaaS provider independently determines, for each
offered service, the number of flat and on demand instances1

1Observe that, in case of flat instances, this number represents how
many already allocated flat instances will be used to implement the offered
services (a SaaS provider does not pay the per hour cost of unused flat
instances).



which guarantees the performance level defined in the SLA
to his prospective users and maximizes his profit. The second
stage is devoted to the spot instances sale. We assume
the IaaS provider implements some auction mechanism.
Hence, SaaS providers compete for additional resources by
submitting to the IaaS provider the bid, which defines the
maximum per VM price they are willing to pay, and the
number of requested VMs. In the next section we present
the proposed bidding strategy, while in the remaining of this
section we describe how a SaaS provider can compute, given
the chosen bid, the number of VMs to be acquired.

1) First Stage: Flat and on Demand VM Allocation: In
the first stage, each SaaS provider independently determines
the optimal number of flat and on demand VMs that are
needed to sustain the predicted load for the next hour while
maximizing his profit. We assume that the IaaS provider has
always enough resources to accomodate the SaaS providers
demand. For each SaaS provider u ∈ U we have the
following optimization problem, as explained in [21]:

max Θu (3)

subject to:
∑
k∈Au

fu,k ≤ fu (4)

Λu,k

µu,k(fu,k + du,k)
≤ Umaxu , ∀k ∈ Au (5)

fu,k, du,k ≥ 0, ∀k ∈ Au (6)

Constraint (4) ensures that the flat instances allocated to
SaaS provider u are less than or equal to the number of
reserved ones fu. Constraint (5) guarantees that resources
are not saturated, in particular that their utilization is less
than a threshold Umax

u . Note that, as in [20], [21], we
deal with a relaxation of the real problem, because we do
not impose to the variables to be integers. Otherwise, the
problem would be too difficult to solve (i.e., NP-hard).

2) Second Stage: Spot Instances Sale: The second stage
is devoted to the spot instances sale. The SaaS providers can
increase their revenues by acquiring additional resources, so
that the service response time may decrease paying a price
lower than that for on demand VMs. Spot instances are made
available by the IaaS provider via a bidding mechanism. The
latter requires each SaaS provider to specify the maximum
price σu he is willing to pay for a spot VM, and the number
of requested VMs s∗u =

∑
k∈Au

s∗u,k. Assuming a given
bid σu, s∗u,k can be computed by maximizing Θ̄u, which
is obtained from Θu by replacing variables fu,k and du,k
with the number of flat (f̄u,k) and on demand (d̄u,k) VMs
purchased in the first stage:

Θ̄u =
∑
k∈Au

mu,kΛu,k(f̄u,k + d̄u,k + su,k)

µu,k(f̄u,k + d̄u,k + su,k)− Λu,k
− su,kσu (7)

V. BIDDING APPROACH

We model the bidding problem as an N-armed bandit
problem. We describe in Section V-A how we model the

key elements for N-armed bandit problems: the actions set
and the cost associated to each action. Then, in Section V-B
we discuss how to deal with a non stationary environment,
when average costs associated to each action varies over
time.

A. N-armed Bandit Model

1) Actions: Let A be a discrete set of N actions, such
that A = {a1, a2, ..., aN}. Each action ai is a couple, i.e.,
ai = (σu, s

∗
u), where σu is the bid and s∗u the number of

requested spot VMs, computed by solving (7).
2) Costs: We model the cost associated to a chosen action

as the regret with respect to a desired optimal situation. We
remark that this cost is unknown a priori but depends, time
by time, on the auction outcome, i.e., the spot price σ̂.

Given the spot price, the regret can be evaluated by
leveraging the player desire to optimize the number of
allocated spot VMs. When σu < σ̂, then the player obtains
no resource, and the regret is full. On the contrary, if σu ≥ σ̂,
then the player will receive all the s∗u resources paying them
s∗uσ̂, and there are two possible situations:
• the player has no regret, since σu = σ̂ and he requested

exactly the number of resources he could obtain;
• the player has some regret: the estimation of the spot

price (his bid) was greater than the real σ̂. Therefore,
despite he is paying σ̂, he has demanded a number of
resources lower that that he could have required.

