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Abstract. Hybrid GPU/CPU clusters are becoming very popular in the scientific
computing community, as attested by the number of such systems present in the
Top 500 list. In this paper, we address one of the key algorithms for scientific ap-
plications: the computation of sparse matrix-vector products that lies at the heart of
iterative solvers for sparse linear systems.

We detail how design patterns for sparse matrix computations enable us to eas-
ily adapt to such a heterogeneous GPU/CPU platform using several sparse matrix
formats in order to achieve best performance; then, we analyze static load balanc-
ing strategies for devising a suitable data decomposition and propose our approach.
We discuss our experience in using different sparse matrix formats and data parti-
tioning algorithms with a number of computational experiments executed on three
different hybrid GPU/CPU platforms.
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Introduction

Sparse matrices and related computations are one of the centerpieces of scientific com-
puting: most mathematical models based on the discretization of Partial Differential
Equations (PDEs) require the solution of linear systems with a coefficient matrix that is
large and sparse. An immense amount of research has been devoted over the years to the
efficient implementation of sparse matrix computations on high performance computers.
In particular, the Parallel Sparse BLAS (PSBLAS) project implements a library of Basic
Linear Algebra Subroutines for parallel sparse applications that facilitates the porting of
complex computations on multicomputers. The current version of PSBLAS is written
in Fortran 2003 applying object-oriented (OO) techniques to achieve at the same time
maximal flexibility and optimal performance [1].

In [2] we have detailed how the usage of multiple Design Patterns [3] enables an
efficient handling of computations on general purpose GPU (GPGPU) devices. Here we
take the State design pattern and we use it to handle computations on hybrid compute
nodes hosting multiple conventional CPU cores and (possibly multiple) GPUs, demon-
strating that it allows us to choose the best combination of sparse formats on CPU and
GPU in order to achieve optimal performance.



As a second contribution of this paper, we consider how to distribute the workload
(in our case, the matrix rows) among the processing elements using static load balancing
algorithms to perform an appropriate data partitioning. To choose the ratio of GPU data
to CPU data, we run two small benchmarks (sparse matrix-vector product and a GPU-
CPU bandwidth test) at installation time of PSBLAS to compute out the relevant perfor-
mance differences between the processing elements; similar approaches have also been
proposed in [4,5,6]. The data points measured by the benchmark are then used to build
a regression model in the data partitioning algorithms.

We discuss our experience in using different sparse matrix formats and data parti-
tioning algorithms with a number of computational experiments executed on three hybrid
GPU/CPU platforms having different performance characteristics. Our results show that
hybrid computation is not always beneficial in terms of performance, especially when
there is a high degree of heterogeneity among the CPU and GPU devices.

The paper is organized as follows. In Section 1 we describe how design patters for
sparse matrix computations can help to tackle the heterogeneity of hybrid GPU/CPU
platforms and review related work on hybrid computing systems. In Section 2 we discuss
some issues related to sparse matrix computations on hybrid GPU/CPU platforms and
describe the used benchmark. In Section 3 we present the data partitioning algorithms
and in Section 4 we discuss the experimental results. Finally, we conclude in Section 5.

1. Software Techniques

The State design pattern is a behavioral pattern that allows the encapsulation of the object
state behind an interface that allows the object type to vary at runtime [2,3]. In the context
of sparse matrix computations, it provides a useful and natural solution to switch at run-
time among different storage formats for a given sparse matrix. Therefore, the State pat-
tern allows easy handling of heterogeneous computing platforms: the application making
use of the computational kernels will see a uniform outer data type, but the inner data
type can be adjusted according to the specific features of the processing element that
the current process is running on. For instance, the code that sets up the matrix-vector
product test is basically:

if (have_gpu(iam)) then

amold => agpu

else

amold => acpu

end if

call a%cscnv(info ,mold=amold)

do i=1,ntimes

call psb_spmm(done ,a,xv,dzero ,bv,desc_a ,info)

end do

where the have_gpu function will choose, based on the process index iam, which pro-
cesses will perform the computations on GPU and which ones on CPU cores.

