
Exhaustive Key Search on Clusters of GPUs

Davide Barbieri, Valeria Cardellini, Salvatore Filippone

Dipartimento di Ingegneria Civile e Ingegneria Informatica

Università di Roma “Tor Vergata”, Roma, Italy

davide.barbieri@ghostshark.it, cardellini@ing.uniroma2.it, salvatore.filippone@uniroma2.it

Abstract—Exhaustive search is generally a last resort for
solving a problem: each possible state of a system is gener-
ated and evaluated against a condition to find if the problem
solution is attained. In some cases, for example in the reversal
of cryptographic hash functions that make use of the salting
technique, there are very few valid alternatives. However, the set
of candidate solutions can be extremely large and therefore very
substantial computing resources are needed to walk through the
search space in a reasonable time. On the other hand, exhaustive
search is very often embarrassingly parallel and so the task can
be easily accelerated by distributing the work on a multitude of
devices. In this paper we propose a pattern to parallelize general
exhaustive searches on a heterogeneous and hierarchical network
of computing nodes. We validate this pattern by applying it to
the reversal of MD5 and SHA1 hash functions, both at coarse
grain (work dispatching among nodes) and at fine grain (work
made by each thread), reaching linear scalability with increasing
computing power of the participating nodes. In particular, we
show how to implement and optimize the hash key search on a
GPGPU, achieving near-maximal throughput on various models
of NVIDIA devices programmed with CUDA.

I. INTRODUCTION

A hash function takes an arbitrary string as input and
produces an output containing a fixed number of bytes; this
output is often called a digest. Since the cardinalities of the
sets of possible inputs and of possible outputs typically differ,
more than one string can be mapped to the same hash product;
for this reason, it is called a one-way function.

Some hash functions are suitable to securely store pass-
words in a database, since a malicious attempt to read the
password by an attacker will be limited to the retrieval of the
hashcode. However, to be a good candidate for cryptographic
use, a hash function should produce collisions (that is, produc-
ing the same output for different inputs) very rarely, especially
for inputs that use the same charset and comparable lengths.
It should be very difficult to guess a possible input for that
hash.

Studying the amount of time and resources needed by
a brute-force attack to retrieve a password is a key step
in understanding the actual level of security provided by a
cryptographic hash function. In some working environments, it
is a standard procedure to make periodic cracking tests, called
auditing sessions, to assess the reliability of the employees’
passwords.

There are various ways to create a hash lookup function:

• brute forcing;

• dictionary attack;

• lookup tables;

• rainbow tables.

Usually, there is no simple way to find a string that produces
a certain hash, but it is conceptually possible to enumerate all
possible strings, compute their hashes and compare them with
the target hash. This exhaustive search is often referred as a
brute force attack.

For short input strings brute forcing is a feasible method,
but the number of possible inputs grows exponentially with
the number of characters. For example, the number of strings
containing at most 8 alphabetic characters (both lower and
upper case) is ≈ 54, 508 billions; with 10 characters it becomes
≈ 147, 389, 520 billions.

The number of attempts can be drastically reduced if a
dictionary of recurring words is involved in the string set
production. A hybrid technique that uses a dictionary along
with a list of common password patterns provides a good way
to guess longer passwords.

Lookup tables can be generated storing the mapping be-
tween each string with its digest to speed up subsequent
searches, but such method becomes quickly unmanageable for
the amount of memory required to store the table.

The rainbow tables method is used to achieve a trade-
off between hash cracking speed and size of lookup tables.
It concentrates in less space the information about solutions,
but a certain amount of computation is needed to lookup a key.

The last two methods are completely useless when the
key is concatenated with a random string in a technique
called salting, since the corresponding hashcode for each key
changes. Although the salting technique makes strings longer,
it does not increment the search space since the random part of
the string (the salt) to be concatenated is known by definition.