The optimal number of resources sou that the player u
could have requested can be computed by maximizing Θ̄u

with a bid of σ̂ as input. Hence, the single cost ψu, at every
round, is given by the percentage of resources that could
have been obtained but were not:

ψu(ai) =
sou − s∗u
sou

, 0 ≤ ψu ≤ 1 (8)

Let ηai
u be the number of times player u has so far chosen

action ai and ψuj
(ai) the cost experienced by player u the

j-th time he selected option ai. The estimated cost for ai is
given at every round t by the average observed cost:

Ψut (ai) =

∑η
ai
u
j=1 ψuj (ai)

η
ai
u

(9)

B. Discounted Value of Experience

The N-armed bandit method discussed above suits well
in stationary environments, but becomes unsuitable if the
bandit changes its working principles over time. When the
IaaS provider always applies the same price selection policy,
e.g., a constant spot price strategy or a stable market driven
strategy, then the hypothesis of a stationary environment can
be held, as shown by the experimental results in Section VI.
On the other hand, when the feedback from the external en-
vironment is quite heterogeneous, the reinforcement learning
problem cannot be approximated to an effectively stationary
one, and, as stated in [2], the player needs to weight recent



regrets more than long-past ones. This can be achieved via
a discount parameter α, with 0 ≤ α ≤ 1. In this case,

Ψut+1 (ai) = αΨut (ai) + ψut+1 (ai) (10)

where ψut+1
(ai) is equal to 0 both when there is no

regret and when action ai has not been performed. Hence,
Ψut+1(ai) is a weighted average of past regrets:

Ψut+1 (ai) = αΨut (ai) + ψut+1 (ai) = ... =

t+1∑
j=0

αt−j+1ψuj (ai) (11)

VI. EXPERIMENTAL RESULTS

In this section we investigate through numerical exper-
iments the behavior of the proposed bidding strategy. In
order to analyze our strategy against several IaaS provider
pricing policies, we examine different scenarios. We con-
sider market-driven, constant, random, and strategic pricing
policies, and a turnover of all of them. We measure the
effectiveness of the bidding strategy through the average
ratio between the number of spot resources achieved by SaaS
providers (s∗u) and the optimal value that could be obtained
(sou); the higher this value, belonging to [0, 1], the smaller
the mean regret. Furthermore, we also consider the fraction
of times that each SaaS provider selects a particular bid and
the IaaS provider applies a given spot price.

We consider 10 SaaS providers, each of whom applies
the proposed bidding strategy, and assume that each SaaS
provider offers only one Web service (i.e., k = 1) and the
IaaS provider has potentially infinite resources to allocate.
Since we focus on the bidding process for spot instances,
all the considered scenarios have the same parameters for
flat and on demand VMs allocation, inspired to the costs
of real IaaS providers and corresponding to those already
adopted in [20], [21]. Specifically, the following parameters
hold in all the settings: ϕ = 0.24$, fu = 4, δ = 1.24$,
µu,1 = 0.9 req/s, mu,1 = −1, Umax

u = 0.9, Λu,k uniformly
distributed in [30, 80] req/s and changing at every round.
For all scenarios, 30 different runs were performed. The
experience was reset at every run, while, on the other hand,
statistics about actions and resources were kept. In all cases,
SaaS providers can select among 5 different options: 0.1$,
0.2$, 0.3$, 0.4$, 0.5$.

A. Community and Market-driven Approach

In the first scenario the IaaS provider takes the decision
about the threshold σ̂ (the spot price paid by the Saas
providers for a resource if they submitted a bid greater or
equal) according to a market-driven strategy. In other words,
he chooses σ̂ s.t. he maximizes his per-hour revenue:

σ̂ = argmaxσ
∑
u∈U

σs∗u (12)

According to the ε-greedy approach, when exploring,
players take a random action with probability 0.05, selecting

Table I
SCENARIO A: SAAS PROVIDER BEHAVIOR

σ
SaaS Provider 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

1 0.9261 0.0435 0.0101 0.0102 0.0101
2 0.9262 0.0436 0.0101 0.0100 0.0101
3 0.9279 0.0419 0.0101 0.0101 0.0100
4 0.9280 0.0419 0.0101 0.0101 0.0099
5 0.9278 0.0419 0.0100 0.0101 0.0103
6 0.9278 0.0420 0.0102 0.0101 0.0100
7 0.9278 0.0420 0.0102 0.0100 0.0100
8 0.9281 0.0418 0.0101 0.0100 0.0100
9 0.9252 0.0445 0.0101 0.0102 0.0101
10 0.9277 0.0416 0.0105 0.0101 0.0102

