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Abstract. Domain decomposition based on spatial locality is a classical data-
parallel problem whose solution may improve by orders of magnitude when imple-
mented on a GPU. Among the data structures involved in domain decomposition,
uniform grids are widely used to speed up simulations in a number of fields, includ-
ing computational physics and graphics. In this work, we present two commonly
used approaches to generate uniform grids on GPUs and propose a new single-pass
method that has several advantages over the previous ones. We also present some
performance results of our CUDA implementation of a broad-phase collision detec-
tion algorithm for particles simulation, comparing the different methods. In some
tests our method achieves a speedup of 2 compared to the fastest known method
supporting a fixed maximum number of elements per cell, and a speedup of 7 com-
pared with the fastest method without such a constraint.
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Introduction

Many real world problems naturally exhibit spatial locality, especially for particle-based
simulations; this occurs in many physical models where we consider just short-range in-
teractions while ignoring weaker long-range interactions, as well as in those cases where
a certain phenomenon has effects only through some paths in space. When implementing
a computational simulation of these models, we always take locality into consideration,
not the least because of its performance implications.

For spatial locality problems, the regular nature of uniform grids enables a straight-
forward partitioning of space that can be easily accessed by data-parallel kernels run-
ning on the GPU, thus allowing a concurrent access to the elements of the simulation
and avoiding the need to deal with unnecessary portions of large volumes of data. Uni-
form grids are widely used to speed up simulations for a multitude of topics, including
computational physics [1] and graphics [2].

The many-core architecture of the GPU is relatively recent and its set of features
is rapidly increasing over the years. Sometimes these changes improve the performance
of some classes of instructions by order of magnitudes with respect to previous versions
of the same hardware. Several research efforts have been devoted to obtaining the most



efficient algorithm(s) for uniform grid construction and traversal on the latest GPU hard-
ware, e.g. [3,4,5]. In this paper, we review the state of the art of this research field, then
we identify a specific performance improvement provided by the new NVIDIA Kepler
architecture that allows the development of a faster and simpler method to build up a
uniform grid when compared to the existing solutions in literature.

Our method exploits the Kepler’s fast atomic operations in global memory to create
a uniform grid made by a set of linked lists, using a single-pass kernel. We apply our
method to a well known problem, the broad-phase collision detection method, showing
the tradeoffs of our method compared to the state of the art methods and detailing their
bottlenecks and performance issues.

The results we present are related to uniform grid construction. However, our con-
siderations can be applied to speed up the generic problem of the parallel insertion of a
set of elements inside a set of buckets, provided that each element is inserted in a certain
bucket in a way that is independent of the other elements’ target and that the peak num-
ber of elements per bucket is not too large compared to the average value. An example
of such an application is the parallel insertion of a large number of elements in a hash
table using the chaining method [6], in which each bucket is implemented as a linked list
of elements that share the same hashcode. The implementations in [6] can achieve hash
insertion rates of around 250 million pairs per second, while our best implementation can
achieve around 2 billion pairs per second considering an input size of 1 million elements.

The rest of this paper is organized as follows. In Section 1 we describe how uniform
grids are implemented on GPU by the existing methods. In Section 2 we present our
new single-pass method. In Section 3 we then discuss the performance results of a well
known application, i.e., the broad-phase collision detection, which has been implemented
using all the uniform grid construction methods we consider in this paper. Finally, we
summarize in Section 4 and discuss future work.

1. Uniform Grids on GPU

A uniform grid is the simplest form of space partitioning, since it splits the Euclidean
space into equally sized volumes (called cells), for instance cubes. The size of each cell
is usually chosen so that a single cell can contain the axis-aligned bounding box (AABB)
of the largest element of the target simulation. This means that each element touches
at most 8 adjacent cells. The advantage of this partitioning technique is that given an
element and its AABB, locating the cells it touches is completely independent of any
other inserted element. This simplicity makes the creation of the entire grid very fast on
a parallel architecture; indeed a grid can be recreated on a GPU at each time step without
significantly affecting the simulation performance.

In theory, it should be possible to perform incremental updates to the grid but, when
dealing with dynamic environments on GPU, it is better to generate the grid data structure
from scratch at each time step since this consumes a small fraction of the time step. There
are two kinds of uniform grid, namely tight and loose grids, differing in the number of
entries of each element within the data structure.

Tight Uniform Grids In the tight version of a uniform grid, each element is inserted
inside every cell touched by its AABB, at most 8 adjacent cells. Therefore, the resulting
grid will have more insertions per element (up to 8), but a search for colliding AABBs



of a single element will be limited to maximum of 8 adjacent cells, the cells touched by
the given element.