Another application of exhaustive search that is gaining
interest is the production of secure transactions of a virtual
currency on a peer-to-peer network. For example, in the Bit-
coin network [1] transactions’ consistency is based on blocks
of data that are generated in a process called Bitcoin mining. In
this process an exhaustive search is performed to find a 32-bit
value (nonce) that is used as input to a hashing function based
on the SHA256 algorithm, producing a hash with a certain
number of leading zero bits (which is provided by the network
and increases in time). Generating a block is rewarded by the
network with a certain amount of money. Usually, since the
mining of a block requires a processing power too large to
be pursued by a single miner, communities of users (even
thousands of people) over the Internet join and collaborate,
dividing the search space and sharing rewards on the basis of
the computing power contribution.



It is clear that the problems described above require a huge
processing power to be solved in an acceptable amount of
time. It is also usually impossible to obtain this processing
power using a single device; hence, the interest in designing
and implementing software that scales across multiple nodes,
each containing multiple devices, that are organized a complex
network.

Very large computing networks, like a Bitcoin mining pool,
are constructed with the hardware that is commonly found in
desktop computers, like multi-core CPUs and GPUs. These
devices have very different specifications and exhibit different
processing power.

In this paper, we present a parallelization pattern to imple-
ment exhaustive searches on hierarchical and heterogeneous
architectures; then, we apply this pattern to the brute forcing
of MD5 and SHA1 digests on a cluster of GPUs. Lastly, we
show how to optimize the exhaustive search kernel in order to
exploit the full throughput of NVIDIA CUDA devices. Our ex-
perimental results demonstrate that the proposed parallelization
pattern applied to password cracking allows to achieve near-
maximal throughput on various models of NVIDIA devices
programmed with CUDA and in most cases outperforms well-
known brute-force tools on a single GPU.

The remaining of the paper is organized as follows. In
Section II we review related work on the bruce force method.
In Section III we discuss how to parallelize the exhaus-
tive search and present our parallelization pattern. Then in
Section IV we describe how to apply the exhaustive search
pattern to the design of a distributed password cracking sys-
tem based on a cluster of GPUs. In Section V we discuss
some optimizations that allow to maximize the performance
of the exhaustive search kernel on CUDA-based GPUs and
present some experimental results in Section VI. Finally, we
draw some conclusions and give hints for future work in
Section VII.

II. RELATED WORK

Distributed password cracking aims to distribute the pass-
word cracking work among multiple nodes; in [2] Marechal
analyzed various techniques (such as Markov chains [3]) that
can be applied to distributed password cracking.

Previously published works on the brute force method have
validated their model by implementing only the dispatching
part over multiple nodes of a password cracking, while using
the external tool BarsWF [4] to actually execute the cracking
task on CPUs and GPUs [5]. Other published results show less
than 10% efficiency when they apply the same model on fine
grain parallelization [6]. A homogeneous parallel brute force
cracking algorithm that performs all the work on the GPU side
(including the generation of all candidates) has been proposed
by Vu et al. in [7]. However, depending on the size of the
character pool and the the password length, their algorithm
may require a large amount of memory (some Gbytes) to
store all the possible combinations in the GPU and this is
not practical.

In our approach we tackle both the coarse-grain (network
nodes) and the fine-grain (grid of GPU threads) parallelization,
achieving up to 100% efficiency on a single GPU and up to

90% on a GPU cluster. Differently from [7], our approach
requires a minimal amount of memory (less than 1 Kbyte)
and does not require any initialization phase and separate
generation of passwords. Moreover, our solution pattern can
be applied to other exhaustive search strategies, beyond the
current password cracking application we consider in this
paper as a case study.

III. PARALLELIZING EXHAUSTIVE SEARCH

In an exhaustive search method, also known as brute-force,
we must enumerate all candidate solutions of a particular
problem and execute a test to verify if any of them satisfies a
particular condition. Since the evaluation of each candidate
solution is generally independent from all the others, an
exhaustive search offers very good parallelism potential: the
solution space can be partitioned in many ways with very few,
if any, constraints.