Table II
SCENARIO A: IAAS PROVIDER BEHAVIOR

0.1$ 0.2$ 0.3$ 0.4$ 0.5$
0.966566 0.03337 0.000025 0.000025 0.000014

an option based on a uniform distribution. ε is set to 0.05
for all SaaS providers. Table I reports how many times in
percentage the SaaS providers selected each option, Table II
depicts the IaaS provider behavior and how frequently he
chose the five options as σ̂, and Fig. 1 illustrates the
effectiveness of the bidding strategy.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SaaS Provider

S
tr

a
te

g
y
 E

ff
e

c
ti
v
e

n
e

s
s

1
2

3
4

5
6

7
8

9
10

Figure 1. Scenario A: Strategy effectiveness (average ratio s∗u
sou

)

As Fig. 1 and Tables I and II show, all players achieved
more than 97.4% of the optimal amount of spot resources,
still selecting, on average, over 92.5% of times the minimum
bid. As a result, in over 96.6% of times, σ̂ is equal to
0.1$. Such an interesting result is only at a first glance
surprising and stems from a sort of emergent behavior of the
community, homogeneous and willing to minimize its regret.
This situation motivates quite easily why a market-driven
strategy could turn to be unprofitable for an IaaS provider
and why, indeed, Amazon EC2 does not apply it [11].

B. Constant Spot Price

In the second scenario, the IaaS provider applies the same
spot price, σ̂ = 0.3, independently of the SaaS providers
bids. As in Scenario A, all SaaS providers adopt the ε-greedy
approach, with ε set to 0.05. Table III reports how many
times in percentage SaaS providers selected each option.

As expected, the learning approach lets the SaaS providers
find that the best approach simply lies in bidding 0.3$. As
Fig. 2 shows, players bid the optimal value ≈ 96% of times



Table III
SCENARIO B: SAAS PROVIDER BEHAVIOR

σ
SaaS Provider 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

1 0.0100 0.0100 0.9599 0.0101 0.0100
2 0.0101 0.0099 0.9598 0.0101 0.0100
3 0.0101 0.0100 0.9596 0.0102 0.0101
4 0.0102 0.0102 0.9593 0.0102 0.0101
5 0.0099 0.0099 0.9601 0.0100 0.0100
6 0.0100 0.0099 0.9598 0.0101 0.0102
7 0.0100 0.0100 0.9600 0.0101 0.0099
8 0.0100 0.0100 0.9597 0.0102 0.0101
9 0.0099 0.0101 0.9602 0.0100 0.0098
10 0.0100 0.0099 0.9600 0.0102 0.0100

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SaaS Provider

S
tr

a
te

g
y
 E

ff
e

c
ti
v
e

n
e

s
s

1
2

3
4

5
6

7
8

9
10

Figure 2. Scenario B: Strategy effectiveness (average ratio s∗u
sou

)

(because of the ε-greedy approach, 5% of the times a random
bid is selected, which on occasion results into the right bid).

C. Random Spot Price

In the third scenario, the IaaS provider follows a random
spot price strategy, selecting a random option, independently
on the choice of SaaS providers. As in Scenarios A and B,
each player applies the ε-greedy strategy where ε = 0.05. Ta-
ble IV reports how many times in percentage SaaS providers
selected each option, while the IaaS provider behavior is
obviously purely random, with a uniform distribution.

Table IV
SCENARIO C: SAAS PROVIDER BEHAVIOR

σ
SaaS Provider 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

1 0.0102 0.0101 0.0106 0.0238 0.9453
2 0.0101 0.0102 0.0103 0.0172 0.9523
3 0.0101 0.0102 0.0106 0.0326 0.9365
4 0.0101 0.0101 0.0102 0.0170 0.9525
5 0.0101 0.0101 0.0112 0.0156 0.9531
6 0.0101 0.0101 0.0107 0.0259 0.9432
7 0.0101 0.0102 0.0105 0.0200 0.9493
8 0.0101 0.0102 0.0102 0.0174 0.9522
9 0.0101 0.0101 0.0105 0.0213 0.9480
10 0.0099 0.0102 0.0103 0.0150 0.9547

As Fig. 3 and Table IV show, the players receive 57.6% of
the optimum, which is expected since the price is random.
The players learn that the best bid is the maximum value,
0.5$ bid: there is no advantage to bid less than the maximum
since no pricing criterion can be identified (being it random).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SaaS Provider

S
tr

a
te

g
y
 E

ff
e

c
ti
v
e

n
e

s
s

1
2

3
4

5
6

7
8

9
10

Figure 3. Scenario C: Strategy effectiveness (average ratio s∗u
sou

)

D. N-armed Bandit Provisioning Strategy

In this scenario, differently from the previous ones, the
IaaS provider also sets the price using an N-armed bandit
ε-greedy approach, basically choosing the price that maxi-
mizes his revenue (given prior experience). This way, over
time, the IaaS and SaaS providers influence each others.