Since there are multiple entries for each element in the grid, pairs of elements may
be present in different cells’ buckets. For this reason we need to find a way to enable the
threads to process each pair exactly one time, thus avoiding repetitions. To achieve this
goal, we associate a bitmask of three bits to each entry in a cell. In this bitmask (bxbybz),
bi is equal to 0 if the AABB touches that cell with its negative side along the i coordinate,
otherwise it is equal to 1. Actually, bi is 1 if the same element is also inserted in the
previous cell along the i coordinate. Then, a pair of elements should be processed only
when the bitwise operation (bxbybz AND b′xb′yb′z) is equal to 0. After the insertion, this
test becomes true exactly in one instance, because every time two AABBs are inserted in
the same cell with bi AND b′i equal to 1, there is also an insertion with bi AND b′i equal
to 0 in the previous cell along the i direction.

Loose Uniform Grids In the loose version of a uniform grid, each element is inserted
just once, usually in the cell containing the center or a particular vertex of the AABB. In
our implementation we have chosen the vertex whose local coordinates (relative to the
AABB) are equal to 0. In this case, we have just one insertion, but searches for colliding
AABBs are extended to a minimum of 8 and a maximum of 27 cells; on the other hand,
there is a smaller number of entries in each cell.

Related Work We now review two methods that have been proposed to build a uniform
grid with the Compute Unified Device Architecture (CUDA) C language on NVIDIA
GPUs. The first method is the atomic increment construction algorithm, while the second
is the sorting construction algorithm [3,4]. Both methods are based on the hash id of the
destination cell, which is computed directly from its position according to two possible
options:

• Using a function that joins the three coordinates (x, y and z), each comprising k
bits, in a single integer zk...z2z1z0 yk...y2y1y0 xk...x2x1x0;

• using a function that maps cell coordinates to integers following a space filling
curve, like the Z-order curve (also called Morton curve), Peano curve or Hilbert
curve [7,8].

In many applications of uniform grids, including those described here, each thread ac-
cesses the data of elements that belong to different cells mapping adjacent space areas.
The space filling curve option is used by some implementations based on the sorting
method [3,5] to place the elements’ data of neighboring cells in adjacent linear memory
addresses. In this way, elements from multiple adjacent cells can be accessed with an
improved cache utilization and therefore higher performance. On the other hand, when
using a method that does not provide a sorting pass of elements’ data, the use of a space
filling curve is quite non influential.

Building Uniform Grids Using atomicAdd An atomic operation is guaranteed to read,
modify and write back a value in memory, both global and shared, without generating
race conditions with other threads. This property is essential in the concurrent construc-
tion of data structures such as hash tables, linked lists, and trees. Green in [3] presents a
method that uses the CUDA atomicAdd function to construct a uniform grid in a single
pass. The method is very simple, but it also has some limitations.

The grid is implemented by two fixed-sized allocations:



• cellCount[numberOfCells] is a vector storing the current number of elements
inserted in a cell (initialized to the zero vector at each time step start);

• cellElements[numberOfCells*maxElementsPerCell] is a matrix storing
for each cell the vector of inserted elements ids.

We observe that since the cellElements matrix is fixed-sized, there is a hard limit on
the number of elements contained in a cell.

A single kernel can be used to concurrently insert all the elements in the data struc-
ture. To achieve this, each thread inserts a single element in three steps:

• First, it computes the index cellId of the cell in which the element should be
inserted;

• then, it calls atomicAddwith argument 1 on the address of cellCount[cellId];
• finally, the thread uses the returned integer (i.e., the value previously stored

in the operation’s destination address) as a unique index in the cell vector
cellElements[cellId] to write the element’s id.

The same can be expressed in CUDA with:

i n t o l d = atomicAdd(& c e l l C o u n t [ c e l l I d ] , 1 ) ;
c e l l E l e m e n t s [ c e l l I d ∗maxElemen t sPe rCe l l + o l d ] = e l e m e n t I d ;

In our final implementation of the grid construction method based on atomicAdd, we
have chosen a column major memory layout for cellElements. Therefore, we store
elementId to cellElements[cellId + old*numberOfCells] because we have
found that the column major memory layout is faster (up to 15%) than the row-major
order in our performance tests.

This method can be extended to avoid the limitation of the maximum entries count
per cell, executing these passes:

• counting in a first pass the number of entries to be stored in each grid cell, using
the atomic increment code shown above;

• performing a parallel prefix sum on the entries’ count array;
• in the final pass, evaluating again all the entries to be inserted, but this time writing

them to contiguous locations in a packed grid array; this can be done using the
results of the prefix sums pass.