A critical point in the management of a heterogeneous computing platform is how
to distribute data to ensure best usage of resources. In a system with g GPUs and c > g
cores we have g cores acting as frontends to the GPUs, and c− g free cores that can be
used to increase the computational capacity. To get a good balance of computations we



need to arrange the data in such a way that the serial parts of the computations will be
aligned, i.e., all images will take the same time to execute their local matrix-vector prod-
uct. Since GPUs are substantially faster, this means that the data distribution should not
be uniform, but a proportionally larger percentage of the matrix rows should be assigned
to the images running on the GPUs. This is allowed since in our PSPLAS library the
number of rows to be assigned to each process is arbitrary.

How should we choose the ratio of GPU data to CPU data? A simple idea is to run
a small benchmark at installation time to figure out the relevant performance differences
between the two computing elements, similarly to the approach already exploited in [4,
5,6]. It is necessary to run the specific kernel under consideration, namely the sparse
matrix-vector product, since its behavior is substantially different from other commonly
available performance measurements, such as those from dense matrix multiply.

A parallel sparse matrix-vector product is often used in the field of the iterative
solvers; for this kind of applications each iteration requires a data exchange between the
processes involved in the computation. In a heterogeneous parallel platform this means,
for each iteration, two transfers through the PCIe bus in order to deliver the needed data.
That transfer is the bottleneck of the heterogeneous platforms and it should be reduced
as much as possible.

Other works addressing hybrid computing systems include [7,8,9,10]. StarPU [7] is
a runtime system that applies work-stealing to balance work among subsystems. How-
ever, StarPU requires the programmer to write separate CPU and GPU code. HDSS [8]
is a two-phase scheduling and load balancing scheme for execution of loops on hetero-
geneous architectures; during the initial phase the scheme dynamically learns the com-
putational power of each processor; then, it schedules the rest of the workload using a
weighted self-scheduling algorithm. The work in [9] presents a programming model in
which the best mapping of programs to processors and memories is determined empiri-
cally. Profiling-based approaches for hybrid computing systems include [10].

1.1. Sparse Matrix Formats

Sparse matrix storage formats are essential to achieve best performance. In a hybrid en-
vironment we have an additional complication since a given format might be the best
on a CPU and the worst on a GPU for the same kind of problem. This is an obvious
consequence of the fact that the sparse matrix-vector product kernel performance is de-
termined by the data movements between memory and processors, more than the actual
floating-point computations. In our PSBLAS software library the default sparse format
is CSR (Compressed Storage by Rows); to use GPUs we rely on an auxiliary CUDA ker-
nel library, named SPGPU1. The SPGPU library is based on the ELLPACK format and
a variant thereof called HLL; for these formats we have created a CPU implementation
from which we derived an additional GPU-enabled version, as detailed in [2]. The GPU-
enabled versions of the data formats are marked with a G in the name, for instance, HLL
is the base CPU format while HLG is the GPU-enabled version. In the same vein, we
also developed interfaces for the CSR and HYB formats provided by NVIDIA through
the CuSparse library version 4.1. In Section 4 we investigate the performance of three
sparse formats on the CPU side and four on the GPU side.

1http://code.google.com/p/spgpu/



2. Hybrid CPU/GPU Computations

On a heterogeneous node, equipped with CPUs and GPUs, several issues arise due to
the fact that these computational units are designed for different scopes. Modern CPUs
are essentially latency-oriented architectures which focus on the minimization of the
execution time of a single sequential program; they use caches with ever increasing size
and complex instructions that can be executed in few clock cycles. GPUs are throughput-
oriented architectures based on the assumption that the workload has a high level of
parallelism. This means that a GPU will use many “small” cores oriented toward a SPMD
approach where instructions to be executed for each task stay the same while data change.

Furthermore, there are differences in the accuracy of the floating point operations ex-
ecuted on CPU and GPU due to the fact that the GPU uses by default the fused multiply-
add (FMA) operation [11]. The latter computes the product of two numbers and adds that
product to a number (i.e., x× y+ z) with only one rounding step; thus, the result will in
general be different from a product followed by a sum executed with two rounding steps,
being FMA more accurate than performing the operations separately. The numerical be-
havior of these operations is essentially equivalent for the simple matrix-vector product
kernel, that is the error bounds are of the same quality, but it is not possible in general to
have bit-identical results when we move from the CPU to the GPU.