Table V reports how many times in percentage the SaaS
providers selected each option. Both the IaaS and SaaS
providers are characterized by ε = 0.05.

Table V
SCENARIO D: SAAS PROVIDER BEHAVIOR

σ
SaaS Provider 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

1 0.0414 0.3576 0.0739 0.4517 0.0753
2 0.0414 0.3575 0.0739 0.4487 0.0785
3 0.0414 0.3579 0.0738 0.4527 0.0742
4 0.0418 0.3576 0.0729 0.4511 0.0766
5 0.0416 0.3578 0.0729 0.4498 0.0779
6 0.0417 0.3559 0.0749 0.4526 0.0749
7 0.0417 0.3550 0.0759 0.4512 0.0761
8 0.0417 0.3572 0.0743 0.4514 0.0754
9 0.0416 0.3573 0.0741 0.4519 0.0752
10 0.0417 0.3574 0.0739 0.4508 0.0761

Table VI presents the IaaS provider behavior, that prin-
cipally focused on thresholds 0.2$ and 0.4$ as the most
profitable according to past experience. The distribution of
the IaaS provider actions is interestingly similar to that
achieved by the SaaS providers.

Table VI
SCENARIO E: IAAS PROVIDER BEHAVIOR

0.1$ 0.2$ 0.3$ 0.4$ 0.5$
0.0418 0.3584 0.0734 0.4531 0.0733

As Fig. 4 shows, all players managed at obtaining more
than 94% of the optimum. Nevertheless, thanks to the
reciprocal influence among the IaaS provider and the SaaS
providers, the average spot price is 0.3534$ and is not kept
on the lower bound as in Scenario A. In fact, the partial
blindness by the IaaS provider on current bids avoids an
emergent convergence by the community to the 0.1$ bid.

E. High Varying Provisioning Strategy

Differently from previous scenarios, now the IaaS
provider does not always apply the same price selection



 0.5

 0.6

 0.7

 0.8

 0.9

 1

SaaS Provider

S
tr

a
te

g
y
 E

ff
e

c
ti
v
e

n
e

s
s

1
2

3
4

5
6

7
8

9
10

Figure 4. Scenario D: Strategy effectiveness (average ratio s∗u
sou

)

Table VII
SCENARIO E: VALUES OF ε AND α

SaaS Provider
1 2 3 4 5 6 7 8 9 10

ε 0 0 0.05 0.1 0 0.05 0.1 0 0.05 0
α 1 0.9999 0.9999 0.9999 0.999 0.999 0.999 0.99 0.99 0.9

policy, but he alternates every 300 hours between the market
driven, the constant spot price, and the random spot price
approaches. In order to face instability, players also consider
a discount exponent α while carrying on the ε-greedy policy.
Table VII reports values of ε and α for all players.

Table VIII reports how many times in percentage SaaS
providers selected each option, while Table IX presents the
IaaS provider behavior.

Table VIII
SCENARIO E: SAAS PROVIDER BEHAVIOR

σ
SaaS Provider 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

1 0.0002 0.1586 0.0004 0.0676 0.7732
2 0.0004 0.1636 0.0035 0.1709 0.6616
3 0.0102 0.1705 0.0115 0.2120 0.5958
4 0.0204 0.1719 0.0202 0.2484 0.5391
5 0.0015 0.1790 0.0049 0.2794 0.5353
6 0.0100 0.1818 0.0108 0.2822 0.5152
7 0.0200 0.1835 0.0207 0.2960 0.4797
8 0.0080 0.1935 0.0151 0.3379 0.4455
9 0.0153 0.1917 0.0233 0.3298 0.4399
10 0.0478 0.1893 0.0669 0.3173 0.3787

Table IX
SCENARIO E: IAAS PROVIDER BEHAVIOR

0.1$ 0.2$ 0.3$ 0.4$ 0.5$
0.1336 0.1966 0.1334 0.2581 0.2783

Fig. 5 shows that a discount exponent close to 1 yet
less than 1 lets achieve a better performance. On the other
hand, in presence of discount, an ε less than 1 seems not
to be profitable. This is likely due to the minor and minor
relevance of the past, that is itself a form of exploration
and of re-thinking of usual decisions. The best results have
been collected for ε = 1 and α = 0.999. Since over 33%
of times a random spot price is applied and every 300
hours the external environment significantly changes, to get
at 68% about of the optimal amount of resources is quite

