Generalized GEMM Kernels on GPGPUs:
Experiments and Applications

Davide BARBIERI Valeria CARDELLINI Salvatore FILIPPONE
Universita di Roma “Tor Vergata”, 00133 Roma, ltaly

Abstract. General purpose computing on graphics processing unitGRER is

fast becoming a common feature of high performance comgwtémters. In this
paper we discuss some implementation issues related te tieaar algebra com-
putations on GPUs, such as the GEneral Matrix-Matrix prodag well as other
kernels sharing the same computational pattern, such asdex form of the

All-Pairs Shortest-Path problem. Our CUDA implementati@s shown a signif-
icant improvement on the NVIDIA processing units over thaeda’s software.

We review the optimization techniques that can be emplogeidhplement such
operations, as well as outline further development workannected application
domains.

Keywords. Software and architectures, GPU programming, performavaleation.

1. Introduction

Efficient matrix-matrix multiplication routines in the BLR lie at the heart of linear
algebra computations as implemented in modern computdtliomaries such as LA-
PACK [1,3]. The road to maximal performance is influenced tmh#ectural character-
istics of the graphics processing unit (GPU). Indeed, maofiriiques that were devel-
oped over the years for optimal exploitation of vector an8®Iprocessing units have
a counterpart in the GPU world, including stride one accgdsank-conflict avoidance
techniques, padding to optimal length, and copy-in/copl-o

Adapting these techniques to suit GPU devices programniiogged us to obtain
excellent results in both memory management and GPU eafitwit in particular,

e gains of orders of magnitude in GPU performance comparedPd (2sults on
matrix operations;

e smooth behavior of the optimized code over many input cordifons (up to
59% faster than the vendor’s original version).

Indeed, the code developed at our institution is now indallidehe latest version of the
CUBLAS software distribution [8]. Concentrating on GErldviatrix-Matrix (GEMM)
computations is not overly restrictive; it is well known thiis possible to implement
efficiently the BLAS standard by reusing the GEMM routinetwsbme additional soft-
ware [6].

1Corresponding author e-mail: salvatore.filippone@unarit

We also consider the All-Pairs Shortest-Path (APSP) prolole general graphs. An
implementation based on a matrix representation of thehgsapres most features of
the matrix-multiply code, once we make the algebraic stuigin of using the sum in
place of the product and the maximum in place of the sum. Thergwe can reuse the
implementation techniques adopted for the matrix-matuikiplication routine, leading
to a “brute-force” algorithm that can outperform the “smMaquential algorithms: al-
gorithms implementing better patterns of problem decortiposscale better than the
optimal solution for legacy architectures, despite havimgse sequential bounds. This
is the case for two APSP algorithms, the original Floyd-Walsone for general graphs,
and a modifiedsPU-friendlyversion; our results show that there is a significant range of
problems where the suboptimal algorithm actually givesabst time to solution on the
GPU platform.

A significant number of research efforts has recently foduse GPGPU, among
which [5,10] are more related to our work. In our GEMM kerveé have applied some
of the optimization strategies discussed by Volkov et al[1id]; with respect to their
work, which is included in the CUBLAS library from version® our kernels for single-
precision and double-precision matrix multiplication @M and DGEMM, respec-
tively) obtain a significant improvement for transposednias in input. Harish et al. [5]
report results for the implementation of some APSP algoritton GPUs. Differently
from them, we tackle the APSP problem by developing an algorientirely based on
our efficient matrix multiplication routine.

The rest of this paper is organized as follows. Section 2gyare overview of the
main features of the NVIDIA GPU architecture we used and iitgypamming environ-
ment. Section 3 presents the performance optimizatiomtqabs for the GEMM kernel
and discusses the performance results of the matrix mialidn for both single and
double precision computations. Section 4 presents thécapiph of the same techniques
to the APSP problem and evaluates their performance. $estitiscusses our current
investigation of other kinds of linear algebra operatidfisally, Section 6 concludes the
paper with some final remarks.

