
Generalized GEMM Kernels on GPGPUs:
Experiments and Applications

Davide BARBIERI Valeria CARDELLINI Salvatore FILIPPONE1

Università di Roma “Tor Vergata”, 00133 Roma, Italy

Abstract. General purpose computing on graphics processing units (GPGPU) is
fast becoming a common feature of high performance computing centers. In this
paper we discuss some implementation issues related to dense linear algebra com-
putations on GPUs, such as the GEneral Matrix-Matrix product, as well as other
kernels sharing the same computational pattern, such as thematrix form of the
All-Pairs Shortest-Path problem. Our CUDA implementationhas shown a signif-
icant improvement on the NVIDIA processing units over the vendor’s software.
We review the optimization techniques that can be employed to implement such
operations, as well as outline further development work in connected application
domains.

Keywords. Software and architectures, GPU programming, performanceevaluation.

1. Introduction

Efficient matrix-matrix multiplication routines in the BLAS lie at the heart of linear
algebra computations as implemented in modern computational libraries such as LA-
PACK [1,3]. The road to maximal performance is influenced by architectural character-
istics of the graphics processing unit (GPU). Indeed, many techniques that were devel-
oped over the years for optimal exploitation of vector and RISC processing units have
a counterpart in the GPU world, including stride one accesses, bank-conflict avoidance
techniques, padding to optimal length, and copy-in/copy-out.

Adapting these techniques to suit GPU devices programming allowed us to obtain
excellent results in both memory management and GPU exploitation; in particular,

• gains of orders of magnitude in GPU performance compared to CPU results on
matrix operations;

• smooth behavior of the optimized code over many input configurations (up to
59% faster than the vendor’s original version).

Indeed, the code developed at our institution is now included in the latest version of the
CUBLAS software distribution [8]. Concentrating on GEneral Matrix-Matrix (GEMM)
computations is not overly restrictive; it is well known that it is possible to implement
efficiently the BLAS standard by reusing the GEMM routine with some additional soft-
ware [6].

1Corresponding author e-mail: salvatore.filippone@uniroma2.it



We also consider the All-Pairs Shortest-Path (APSP) problem on general graphs. An
implementation based on a matrix representation of the graph shares most features of
the matrix-multiply code, once we make the algebraic substitution of using the sum in
place of the product and the maximum in place of the sum. Therefore, we can reuse the
implementation techniques adopted for the matrix-matrix multiplication routine, leading
to a “brute-force” algorithm that can outperform the “smart” sequential algorithms: al-
gorithms implementing better patterns of problem decomposition scale better than the
optimal solution for legacy architectures, despite havingworse sequential bounds. This
is the case for two APSP algorithms, the original Floyd-Warshall one for general graphs,
and a modifiedGPU-friendlyversion; our results show that there is a significant range of
problems where the suboptimal algorithm actually gives thebest time to solution on the
GPU platform.

A significant number of research efforts has recently focused on GPGPU, among
which [5,10] are more related to our work. In our GEMM kernel,we have applied some
of the optimization strategies discussed by Volkov et al. in[10]; with respect to their
work, which is included in the CUBLAS library from version 2.0, our kernels for single-
precision and double-precision matrix multiplication (SGEMM and DGEMM, respec-
tively) obtain a significant improvement for transposed matrices in input. Harish et al. [5]
report results for the implementation of some APSP algorithms on GPUs. Differently
from them, we tackle the APSP problem by developing an algorithm entirely based on
our efficient matrix multiplication routine.

The rest of this paper is organized as follows. Section 2 gives an overview of the
main features of the NVIDIA GPU architecture we used and its programming environ-
ment. Section 3 presents the performance optimization techniques for the GEMM kernel
and discusses the performance results of the matrix multiplication for both single and
double precision computations. Section 4 presents the application of the same techniques
to the APSP problem and evaluates their performance. Section 5 discusses our current
investigation of other kinds of linear algebra operations.Finally, Section 6 concludes the
paper with some final remarks.

2. The Architecture of NVIDIA GPU and its Programming Environment

The NVIDIA GPU architectural model is based on a scalable array of multi-threaded
streaming multi-processors(SMs), each composed by eightscalar processors(SP), one
instruction fetch unit, one on-chip shared memory plus additional special-function hard-
ware; a scheme is depicted in Fig. 1(a). Each multiprocessoris capable of creating and
executing concurrent threads in a completely autonomous way, with no scheduling over-
head, thanks to the hardware support for thread synchronization; threads are created,
scheduled, and executed in groups calledwarps.