Building Uniform Grids Using Sorting The method based on atomicAdd has two main
drawbacks. The first one is that atomic operations are slow in many GPU architectures,
even when there are no collisions during atomic accesses; moreover, significant slow-
downs may occur with collisions. The second drawback is that if we want to extend the
method to avoid the fixed length limitation, a parallel prefix sum on the whole grid is
needed. This is a limiting condition, since the performance of this kernel does not scale
with the domain size (i.e., the number of elements) but with the grid size, incurring severe
slowdowns when using refined grids.

Previous efforts in [3,4] propose an alternative approach which addresses both issues
by means of a sorting algorithm. The method consists of the following passes:



1. the first pass evaluates and stores each (cell id, element id) pair in a temporary
array;

2. the second pass sorts these pairs on the basis of their cell id value so that elements
of the same cell are stored sequentially in memory;

3. the last pass finds the start index and end index of every cell in the sorted array.

The sorting can be performed using several different algorithms, but radix sorting is
the fastest open source method on GPU reported in literature. It was first implemented on
GPU by Satish et al. in [9], then improved by Merill and Grimshaw in [10], and finally
included in the highly-tuned GPU Thrust library [11]. This fast radix sort implementation
is the same used in [3] and is based on the parallel prefix sum kernel.

The last pass is performed by comparing each element in the sorted array with the
previous and the next entries: if the cell id of these entries differ, then that element is
positioned at the start or the end index for that cell. Then, it is possible to find every grid
entry of a given cell just reading the pairs stored on the sorted array from the cell start
index to the cell end index found in the previous passes.

Since the method avoids the use of atomic functions, its performance is not affected
by the distribution of the elements in the grid. Moreover, it scales with the problem size
rather than the grid size, since no empty cell is considered in the sorting process.

As a further optimization, Green for his particle simulation in [3] also sorts the
elements data along with the elements entries in the grid. We observe that this sorting is
convenient for a particle simulation that has a low quantity of data for each particle, but
it may cause slowdowns in simulations with a high amount of data per element.

2. A New Uniform Grid Building Method

In this section we present a new method which relies on the atomicExch function to
build up a uniform grid in the form of a set of linked lists.

NVIDIA has introduced in Kepler, its latest GPU architecture, some performance
enhancements concerning atomic operations. As reported in [12], the atomic operations
speedups range from 2.5 to 11 compared to the Fermi architecture, especially in the
presence of collisions. NVIDIA also states that Kepler atomics are fast enough to be
inserted in inner loops. These significant performance gains suggested to us that a grid
construction method based on atomic operations can still be used on Kepler, avoiding the
drawbacks stated in [3,4].

In our method, the grid is represented by two arrays:

• cellHead, which stores for each cell the first inserted element id;
• cellNext, which stores for each entry the id of the next inserted element in the

list.

With this configuration, the basic step to achieve a concurrent insert of an element with
unique ID elementID in a cell whose unique ID is cellID is:

i n t l a s t S t a r t E l e m e n t = a tomicExch (& c e l l H e a d [ c e l l I D ] , e l emen t ID ) ;
c e l l N e x t [ e l emen t ID ] = l a s t S t a r t E l e m e n t ;



The atomicExch function reads cellHead[cellID] in lastStartElement and
writes elementID in cellHead[cellID] in one atomic transaction. This permits each
thread to insert its element in the list head cellHead[cellID], taking the previous
head element and storing it as the next pointer for the inserted element. We observe that
cellNext will be accessed with coalesced writes, since elementID is generated from
the linear thread id. In the tight uniform grid version, the cellNext allocation is 8 times
larger than the loose version, since every element can have up to 8 entries in the grid, and
each entry ID is stored using the last three bits to keep track of which entry belongs to
the linked list. Clearly, this method can be applied to simple uniform grids or any kind
of linked lists group (in such cases cellID would be a generic listID).

Using these basic steps, we can build an entire uniform grid with no significant im-
pact on the whole time step performance. At every time step start, the entire grid is ini-
tialized and rebuilt, as shown in Figure 1. The memory footprint of our method with
respect to the atomicAdd-based approach is minimal, since all elements can fit in the
same cell with no padding; moreover, all non-atomic operations for insertion are coa-
lesced. Compared to the approaches known in the literature, our new method is actually
simpler, since no additional passes are needed to support independence from elements
distribution for the memory allocation. Note however that the elements distribution still
influences the atomics operations performance.