2. The Architectureof NVIDIA GPU and its Programming Environment

The NVIDIA GPU architectural model is based on a scalablayaof multi-threaded
streaming multi-processo($§Ms), each composed by eigdtalar processor§SP), one
instruction fetch unit, one on-chip shared memory plus tiatttkl special-function hard-
ware; a scheme is depicted in Fig. 1(a). Each multiprocdssapable of creating and
executing concurrent threads in a completely autonomoyswith no scheduling over-
head, thanks to the hardware support for thread synchrionizahreads are created,
scheduled, and executed in groups calledps

A warp (a group of 32 threads) is the minimum execution urétause each com-
pute element has 8 processors sharing a single instruetiom @init, running at 1/4 of the
processor speed; it is also quite common to concentrate ali-a/arp when considering
accesses to shared memory (both on-chip, and on DRAM), bedathis case read and
write operations are executed in separate halves. The GPapable of hosting a max-
imum number of warps (and hence, threads) at any given tineeGPU occupancy is
defined as the ratio between the actual number of threadhanthéoretical maximum

Device Grid
Multiprocessor N Block (0, 0) || Block (1,0) | Block (2, 0)
.

Multiprocessor 2 j
Multiprocessor 1 Block (0, 1) | Block (1, 1) |"Block (2, 1)

Shared Memory
Registers Registers Registers
Instruction
Unit

Processor 1 | | Processor2 | *** | Processor M
Block (1, 1)

' 1 ’f ‘f Thread (0, 0) | Thread (1, 0) | Thread (2, 0) | Thread (3, 0)
Constant
Cache
‘ Tec";(“lzg Thread (0, 1) [Thread (1, 1) [Thread (2, 1) | Thread (3, 1)
Device Memory Thread (0, 2) |Thread (1, 2) | Thread (2, 2) | Thread (3, 2)
(a) Hardware model (b) Execution hierarchy

Figure 1. NVIDIA GPU architectural model.

To the hardware hierarchy there corresponds a softwararbhey of threads, blocks
and grids, as shown in Fig. 1(b). Threads in a given block nyagtzronize, share data,
and be executed on a given multiprocessor with essentiatly averhead. The dimen-
sion of blocks and grids is specified by the programmer to imtite problem size with
the available execution hardware. The CUDA programmingrenment specifies a set
of facilities to create, identify, and synchronize the gas threads involved in the com-
putation.

The device memory is divided into global, local, and on-dtipred memory areas.
The efficient exploitation of the available global memornbdaidth depends critically
on two basic code features: data structure alignment arldsmel accesses.

The alignment issue is quite clear, because of the additaveshead of unaligned
accesses; its implementation is aided by the use of conupilaiirectives. Coalesced
accesses to global memory involve all threads in a half-wemg enable completion of
read accesses in a single memory transaction. Optimalapeaésrns for coalescing may
vary among different GPU models, but so far they have done adackward compatible
manner.

Local memory is private to each thread; it is not directlyide to the programmer,
and is only used by the compiler to handle register spill.

Shared memory is actually local to each multiprocessos; shiared among threads
and it is interfaced to the cores with a crossbar of 16 elespesut it is organized in
16 banks. Given this structure, threads in a half-warp caesscthe memory with no
overhead provided that there are no back conflicts.

3. Performance Optimization Techniques for the GEMM Kernels
The GEMM multiply that compute§’ = a4 x B + C is one of the best known com-

putational kernels in common scientific applications, dad &t the heart of the BLAS
and LAPACK software packages. It is usually among the firsb&ks to be implemented

on a new architecture, both because of its intrinsic useignand because its study can
reveal tricks and techniques useful in other contexts.

We started from a naive implementation of the matrix muwjtigind following the
programming guide [7, p. 71] guidelines, we iteratively noyed our code, comparing
our timing results with those obtained with the CUBLAS 2.0E3@\.