 0.5

 0.55

 0.6

 0.65

 0.7

SaaS Provider

S
tr

a
te

g
y
 E

ff
e

c
ti
v
e

n
e

s
s

1
2

3
4

5
6

7
8

9
10

Figure 5. Scenario E: Strategy effectiveness (average ratio s∗u
sou

)

satisfying. Similarity in results suggests price contingency
and variability equally affect players, and that the tuning of
neither ε nor α is significantly crucial within the scenario.

F. Exploration vs. Exploitation

In the last scenario, we study the exploration vs. exploita-
tion trade-off. As in Scenario A, the IaaS provider applies
a market-driven strategy, according to Eq. 12. However,
differently from Scenario A, the ten SaaS providers now
use different values of ε, i.e., they have different exploration
and exploitation trade-offs. While player 1 performs no
exploration, so that he always takes the greedy decision,
player 10 takes only random actions, with a full exploration.
Table X reports the value of ε for all the players. The greater
ε, the greater the exploration.

Table X
SCENARIO F: VALUES OF ε

SaaS Provider
1 2 3 4 5 6 7 8 9 10

ε 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1

Table XI reports the percentage of times the players took
the five different possible actions.

Table XI
SCENARIO F: SAAS PROVIDER BEHAVIOR

σ
SaaS Provider 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

1 0.1334 0.3333 0.4666 0.0334 0.03345
2 0.1681 0.5149 0.2649 0.0420 0.01015
3 0.1700 0.4999 0.2598 0.0501 0.02015
4 0.1718 0.4830 0.2566 0.0586 0.02995
5 0.1734 0.4666 0.2533 0.0667 0.03995
6 0.1773 0.4331 0.2465 0.0833 0.05985
7 0.1795 0.3992 0.2405 0.1008 0.08005
8 0.1835 0.3666 0.2334 0.1167 0.09985
9 0.1898 0.3000 0.2207 0.1499 0.13955

10 0.1994 0.2002 0.1994 0.2006 0.20045

Table XII presents the percentage of times the IaaS
provider selected one of the five options as σ̂.

Table XII
SCENARIO F: IAAS PROVIDER BEHAVIOR

0.1$ 0.2$ 0.3$ 0.4$ 0.5$
0.169017 0.543107 0.25872 0.029141 0.000015



 0.5

 0.6

 0.7

 0.8

 0.9

 1

SaaS Provider

S
tr

a
te

g
y
 E

ff
e

c
ti
v
e

n
e

s
s

1
2

3
4

5
6

7
8

9
10

Figure 6. Scenario F: Strategy effectiveness (average ratio s∗u
sou

)

As Fig. 6 shows, a little presence of exploration helps the
player to behave better and to achieve more resources. This
is mostly due to the fact that, thanks to exploration, a player
can learn that an action he considered the best actually was
not. On the other hand, to explore means to select an option
at random; therefore, ε should be kept small. In this case,
the best performance was obtained with ε = 0.05.

VII. CONCLUSIONS

In this paper we have addressed the problem of a set of
SaaS providers that compete for VM resources provided by
an IaaS provider in order to offer Web services with specific
QoS constraints. We have proposed a two-stage approach: in
the first one, the SaaS providers acquire flat and on demand
VMs at a fixed price, while in the second stage they bid and
compete to buy on-spot VMs. While the first stage has been
solved in [21] through standard optimization techniques, in
this paper we have modeled the second stage competition
by means of N-armed bandit problems, and studied different
techniques and approaches.

We have analyzed the proposed strategies under various
scenarios. Our experimental results demonstrate the ability
of the SaaS providers to refine their behavior round by round
and to determine the best bid in order to maximize their
revenue and achieve as many spot resources as possible.
We have addressed the importance of a trade-off between
exploration and exploitation, considered the role of a dis-
count exponent, and simulated different policies by the IaaS
provider, with market-driven, constant, random, N-armed
bandit based, and high varying spot prices.

In future work we will study how bidding policies change
considering different states based on SaaS users arrival
rate, study forward-looking reinforcement learning methods,
run simulations with real traces and assess the UCB algo-
rithm [22] as an alternative to the ε-greedy heuristic.