The architectural difference between CPUs and GPUs implies that on a heteroge-
neous platform we have to tackle several issues, including the selection of a sparse ma-
trix format and the load balancing method used to distribute the computations between
the processing elements. However, the critical factor that may affect the performance is
the PCIe bus, which is a bottleneck between CPU and GPU: the PCIe throughput is cur-
rently the main limiting factor of heterogeneous computations and the gap between GPU
performance and communication speed of PCIe is ever increasing.

At first glance, one may suppose that the hybrid use of CPUs with GPU is always
a good thing to improve performance. Unfortunately, this is not true; in fact, as shown
later, processing elements that are too heterogeneous may not benefit from a hybrid com-
putation. In our experiments we used three hybrid architectures which represent different
hardware combinations; their description is in Section 4.

2.1. Benchmark

To model the behaviour of a compute node we consider two factors that impact over the
performance of our application: the execution time spent on CPU/GPU and the transfer
time on the PCIe bus. During the installation time of PSBLAS we execute two different
benchmarks that address separately the two factors. As in [6], we consider groups of CPU
cores as a single computational unit; in fact, on multicore platforms, parallel processes
interfere with each other through shared memory so that the speed of individual cores
cannot be measured independently.

The first benchmark executes 10000 sparse matrix-vector products and returns the
total elapsed time, the time spent for each iteration, and the throughput.That benchmark
is executed independently on CPU (4 or 6 cores) and GPU by varying the matrix size,
which is expressed in terms of number of matrix rows. The second benchmark is the
bandwidthTest provided by the CUDA SDK; we run it twice in order to get the bandwidth
from host-to-device and from device-to-host. For our investigation over the data parti-



tioning algorithms, we consider both the cases where the first benchmark produces a lot
of data points (40 data points) as well as few data points (10 data points). The data points
are used to build a regression model which will be exploited by the data partitioning
algorithms to predict the behavior of the computing elements.

3. Data Partitioning Algorithms

In this section we first analyze the linear and iterative algorithms for data partitioning
which are based on different kinds of regression models, pointing out their strengths and
weaknesses; we then present a hybrid solution. In all the algorithms, the PCIe bus effect
is modeled by adding to the GPU computation time the time needed to transmit the data
to host/device. The amount of transmitted data is estimated and depends on the largest
partition of matrix rows computed by a processing element (usually the GPU).

3.1. Linear Algorithm

The first algorithm we consider has a pure algebraic nature; it is based on the assumption
that the time needed by the CPU and GPU to solve a problem varies linearly with respect
to the problem size [5]. This assumption is true for the GPU in a lot of cases, but it does
not hold at all for the CPU. Indeed, due to the cache effects, the Error Sum of Squares
(SSE) of a linear regression on the CPU trend is almost 2 order of magnitude greater
than the GPU model. The real strength of this algorithm is that, for very “good” CPU
trends, the complexity of the algorithm is reduced to a single formula. Approximating
the CPU and GPU times by a line expressed in function of the problem size, we obtain
t1 = a1 · x1 +b1 and t2 = a2 · x2 +b2, where x1 and x2 are the amount of data (number of
rows of the sparse matrix) assigned to the CPU and GPU, respectively; we denote this
total amount of rows as r = x1 + x2. The optimal data partition is obtained when t1 = t2;
with some simple algebraic manipulation, we easily obtain x1 =

(a2·r+b2−b1)
(a1+a2)

The linear algorithm is very simple and works pretty well when the assumption of
linear trend holds. Unfortunately, problems arise when we try to model the CPU’s trend
on a wide range of data, since the regression is less accurate and produces relevant errors,
especially on small values of the problem size.

Unlike [5], our algorithm does not consider the chance to assign to the GPU all the
entire computation in order to investigate the behavior of hybrid computations. However,
as shown later, in some cases the use of a hybrid approach can be counter-productive.