A warp (a group of 32 threads) is the minimum execution unit, because each com-
pute element has 8 processors sharing a single instruction fetch unit, running at 1/4 of the
processor speed; it is also quite common to concentrate on a half-warp when considering
accesses to shared memory (both on-chip, and on DRAM), because in this case read and
write operations are executed in separate halves. The GPU iscapable of hosting a max-
imum number of warps (and hence, threads) at any given time; the GPU occupancy is
defined as the ratio between the actual number of threads and this theoretical maximum



(a) Hardware model (b) Execution hierarchy

Figure 1. NVIDIA GPU architectural model.

To the hardware hierarchy there corresponds a software hierarchy of threads, blocks
and grids, as shown in Fig. 1(b). Threads in a given block may synchronize, share data,
and be executed on a given multiprocessor with essentially zero overhead. The dimen-
sion of blocks and grids is specified by the programmer to match the problem size with
the available execution hardware. The CUDA programming environment specifies a set
of facilities to create, identify, and synchronize the various threads involved in the com-
putation.

The device memory is divided into global, local, and on-chipshared memory areas.
The efficient exploitation of the available global memory bandwidth depends critically
on two basic code features: data structure alignment and coalesced accesses.

The alignment issue is quite clear, because of the additional overhead of unaligned
accesses; its implementation is aided by the use of compilation directives. Coalesced
accesses to global memory involve all threads in a half-warp, and enable completion of
read accesses in a single memory transaction. Optimal access patterns for coalescing may
vary among different GPU models, but so far they have done so in a backward compatible
manner.

Local memory is private to each thread; it is not directly available to the programmer,
and is only used by the compiler to handle register spill.

Shared memory is actually local to each multiprocessor; it is shared among threads
and it is interfaced to the cores with a crossbar of 16 elements, so it is organized in
16 banks. Given this structure, threads in a half-warp can access the memory with no
overhead provided that there are no back conflicts.

3. Performance Optimization Techniques for the GEMM Kernels

The GEMM multiply that computesC = αA × B + βC is one of the best known com-
putational kernels in common scientific applications, and lies at the heart of the BLAS
and LAPACK software packages. It is usually among the first kernels to be implemented



on a new architecture, both because of its intrinsic usefulness, and because its study can
reveal tricks and techniques useful in other contexts.

We started from a naive implementation of the matrix multiply, and following the
programming guide [7, p. 71] guidelines, we iteratively improved our code, comparing
our timing results with those obtained with the CUBLAS 2.0 SGEMM.

The basic optimization principles we followed can be easilystated:

• minimize low-throughput instruction use;
• maximize memory bandwidth usage, for each memory subsystem;
• overlap arithmetic operations with memory transactions.

If we analyze the examples provided in the CUDA programming guide, we see that even
though the theoretical maximum for the number of threads on agiven (multi)processor
is constant, the actual limitations come from the amount of shared memory and from
the number of registers employed per thread block. Specifically, the number of regis-
ters is very difficult to control, being determined by the compiler optimizations. How-
ever, it is possible to force the maximum number of registersof a kernel, passing some
special parameters to the compiler. Even in this case, it is still necessary to check the
compiler output for register occupancy, employing some tools provided in the CUDA
environment or from third parties, such as the binary code disassemblerdecuda[9].

Subsequent tests showed that en-
suring maximum GPU occupancy
is not the most important factor
in the GEMM kernel. Indeed, we
adopted the large tiling technique
presented in [10], consisting of:

• computing a tile of matrixC of
size 64 × 16 per thread block,
where each thread computes a
column within the tile (see Fig.
2);

• using shared memory just for
tiles from matrix B, whereas
tiles from matrixA are loaded
from global memory. Figure 2. Optimized matrix product tiling

(A, B, andC matrices are stored in Fortran memory layout).

This implied a drop in occupancy down to 33%; nevertheless, it shows better per-
formance due to better memory transactions hiding, more efficient calculation of the el-
ement offsets, and less use of shared memory (i.e., a lower number of total thread block
synchronizations).

The offset computation reduction is achieved by properly sequencing the accesses
to tile B by columns (rather than by rows), and by doing explicitly thepointer arithmetic
needed to update the base addresses of the individual columns. However, care must be
taken to avoid bank conflicts; in our case, it is sufficient to adopt the time-honored trick
of increasing by one the leading dimension of the buffer in shared memory that will hold
the (transposed) tile.



Further performance improvements were gained through theprefetchingof elements
from tile A, within the multiplication loop; this was enough to reach CUBLAS 2.0
SGEMM performance level.