Only a very small amount of data must be scattered at
the beginning of the computation to each computing node, to
allow the generation of the solutions’ subspace; we must also
collect periodically a fairly small amount of data from each
device to eventually terminate the search if a stop condition is
met (e.g., a satisfactory number of solutions has been found).

Although in many cases such subdivision seems trivial,
some design considerations should be kept in mind when opti-
mizing the performance on complex topologies of computing
nodes with different computing power.

In this section we present a parallelization pattern that
can be applied to implement an exhaustive search on a
heterogeneous and hierarchical architecture, like a node with
a CPU and multiple GPUs or a cluster of such nodes. We
particularly emphasize the control of performance levels, in
order to achieve the best efficiency on the largest possible
number of architectures.

A. Problem Definition

Given the set S of all possible solutions to a class of
problems, we can execute an exhaustive search if there exist:

• a bijective function f from the set of natural numbers
N = {0, 1, 2, 3, . . . } into S, where S is either finite
or countable;

• a test function C : S → 0, 1.

Therefore, an exhaustive search involves the generation
through f(i) of all possible solutions, conducting tests with an
increasing identifier i, and the test of the condition C(f(i))
for each entry.

Note that f(i) can be trivial or it can follow a heuristics
to favor testing of the most likely solutions. The test function
C can be also arbitrarily complex: indeed, it might possibly
require every other possible solution to be generated before
evaluating the current candidate.

Furthermore, we define the operator next such that
next(i, f(i)) = f(i + 1). In many instances the execution of
the next operator is much faster than the execution of f(i+1),
because it can be obtained with few manipulations of the f(i)
element’s data.



Given the following cost functions:

• Kf (i), the cost to generate a candidate solution from
an identifier;

• Knext(i, f(i)), the cost to generate a candidate solution
from another candidate;

• KC(f(i)), the cost to evaluate a candidate;

the cost Ksearch of an exhaustive search over a set of n possible
solutions on a single process is:

Ksearch = Kf (i0) +
in−2∑
i=i0

Knext(i, f(i)) +
in−1∑
i=i0

KC(f(i))

or if next(i, f(i)) ≡ f(i+ 1),

Ksearch =
in−1∑
i=i0

(Kf (i) +KC(f(i))).

If Knext(i, f(i)) < Kf (i + 1) then the process’ efficiency,
defined as the time needed to test a solution over the time
needed to generate the solution and then test it, will increase
for larger n.

To distribute the process over multiple nodes we may use
a master task, which

• scatters to the computing nodes the minimum data
needed to generate the candidate solutions;

• waits for the completion of the computation on all
nodes;

• gathers the results from the nodes;

• optionally executes a merge condition test on the
received results.

The last step may be mandatory for algorithms where the
test function C returns 0 when it can confidently exclude a
solution but for which 1 is no guarantee that a solution has been
actually found. For example, when searching for a vector that
minimizes a cost function, each node would find the minimum
in the provided subspace; then, the merge function would find
the minimum cost among all the results of the participating
nodes.

The master task introduces the following cost functions:

• Kj
scatter, the cost incurred by the master to send the

data needed to generate the solutions’ subspace to the
j-th node;

• Kj
search, the cost incurred by the j-th node to search

the solution through its subspace;

• Kj
gather, the cost incurred by the master task to receive

the results from the j-th node;

• KCM
, the additional cost incurred by the master to

apply the optional merge function.

The search within each subspace is independent from all

others, so that Kj
search can scale perfectly with the number of

participating nodes; the merge function, however, should wait

for all the results to be executed. The total cost KD related
to the dispatching of an amount of work, that spans from
dispatching the main data to computing nodes to gathering
their results, satisfies in the best case:

KD >= max
j

(Kj
scatter +Kj

search +Kj
gather) +KCM

KD <=
∑
j

Kj
scatter +max

j
(Kj

search) +
∑
j

Kj
gather +KCM

.