REFERENCES

[1] Amazon, “AWS EC2 pricing,” 2013. [Online]. Available:
http://aws.amazon.com/ec2/pricing/

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge Univ. Press, 1998.

[3] N. H. Mastronarde and M. van der Schaar, “Automated
bidding for media services at the edge of a content delivery
network,” IEEE Trans. on Multimedia, vol. 11, no. 3, 2009.

[4] K. Song, Y. Yao, and L. Golubchik, “Improving the revenue,
efficiency and reliability in data center spot market: A truthful
mechanism,” in Proc. of IEEE MASCOTS 2013, 2013.

[5] W. Wang, B. Liang, and B. Li, “Revenue maximization with
dynamic auctions in IaaS cloud markets,” in Proc. of IWQoS
2013, 2013.

[6] M. P. Wellman and J. Hu, “Conjectural equilibrium in multi-
agent learning,” Mach. Learn., vol. 33, no. 2-3, pp. 179–200,
Dec. 1998.

[7] N. H. Mastronarde, V. Patel, J. Xu, and M. van der Schaar,
“To relay or not to relay: Learning relaying strategies in cellu-
lar device-to-device networks,” CoRR, 2013, abs/1308.3185.

[8] F. Fu and M. van der Schaar, “Learning to compete for re-
sources in wireless stochastic games,” IEEE Trans. Vehicular
Technology, vol. 58, no. 4, pp. 1904–1919, 2009.

[9] M. Couceiro, P. Romano, and L. Rodrigues, “Polycert: Poly-
morphic self-optimizing replication for in-memory transac-
tional grids,” in Proc. of 12th ACM/IFIP/USENIX Int’l Conf.
on Middleware, 2011, pp. 309–328.

[10] P. Romano and M. Leonetti, “Self-tuning batching in total
order broadcast protocols via analytical modelling and rein-
forcement learning,” in Proc. of 12th IEEE Int’l Conf. on
Computing, Networking and Communications, 2012.

[11] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir, “Deconstructing Amazon EC2 spot instance pric-
ing,” ACM Trans. Econ. Comput., vol. 1, no. 3, Sep. 2013.

[12] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao, “Dynamic
resource allocation for spot markets in clouds,” in Proc. of
USENIX Hot-ICE 2011, 2011.

[13] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y.
Zomaya, “Tradeoffs between profit and customer satisfaction
for service provisioning in the cloud,” in Proc. of 20th Int’l
Symp. on High Performance Distributed Computing, 2011,
pp. 229–238.

[14] H. Robbins, “Some aspects of the sequential design of ex-
periments,” Bull. of American Mathematical Society, vol. 58,
no. 5, pp. 527–535, 1952.

[15] T. Lai and H. Robbins, “Asymptotically efficient adaptive
allocation rules,” Advances in Appl. Mathematics, vol. 6,
no. 1, pp. 4–22, 1985.

[16] D. Kalathil, N. Nayyar, and R. Jain, “Decentralized learning
for multi-player multi-armed bandits,” in Proc. of IEEE 51st
Conf. on Decision and Control, 2012, pp. 3960–3965.

[17] M. Babaioff, Y. Sharma, and A. Slivkins, “Characterizing
truthful multi-armed bandit mechanisms,” Proc, of ACM EC
2009 (2013’s version on arXiv), 2009-2013.

[18] R. Gonen and E. Pavlov, “An incentive-compatible multi-
armed bandit mechanism,” in Proc. of 26th ACM Symposium
on Principles of Distributed Computing, 2007, pp. 362–363.

[19] P. Rusmevichientong and D. P. Williamson, “An adaptive
algorithm for selecting profitable keywords for search-based
advertising services,” in Proc. of 7th ACM Conf. on Electronic
Commerce, ser. EC ’06, 2006, pp. 260–269.

[20] D. Ardagna, B. Panicucci, and M. Passacantando, “General-
ized Nash equilibria for the service provisioning problem in
cloud systems,” IEEE Trans. Serv. Comput., no. 4, pp. 429–
442, 2013.

[21] V. Di Valerio, V. Cardellini, and F. Lo Presti, “Optimal
pricing and service provisioning strategies in cloud systems: a
Stackelberg game approach,” in Proc. of IEEE 6th Int’l Conf.
on Cloud Computing, ser. Cloud ’13, 2013, pp. 115–122.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis
of the multiarmed bandit problem,” Mach. Learn., vol. 47,
no. 2, pp. 235–256, 2002.