Variations of the above scheme apply for the other combinations of transpose/no-
transpose of the input matricesA andB that have to be supported to conform to the
BLAS standard. In particular, we succeeded in exploiting the same optimizations in a
version of the SGEMM routine for transposed matrices in input; our version computes
theAB product by first calculatingBA and then transposing the result on-the-fly with-
out using additional shared memory. The performance results in Fig. 3 show an im-
provement of up to 59% with respect to the 2.0 version of the CUBLAS library on the
NVIDIA GeForce 9800GTX+ in the innermost kernel, and up to 50% when considering
host-device-host memory transactions; overall this achieves approximately 40% of the
available peak performance. Note that NVIDIA has included some of our code in its 2.1
version of the CUBLAS library, and therefore the performance gap has now disappeared.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 0

 1
28

 2
56

 3
84

 5
12

 6
40

 7
68

 8
96

 1
02

4

 1
15

2

 1
28

0

 1
40

8

 1
53

6

 1
66

4

 1
79

2

 1
92

0

 2
04

8

 2
17

6

 2
30

4

 2
43

2

 2
56

0

 2
68

8

 2
81

6

 2
94

4

 3
07

2

G
flo

p/
s

(Square) Matrix size

Our SGEMM(’t’,’t’,...)
CUBLAS 2.0 SGEMM(’t’,’t’,...)

Figure 3. Performance of transpose-transpose SGEMM on NVIDIA GeForce 9800GTX+ (kernel only).

The last technique we employed to achieve maximum performance stems from the
need to handle matrix sizes that are not necessarily multiples of tile size, causing the need
of additional control and the misalignment of matrix rows (and so uncoalesced accesses);
The obvious solution is to pad with zeroes the various involved matrices during the copy-
in/copy-out between host and device memory; strictly speaking, this technique is external
to the GEMM kernel, but affects the user anyway.

Newer NVIDIA GPUs offer native support for double precisioncomputations. As
shown in Fig. 4, for DGEMM we obtained nearly 100 % of peak performance (versus
42% of SGEMM), proving that the optimization techniques areessentially the same as in
the single precision version, modulo the obvious adjustments to the memory allocations
and address computations. The main difference is that DGEMMdoes not need to use the
prefetching technique, because the new hardware seems to improve the double precision
pipeline throughput when operands are in shared memory (i.e., it does not need to move
all operands first from shared memory to registers).



 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 330

 360

 390

 420

 450

 1
28

 2
56

 3
84

 5
12

 6
40

 7
68

 8
96

 1
02

4

 1
15

2

 1
28

0

 1
40

8

 1
53

6

 1
66

4

 1
79

2

 1
92

0

 2
04

8

 2
17

6

 2
30

4

 2
43

2

 2
56

0

 2
68

8

 2
81

6

 2
94

4

 3
07

2

G
flo

p/
s

(Square) Matrix size

Peak (double precision)
Our DGEMM(’t’,’t’,...)
Our SGEMM(’t’,’t’,...)

Figure 4. Performance of transpose-transpose DGEMM on NVIDIA GeForce GTX285 (kernel only).

4. Performance Results for the APSP Problem

An interesting application of the same performance optimization techniques we have an-
alyze so far is in the context of the All-Pairs Shortest-Path(APSP) problem. Given a
weighted graphG = (V, E, W ), with non negative weights, the aim is to find out the
distance matrix between all possible pairs of vertices. In the serial context, the Floyd-
Warshall algorithm is a well-known solution characterizedby time-complexityO(V 3)
and space complexityO(V 2). If the graph is quite sparse, the algorithm turns out to be
much more expensive than, e.g., the Dijkstra algorithm. Nevertheless, Floyd-Warshall
has a redeeming feature: its formal structure is that of a generalized matrix “multiplica-
tion” algorithm, as shown in Fig. 5, whereMs is the matrix of distance estimates and
Ma is the adjacency matrix. Thus, the Floyd-Warshall algorithm is amenable to the same
optimization techniques we have discussed above.

Ms←Ma

for k = 1, . . . do
for D(i, j) ∈Ms do

D(i, j)← min (D(i, j), D(i, k) + D(k, j))
end for

end for

Figure 5. Floyd-Warshall algorithm for APSP.

The only significant difference between the Floyd-Warshallalgorithm and the
Matrix-Multiply based one is that Floyd-Warshall is sequentially bounded by the outer
loop, that prevents the algorithm to be execute entirely on akernel launch, due to the grid
synchronization. For this reason, it is harder to gain the same GEMM code efficiency.
Therefore, we have developed an algorithm entirely based onthe matrix multiply code,
that determines, afterN iterations, the2N-shortest paths for all pairs of nodes. Every



Table 1. APSP kernel timing on random graphs for NVIDIA GeForce GTX285 (time values are in msec).