The basic optimization principles we followed can be eastiited:

e minimize low-throughput instruction use;
e maximize memory bandwidth usage, for each memory subsystem
e overlap arithmetic operations with memory transactions.

If we analyze the examples provided in the CUDA programminige, we see that even
though the theoretical maximum for the number of threads given (multi)processor
is constant, the actual limitations come from the amounthafred memory and from
the number of registers employed per thread block. Speltjfithe number of regis-

ters is very difficult to control, being determined by the qoler optimizations. How-

ever, it is possible to force the maximum number of registéis kernel, passing some
special parameters to the compiler. Even in this case, iili;xecessary to check the
compiler output for register occupancy, employing somestgoovided in the CUDA

environment or from third parties, such as the binary codastiembledecudal[9].

64

Subsequent tests showed that
suring maximum GPU occupan
is not the most important fact
in the GEMM kernel. Indeed, w
adopted the large tiling techniq
presented in [10], consisting of:

e computing a tile of matrixC' of
size 64 x 16 per thread block
where each thread compute: P
column within the tile (see Fic

2);
e using shared memory just fml

tiles from matrix B, wherea:
tiles from matrix A are loadec

from global memory. Figure 2. Optimized matrix product tiling
(A, B, andC matrices are stored in Fortran memory layout).

This implied a drop in occupancy down to 33%; neverthelésshows better per-
formance due to better memory transactions hiding, moreiefii calculation of the el-
ement offsets, and less use of shared memory (i.e., a lowebauof total thread block
synchronizations).

The offset computation reduction is achieved by properyusacing the accesses
to tile B by columns (rather than by rows), and by doing explicitly ploénter arithmetic
needed to update the base addresses of the individual csllthomever, care must be
taken to avoid bank conflicts; in our case, it is sufficientdopat the time-honored trick
of increasing by one the leading dimension of the buffer &retd memory that will hold
the (transposed) tile.

Further performance improvements were gained througpriifetchingpf elements
from tile A, within the multiplication loop; this was enough to reach BIAS 2.0
SGEMM performance level.

Variations of the above scheme apply for the other comhinatbf transpose/no-
transpose of the input matrices and B that have to be supported to conform to the
BLAS standard. In particular, we succeeded in exploitingg $ame optimizations in a
version of the SGEMM routine for transposed matrices in tnpur version computes
the AB product by first calculatind? A and then transposing the result on-the-fly with-
out using additional shared memory. The performance dulFig. 3 show an im-
provement of up to 59% with respect to the 2.0 version of th&CAS library on the
NVIDIA GeForce 9800GTX+ in the innermost kernel, and up t&®@&hen considering
host-device-host memory transactions; overall this aglsiepproximately 40% of the
available peak performance. Note that NVIDIA has includeahs of our code inits 2.1
version of the CUBLAS library, and therefore the perfornmgap has now disappeared.

300 T T T T T T

275

250 cad AWAMA/A/W
e

225 {

200

175

150

Gflop/s

125

100

75

50 Our SGEMM('t','t,...) —— -1

CUBLAS 2.0 SGEMM(t','t',...)

25

384 |
512 |
640 |
768 |
896 |-

1024 |

1152 |

1280 |

1408 [

1536 [

1664 [

1792 |

1920 |

2048 |

2176 |

2304 |

2432 |

2560 |

2688

2816 |

2944 |

3072

(Square) Matrix size

Figure 3. Performance of transpose-transpose SGEMM on NVIDIA Ge=6B00GT X+ (kernel only).

The last technique we employed to achieve maximum perfocmatems from the
need to handle matrix sizes that are not necessarily mestigfitile size, causing the need
of additional control and the misalignment of matrix romsda&o uncoalesced accesses);
The obvious solution is to pad with zeroes the various inedImatrices during the copy-
in/copy-out between host and device memory; strictly speglkhis technique is external
to the GEMM kernel, but affects the user anyway.