. . .-1 -1 -1 -1 -1 -1 -1cellHead

. . .-1 -1 -1 -1 -1cellNext

. . .-1 -1 -1 -1 -1 4 -1cellHead

. . .-1 -1 -1 -1 -1cellNext
Thread 4 inserts its element 

into cell 5

. . .-1 -1 -1 -1 -1 0 -1cellHead
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Thread 0 inserts its element 
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. . .4 -1 -1 0 -1cellNext
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into cell 3
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. . .4 2 -1 0 -1cellNext
Thread 1 inserts its element 

into cell 3

Figure 1. Grid initialization (left) and construction (right)

The drawback of our method is that the identifiers of the elements in the same linked
list, stored via the next pointers array, are not sequential in memory, so an entire list of ids
may not be read efficiently. However, in real world simulations to each element there is
a certain amount of data, so it can be convenient to pack the next pointer directly within
the allocation for the element’s data, e.g. directly after three float coordinates values, so
that it is possible to read both the position and the next pointer with a single CUDA’s ma-
chine instruction implementing float4 16-bytes read operation. This change makes for
a slower insertion throughput due to the loss of coalescence of non-atomic operations, but
it leads to remarkable speedups in the complete simulation, given that insertion requires
a comparatively small amount of time, since both grid entries identifiers and simulation
data can be read in a single memory access. Moreover, these scattered read operations
are implemented in our kernels using texture cache lookups, allowing us to reach up to
45% of additional performance improvement compared to using global memory reads.



3. Experimental Results

To evaluate the performance of the above space partitioning methods, we consider a clas-
sic application of uniform grids: the broad-phase collision detection for interacting par-
ticles simulation. We first briefly describe the benchmark and then discuss some perfor-
mance results.

The collision detection algorithm is used in the simulation of interacting particles:
it finds which pairs of particles are sufficiently close. In the simplest case the interaction
is a collision, hence the name. The algorithm is usually implemented with a two-phase
approach, a broad phase followed by a narrow phase, to find intersections between sim-
ulation’s elements. The broad phase usually has a fast approximate implementation and
it is used to minimize in a conservative way the number of tests that have to be performed
in the narrow phase. During the narrow phase we perform exact intersection tests which
are more complex and costly, but every element is tested against a smaller set of possible
collisions. The broad-phase collision detection is the foundation of the so called discrete
element method (DEM), which is an appealing simulation technique for computing the
motion of a large number of particles in granular media and solving engineering prob-
lems in granular and discontinuous materials, like granular flows, powder mechanics,
and rock mechanics [13].

Our benchmark implements the collision model described in [3], which consists of
a spring force which spreads the particles apart, a dashpot force which causes damping,
and a shear force which causes viscosity. Its time step is composed by three stages:

1. first, each particle’s id is inserted in the target cell of the uniform grid;
2. then, for the narrow phase, a kernel checks the possible collisions of each particle

with all the other particles that were inserted in the same cell; the kernel updates
also the velocity of each collided particle;

3. finally, an integration step updates the particle position along the velocity vector
and simulates collisions with fixed boundaries.

The broad phase is implemented in the first stage, reducing significantly the number of
collision tests to be executed in the second stage.

Our benchmark involves different test cases with an increasing number of interact-
ing particles left free to fall in an empty closed box, using the space partitioning scheme
described above to limit collisions tests just to those elements inserted in the same or in
the adjacent cells. The empty space in which the particles can move is partitioned with
a uniform grid made by 64×64×64 cells. In our tests all particles have the same diam-
eter, which is also equal to the cell length. When the number of elements increases, the
box becomes full and so the concentration of particles per cell increases. The expected
behavior for each method is an increasing performance (in particle updates per second)
for simulations with higher number of particles, due to the better utilization of the GPU,
until a certain threshold, after which we should experience a performance decrease due
to a greater number of intersection tests (which scales with the square of the number of
particles per cell).

3.1. Performance Analysis

We now compare the performance results of the above described benchmark, imple-
mented using all the uniform grid construction methods in Sections 1 and 2. All the ex-



periments have been executed on the NVIDIA GeForce GTX 660 card, which is based
on the Kepler architecture, by running a particle simulation on a 64× 64× 64 uniform
grid.

Each experiment starts with all the particles uniformly distributed in the left half (x<
32) of the free space of the box, with a little additional random offset in their positions.
Due to gravity, they fall and when they hit ground, they tend to distribute themselves
uniformly on the bottom of the box, generating a wave. The simulation proceeds for 2000
time steps, which is enough to damp the wave completely.