Floyd-Warshall Matrix-Multiply based

nodes #edges/#nodes ratio #edges/#nodes ratio

1/10 1/1 10/1 1/10 1/1 10/1

64 1.28 1.3 1.4 0.49 0.72 0.74
128 2.49 2.53 2.81 0.75 1.13 1.27
256 5.5 5.6 8 1.45 2.12 3
512 14 14 40 5.73 8.45 15

1024 41 42.6 275 30 43 102
2048 136 157 1525 191 262 816
4096 508 659 8514 1480 1896 6877
8192 2067 3012 51949 13901 19661 58736

iteration has the same time complexity of the Floyd-Warshall algorithm, so it totally has
O(V 3

· log(min(E, V − 1))) time complexity, wheremin(E, V − 1) is the maximum
length of all shortest paths in a graph. Table 1 compares the performance results of the
Floyd-Warshall algorithm vs. the matrix-multiply based one, which represents the “GPU-
friendly but theoretical worse” approach. The graphs with anumber of nodes varying
from 64 up to 8192 (and three different values for the ratio between the number of edges
and the number of nodes) have been generated using the GTgraph-random tool [2]. In Ta-
ble 1 the values reported in bold represent the better performing solution for each graph
size. The results show that for graphs of large sizes and not too dense the Floyd-Warshall
algorithm outperforms the matrix-multiply based one, while the latter turns out to be the
better solution when the graph density increases.

5. New Developments

The usage of the GPU programming model is spreading throughout the scientific com-
puting world because of the very appealing price/performance ratio. However, the suc-
cessful applicability of these computing devices is far from universal; in particular, ap-
plying the GPU programming techniques to sparse linear algebra computations is not an
obvious proposition.

The bane of sparse matrix computations is the need to performindexed addressing;
this is well known in the scientific computing community, andis also recognized by (at
least some in) the hardware design community, as recently highlighted in [4]. Unfor-
tunately, the GPU architecture does not offer specialized support for indexed address-
ing, and thus the performance level that can be achieved falls quite short of the theo-
retical peak supported by the hardware. In preliminary results, we have found that the
performance ratio between single precision and double precision kernels is just near to
2x (although peak ratio is more than 10x). This proves as our first sparse matrix-vector
multiply kernel implementation still holds a significant memory bottleneck, due to the
hardness to provide coalesced accesses to such algorithms,and so to the impossibility of
hiding memory transactions with ALU operations.



6. Conclusions

In this paper we have shared our programming experience on the NVIDIA CUDA en-
vironment and devices, showing as it is possible to take advantage of this cheap archi-
tecture for high performance computing. Besides an evidentbenefit from using GPU for
embarrassingly parallel algorithms, there are some perplexities on using CUDA for al-
gorithms that have several sequential constraints or, morein general, for algorithms that
do not provide a large ratio of arithmetic operations per memory accesses, like sparse
numerical computing. Despite the GPU inefficiency to suit these algorithms compared
to the peak performance, it is still convenient compared to other general purpose solu-
tions. Nevertheless, GPU manufacturers promise to increment the already large on-board
GDDR bandwidth and to improve the double precision support of future devices and this
could imply interesting implications in scientific computing.

As discussed in Section 5, our current research direction isto investigate other kinds
of linear algebra operations, such as the sparse matrix-vector product involved in many
types of computations, specifically in explicit time-marching schemes for fluid dynam-
ics based on the Lattice-Boltzmann model. Our future work will also focus on the best
exploitation of further evolutions of the newer GPUs generations.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen.LAPACK’s user’s guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1992.

[2] D. A. Bader and K. Madduri.GTgraph: A suite of synthetic graph generators. http://hpcrd.lbl.
gov/~kamesh/GTgraph/

[3] J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Softw., 16(1):1–17, 1990.

[4] J. Gebis and D. Patterson. Embracing and extending 20-thcentury instrucion set architectures.IEEE
Computer, 40(4):68–75, 2007.

[5] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU using CUDA.Proc. of
HiPC 2007, LNCS Vol. 4873, Springer, 2007.

[6] B. Kågström, P. Ling, and C. van Loan. GEMM-based level 3 BLAS: High-performance model imple-
mentations and performance evaluation benchmark.ACM Trans. Math. Softw., 24(3):268–302, 1998.

[7] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programming Guide, Edi-
tion 2.0, 2008.http://www.nvidia.com

[8] NVIDIA Corporation. CUBLAS Library, Programming Guide, version 2.1, Sept. 2008.
[9] W. J. van der Laan. Cubin utilities.http://www.cs.rug.nl/~wladimir/decuda/

[10] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra.Proc. of 2008
ACM/IEEE Conf. on Supercomputing, Austin, TX, Nov. 2008.