3.2. Iterative Algorithm

The second algorithm we consider uses an iterative approach and allows to use different
models (besides lines) to represent the CPU behavior. The main idea is to keep a linear
equation of the GPU trend and uses a piecewise line to represent the CPU trend. At limit,
the piecewise linear function can be the entire set of data gathered during the installation
phase, which uses a linear interpolation to return values which fall between two data
points. The iterative algorithm produces better results than the linear one but requires to
keep in memory (some) data points retrieved during the installation phase. It converges
very quickly (about 20 steps) but needs the trend of the GPU time to be lower than the



CPU one. Figure 1 shows the convergence toward the optimal solution. This algorithm
was proposed in [12,6] but our implementation differs since we uses the execution time
of every processing element rather than its speed.
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Figure 1. Convergence of the iterative algorithm

3.3. Hybrid Algorithm

The algorithm we propose makes use of a hybrid approach to get good accuracy and re-
quire few computations during the runtime, thus combining the benefits of the two previ-
ous algorithms. The main problem of the linear algorithm is its poor accuracy related to
the linear model of the CPU; on the other hand, the iterative algorithm is more accurate,
but it needs to keep in memory the CPU data points and requires a certain amount of
iterations that may impact negatively on the performance.

The idea of the hybrid algorithm is to use the iterative algorithm during the instal-
lation phase to find the optimal execution time and to define a regression model of the
latter. The GPU is still modeled by a single line which is fairly accurate. With the opti-
mal time values we do not need the CPU model anymore and we can get accurate results
during the runtime phase just using two equations (optimal time and GPU equations).

4. Experimental Results

In this section we first describe the three hybrid CPU/GPU platforms we used in our
experiments; then, we discuss the performance results obtained by using the different
sparse matrix formats and the data partitioning algorithms over the three platforms.

4.1. Hybrid CPU/GPU Platforms

Table 1 summarized the most relevant characteristics of the three hybrid CPU/GPU plat-
forms on which we performed our tests. The AWS platform consists in a single Ama-
zon Web Service (AWS) cluster GPU instance of type CG1; it is equipped with 2 Intel
Xeon X5570, quad-core Nehalem architecture with hyperthread, plus 2 NVIDIA Tesla
M2050 GPUs and 22 GB of RAM. On such platform we observed an unstable behaviour
during the execution of the CPU benchmark; such instability has already been observed



in [13]. The PLX platform is a single node of the PLX cluster provided by the Italian
Cineca consortium, which is the largest Italian computing centre. It is equipped with 2
six-cores Intel Westmere 2.40 GHz, plus 2 NVIDIA Tesla M2070 and 48 GB of RAM.
The PLX cluster is ranked at the 266th position in the Top 500 list (June 2013) and at

Platform CPU GPU
AWS Intel Xeon X5570 (quad-core) NVIDIA Tesla M2050

PLX Intel Xeon E5645 (esa-core) NVIDIA Tesla M2070

Desktop Intel quad-core Q6600 NVIDIA Geforce GT 520

Table 1. Hybrid CPU/GPU platforms

the 76th position in the Green 500 list. These two platforms are the most widely used
ones during the tests and show quite well how the same data partitioning algorithm can
perform differently on similar architectures.

The last platform, named Desktop, represents an unusual solution in the field of sci-
entific computing, since the performances achieved by its CPU and GPU are comparable,
that is the GPU behaves almost as another quad-core socket. While all the three platforms
are equipped with Fermi-based cards, the Desktop platform has the lowest performing
GPU (with 48 CUDA cores), while the AWS and PLX platforms have very similar GPU
cards (with 448 CUDA cores), having AWS a slightly better performing card than PLX.

In the experiments, we used the benchmark described in Section 2.1. As performance
metric, we report the average execution time for matrix-vector product over 10000 runs.