Newer NVIDIA GPUs offer native support for double precisicomputations. As
shown in Fig. 4, for DGEMM we obtained nearly 100 % of peak perfance (versus
42% of SGEMM), proving that the optimization techniquesessentially the same as in
the single precision version, modulo the obvious adjustsienthe memory allocations
and address computations. The main difference is that DGEld&4 not need to use the
prefetching technique, because the new hardware seemgtovienthe double precision
pipeline throughput when operands are in shared memoryitidmes not need to move
all operands first from shared memory to registers).

T T
450 . TSR UUO ST
A gt
420 s
390 ; 2
360 ot
I Peak (double precision)
330 ! Our DGEMM('t','t',...) ---6--- .
300 i Our SGEMM(t','t)...) ----4---
+
270 ;
2 :
& 240 ;
© 210 i
180 [
Pt
150 5
120 !
90 i F
60
20 ! /9’
i
0@
o]
N
g

256
384
512
640
768
896
1024 -
1152
1280
1408 -
1536
1664
1792 -
1920
2048
2176
2304
2432
2560
2688
2816
2944
3072

(Square) Matrix size

Figure4. Performance of transpose-transpose DGEMM on NVIDIA GeE@a X285 (kernel only).
4. Performance Resultsfor the APSP Problem

An interesting application of the same performance opttiin techniques we have an-
alyze so far is in the context of the All-Pairs Shortest-R#&RSP) problem. Given a
weighted graptG = (V, E, W), with non negative weights, the aim is to find out the
distance matrix between all possible pairs of verticeshingerial context, the Floyd-
Warshall algorithm is a well-known solution characterizgdtime-complexityO(V3)
and space complexit§(V2). If the graph is quite sparse, the algorithm turns out to be
much more expensive than, e.g., the Dijkstra algorithm.dx&eless, Floyd-Warshall
has a redeeming feature: its formal structure is that of @igdized matrix “multiplica-
tion” algorithm, as shown in Fig. 5, wher s is the matrix of distance estimates and
Ma is the adjacency matrix. Thus, the Floyd-Warshall algonith amenable to the same
optimization techniques we have discussed above.

Ms — Ma
fork=1,...do
for D(i,j) € Msdo
D(i,j) « min (D(4, 5), D(i, k) + D(k,))
end for
end for

Figure5. Floyd-Warshall algorithm for APSP.

The only significant difference between the Floyd-Warskedjorithm and the
Matrix-Multiply based one is that Floyd-Warshall is seqgtially bounded by the outer
loop, that prevents the algorithm to be execute entirely kerael launch, due to the grid
synchronization. For this reason, it is harder to gain tiees&EMM code efficiency.
Therefore, we have developed an algorithm entirely baseti@matrix multiply code,
that determines, afteW iterations, the2N-shortest paths for all pairs of nodes. Every

Table 1. APSP kernel timing on random graphs for NVIDIA GeForce GTE2Z8me values are in msec).

Floyd-Warshall Matrix-Multiply based
nodes #edges/#nodes ratio #edges/#nodes ratio
1/10 1/1 10/1 1/10 1/1 10/1
64 | 1.28 1.3 14 0.49 0.72 0.74
128 | 2.49 253 281 | 075 113 1.27

256 | 5.5 5.6 8 1.45 212 3
512 14 14 40 573 8.45 15
1024 | 41 42.6 275 30 43 102

2048 | 136 157 1525 191 262 816
4096 | 508 659 8514 1480 1896 6877
8192 | 2067 3012 51949 | 13901 19661 58734

iteration has the same time complexity of the Floyd-Waisdigbrithm, so it totally has
O(V?3 - log(min(E,V — 1))) time complexity, wherenin(E,V — 1) is the maximum
length of all shortest paths in a graph. Table 1 comparesehenmance results of the
Floyd-Warshall algorithm vs. the matrix-multiply basedowhich represents the “GPU-
friendly but theoretical worse” approach. The graphs withuanber of nodes varying
from 64 up to 8192 (and three different values for the ratiovieen the number of edges
and the number of nodes) have been generated using the Gifignagpom tool [2]. In Ta-
ble 1 the values reported in bold represent the better paifgy solution for each graph
size. The results show that for graphs of large sizes andoaténse the Floyd-Warshall
algorithm outperforms the matrix-multiply based one, witiie latter turns out to be the
better solution when the graph density increases.