Figure 2 shows the average performance of a single time step over the whole simu-
lation. To point out how the uniform grid construction phase affects the performance of
each time step, we also show in Figure 3 the performance of the insertion kernel in the
slowest time step of the simulation. On the x-axis of all the figures, we report the number
of particles. In Figures 2 and 3, the curves labeled as Fixed Grid and Sorting (Thrust)
correspond, respectively, to the implementation based on the atomicAdd function and
that by Green based on sorting (which calls the routines of the Thrust library, included
in the CUDA toolkit). The remaining performance curves refer to our three implementa-
tions based on linked lists. Specifically, Linked List Loose and Linked List Tight store,
for each node, the index of the next node in dedicated arrays, while Linked List Loose
Packed stores this index in the same memory area used to store the domain data, that is,
replacing the 4 bytes of padding after the particle velocity.
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Figure 2. Comparison of the broad-phase simulation performance using different uniform grid methods. Per-
formance results are provided in terms of MPUPS (million particle updates per second).

Figure 2 confirms our expectations: the Linked List Loose Packed, Linked List Loose
and Fixed Grid methods have their performance peak at 64K particles, the Sorting curve
reaches its maximum at 512K particles, while Linked List Tight has its peak at just 8K
particles. After these thresholds, all the curves decrease. Indeed, when the concentration
of particles per cell is high, the same elements must be read over and over again, the
number of collision tests per particle increases with the square of the elements’ count,
and so the computation of forces acting on a particle takes more time. When the space
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Figure 3. Performance of elements insertion in the uniform grid (small and large size problems)

is full of particles, the collision model allows every particle to push the particles below
due to gravity acceleration, increasing the concentration of particles per cell on the lower
layers. In our benchmark, at 512K elements of simulation, every particle must be tested
on average against 3.5×27 elements. All curves except Sorting show a similar trend, and
we can observe that the Linked List Loose Packed method is faster than all other methods
based on atomics operations in our test cases.

Figure 2 also shows that loose grid kernels are better than tight ones at all sizes. As
previously stated, in our benchmark the particle’s diameter is equal to the cell size, so
particles often touch 8 cells. In the loose version, the particle’s id will be inserted in only
one of these cells, and afterwards then the thread which checks collisions for that parti-
cle will traverse 27 linked lists of neighbouring cells. In the tight version instead, each
particle’s id will be inserted in 8 linked lists; each collision testing thread will traverse
only 8 linked lists, but at high occupancy each of these lists tends to have 1 an average
number of elements that is 8 times larger than that in the loose version. Therefore, in the
tight version, each thread will perform up to 8 times the number of insertions made in the
loose version, and will traverse up to 8× 8/27 = 2.37 times the number of linked list’s
nodes traversed in the loose version.

The Sorting method is quite different. When considering small size simulations, any
method based on atomic operations is faster than Sorting (see Section 2); in particular,
our packed implementation reaches a speedup of almost 7. As explained in Section 3,
the Linked List Loose Packed has a slower insertion kernel than the Linked List Loose
method, which has coalesced accesses on all non atomic writes, but provides a faster
overall timed, achieving a speedup greater than 2. On very large problems however (over
512K particles) Sorting outperforms all other methods.

To understand this behavior we should examine Figure 3; we can see that Sorting has
a much slower insertion kernel, up to 17 times slower than the best, and this is the main
bottleneck for many small test cases. Whereas the worst among the other curves reaches

1Note that the bottom of the box has a size of 64×64 = 4096 cells



105 million particle inserts per second at 16K particles, making insertion time negligible
for small problems, Sorting reaches a comparable level only near 512K particles. In the
sorting method, however, the particles’ velocities and positions are sorted in memory
according to the containing cell id, following a space filling curve; this allows for a better
cache pattern when accessing elements’ data, so that when the bottleneck shifts from
entries’ insertion to elements’ data reading the sorting method becomes the best.

A further drawback of atomics-based methods is that they are nondeterministic, be-
cause the order of the elements in the same linked list depends on the chronological order
of atomics operations performed on the same address. This could be a problem, since
the impossibility to reproduce the numerical result of a particular experiment makes both
debugging and numerical stability analysis noticeably harder.

4. Conclusions

The performance improvements of modern GPUs on atomic operations make it possible
to build uniform grids using a single-pass kernel that is simpler and faster for many
application cases with respect to state of the art approaches. In future work we will focus
on using atomic operations also for fast construction of tree-based spatial partitioning
structures, like octrees, which are mainly used in environments that need non-uniformly
refining.
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