4.2. Performance Analysis

We first analyze the performance of a variety of combinations of sparse matrix formats
on the most powerful AWS platform.With Figures 2(a) and 2(b) we establish the base-
line performance of the various sparse matrix formats on the CPU and GPU processing
elements. We observe that in our test cases the CSR format is the best one on the CPU;
however, it turns out that at the same time it is the worst format on the GPU, whereas
HLG is the best one on the GPU but not on the CPU. Given this result, in the following
we will use the CSR format on the CPU and HLG format on the GPU; again, we point
out that such hybrid usage is easily supported by our PSBLAS framework.

We now turn to analyze the performance of the data partitioning algorithms in dis-
tributing the workload. Figure 3(a) shows the results of the three algorithms on a typical
PLX cluster node with an accurate benchmark execution having 40 data points. With a
high sampling rate during the benchmark, the algorithms behavior is practically the same
when executing over a stable platform, as PLX is. Figure 3(b) represents the same test
case with less data points (only 10) gathered during the installation time. We see that, for
a stable architecture, we do not get benefits from an accurate preliminary analysis.

However, the results change on the less stable AWS platform, as shown in Fig-
ures 4(a) and 4(b). On the latter, the iterative algorithm fits the unstable behavior of the
CPU, thus producing wrong results. On the other hand, the linear algorithm is shielded
from such instability and achieves better results.

The third set of experiments is on the Desktop platform, which represents the lowest
performance architecture. As shown in Figure 5(a), the stability of the Desktop platform
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Figure 2. Performance of sparse matrix formats on AWS platform
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Figure 3. Performance of data partitioning algorithms on PLX platform
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Figure 4. Performance of data partitioning algorithms on AWS platform

in terms of performance variations makes the iterative and hybrid algorithms the worst.
The linear algorithm does not encounter any difficulty due to the linear behavior of CPU
and GPU. Even with an inaccurate sampling (see Figure 5(b)), the same result holds.

To prove the effectiveness of the iterative algorithm, we compare it towards the ex-
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Figure 5. Performance of data partitioning algorithms on Desktop platform

haustive optimum search executed over PLX for a matrix with 1000000 rows. As shown
in Figure 6 we are really close to the real optimum.
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Figure 6. Comparison of the iterative algorithm with the exhaustive search

A final note regards the presence of multiple processing elements, in particular
CPUs. Taking advantage of more computational units is strictly related to the architec-
ture and the load balancing algorithm. In most experiments, we observed that there is
no significant gain when using more CPU cores. This is mainly due to the impact of the
MPI communication overhead amplified by unbalances among cores. Furthermore, the
most important limit to scalability is the PCIe bandwidth. For example, with a matrix
having 8000000 rows, we have to transmit, for each iteration, about 320000 bytes (with
double precision); we know that on PLX the PCIe can reach at most 5840 MB/sec. With
a simple formula we can estimate the matrix size that saturates the PCIe bandwidth: on
the PLX platform, this limit is 10648000 rows which require to transmit about 387200
bytes for each iteration. For that amount of data, the bus reaches 5440 MB/sec that is
very close to its maximum. During our experiments, PSBLAS assigns rows to processes
by using a block decomposition strategy which may cause harmful communication over-
heads. Therefore, our idea is that multiple computational units may produce significant
improvements when a more intelligent load distribution is used. A better strategy is that
based on graph partitioning distribution (provided by PSBLAS as well) which aims to
create domain partitions that require the minimal number of communications.



During the experiments we observed that the use of hybrid computation is not al-
ways beneficial. In fact, we get significant benefits only for the Desktop platform whose
CPU and GPU are very similar in terms of performance. On AWS, which has the most
powerful GPU among the 3 architectures, it is more convenient to use only the GPU. On
PLX we get a small improvement for small matrices, where the CPUs and GPU through-
put are almost the same. As a future development, it may be useful to define an index
which expresses the affinity to hybridization of a specific platform.

5. Conclusions

We demonstrate how the usage of object-oriented techniques and design patterns allows
an efficient utilization of heterogeneous computing platforms which are very popular
in the high performance computing community. The optimization of the matrix-vector
product is however just a part of a complete application. We will realize an OpenMP
plugin which removes the MPI overhead and investigate preconditioners that are suitable
on GPU in the context of linear solvers employing Krylov methods.
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