5. New Developments

The usage of the GPU programming model is spreading thraudhe scientific com-
puting world because of the very appealing price/perforreaatio. However, the suc-
cessful applicability of these computing devices is fanfroniversal; in particular, ap-
plying the GPU programming technigues to sparse lineabatggeomputations is not an
obvious proposition.

The bane of sparse matrix computations is the need to peifatexed addressing;
this is well known in the scientific computing community, @adilso recognized by (at
least some in) the hardware design community, as recerghylighted in [4]. Unfor-
tunately, the GPU architecture does not offer specializggpsrt for indexed address-
ing, and thus the performance level that can be achievesl daite short of the theo-
retical peak supported by the hardware. In preliminarylteswe have found that the
performance ratio between single precision and doubldgoeckernels is just near to
2x (although peak ratio is more than 10x). This proves as ostrdparse matrix-vector
multiply kernel implementation still holds a significant mery bottleneck, due to the
hardness to provide coalesced accesses to such algorithchso to the impossibility of
hiding memory transactions with ALU operations.

6. Conclusions

In this paper we have shared our programming experienceeoNYHDIA CUDA en-
vironment and devices, showing as it is possible to take rtdge of this cheap archi-
tecture for high performance computing. Besides an evidenéfit from using GPU for
embarrassingly parallel algorithms, there are some petjge on using CUDA for al-
gorithms that have several sequential constraints or, imageneral, for algorithms that
do not provide a large ratio of arithmetic operations per mgnaccesses, like sparse
numerical computing. Despite the GPU inefficiency to suétsth algorithms compared
to the peak performance, it is still convenient comparedth@iogeneral purpose solu-
tions. Nevertheless, GPU manufacturers promise to inanéthe already large on-board
GDDR bandwidth and to improve the double precision suppdtitare devices and this
could imply interesting implications in scientific compuii

As discussed in Section 5, our current research directitmiis/estigate other kinds
of linear algebra operations, such as the sparse matriovpmduct involved in many
types of computations, specifically in explicit time-marghschemes for fluid dynam-
ics based on the Lattice-Boltzmann model. Our future wotk algo focus on the best
exploitation of further evolutions of the newer GPUs getierss.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarrd)u Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. SorenseAPACK's user’s guideSociety for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1992.

[2] D.A.Bader and K. MadduriGTgraph: A suite of synthetic graph generatdist p: / / hpcrd. | bl .
gov/ ~kanmesh/ GTgr aph/

[3] J.Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. Acféevel 3 basic linear algebra subprograms.
ACM Trans. Math. Softw16(1):1-17, 1990.

[4] J. Gebis and D. Patterson. Embracing and extending 2@ititury instrucion set architecturdEEE
Computer 40(4):68-75, 2007.

[5] P. Harish and P. J. Narayanan. Accelerating large grégirithms on the GPU using CUDARroc. of
HiPC 2007 LNCS Vol. 4873, Springer, 2007.

[6] B.K&gstrom, P. Ling, and C. van Loan. GEMM-based levell3\B: High-performance model imple-
mentations and performance evaluation benchm@M Trans. Math. Softw24(3):268-302, 1998.

[7] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programgn@uide, Edi-
tion 2.0 2008.ht t p: / / ww. nvi di a. com

[8] NVIDIA Corporation. CUBLAS Library, Programming Guide, version 2Sept. 2008.

[9] W.J.van der Laan. Cubin utilitiefit t p: / / ww. ¢s. rug. nl / ~wl adi m r/ decuda/

[10] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune sgetinear algebraProc. of 2008
ACM/IEEE Conf. on Supercomputingustin, TX, Nov. 2008.