In many cases Kj
scatter and Kj

gather are fixed costs and become
negligible for sufficiently large problems. For large intervals,

KD will depend almost exclusively on max
j

(Kj
search); therefore,

we can conclude that KD will depend on the performance of
the slowest node.

Maximizing performance requires both ensuring that each
node has enough work to make optimal use of its resources as
well as balancing the load, so that no node is left idle while
waiting for others.

When KC(f(i)) and Knext(i, f(i)) are constants, we can
easily obtain the minimum amount of work to dispatch such
that all nodes will exhaust their computation in the same time
and at high efficiency, following these steps:

• perform a tuning step to estimate for each node j the
minimum number of candidates nj needed to achieve
a given target efficiency, and get the peak throughput
Xj ;

• find the node with the maximum throughput Xmax =
max

j
Xj ;

• balance the work on each node j with respect to max,
by setting its workload as Nj = Nmax · (Xj/Xmax);
since for each j we have Nj ≥ nj , this implies
Nmax ≥ nj · (Xmax/Xj); therefore Nmax = max

j
(nj ·

(Xmax/Xj));

• the number of solutions to be tested by the node j
will then be Nj = Nmax · (Xj/Xmax)

Therefore, the dispatcher task will provide work to its
connected nodes with a granularity given by the size Nj of
each interval of candidate solutions.

The tuning step could be skipped when a performance
model that correlates efficiency, performances, and size of the
search subspace for the considered algorithm is available. An
approximated model could be built offline by performing a
sequence of tests with increasing search size on each node of
the cluster.

In a hierarchical topology, the task will dispatch work
to other network’s subtrees (that is, to dispatcher tasks on
other nodes). In this case, the same assumptions outlined so
far hold, since they can be considered as computing nodes
with a throughput that is the sum of the throughputs of the
child nodes and with a minimum number of candidates needed
to provide high efficiency that is equal to Nnode =

∑
j

Nj .

Optionally, Nnode could be arbitrarily increased to minimize



the overhead caused by the dispatch and merge steps over the
full computation.

However, a major constraint of our pattern is the as-
sumption that the size of the intervals that are periodically
assigned to the node could be arbitrarily large, while remaining
irrelevant compared to the size of the whole search space for
the considered cluster.

The proposed pattern can be extended to a dynamic net-
work that can be configured at runtime, by executing the above
mentioned steps each time the number of depending nodes or
their actual performance metrics vary.

The same approach could be used to provide a minimum
fault tolerance model, since it should be possible to monitor
the activity of nodes and recalculate the partitioning of the
search space each time a set of nodes becomes temporarily
inactive. This model in some conditions may not be enough
convenient, since the inactivity of a dispatching node would
block the contribution of all the nodes in the dispatching sub
tree.

IV. PASSWORD CRACKING

In this section, we describe the application of the exhaus-
tive search pattern introduced in Section III to the design of
a distributed password cracking system for MD5 and SHA1
hashes. The system runs on multiple nodes with multiple GPU
devices.

Given a charset of N characters, the f(i) function should
generate an enumeration that associates a unique unsigned
integer to a string. An effective method is to consider a string
as an arbitrarily long number represented in base N (that
is, using N symbols); so, f(i) would be implemented as
an encoding routine that converts a number in this particular
number system, associating each digit to the corresponding
ASCII character.

An example of such mapping would be the function that
translates natural numbers to strings over the charset a, b, c in
the following way:

[0, 1, 2, 3, 4, 5, 6, 7, . . . ]→ [ǫ, a, b, c, aa, ab, ac, ba, bb, . . . ],
(1)

with ǫ denoting the empty string.

The function in (1) corresponds to the algorithm shown in
Figure 1.

Require: id ∈ N, charset = [′a′,′ b′,′ c′, . . . ])
Ensure: str = f(id, charset)
str = []
while id > 0 do

id← id− 1
currentCharId = id mod length(charset)
currentChar = charset[currentCharId]
str = currentChar ⊕ str
id = ⌊ id

length(charset)⌋
end while
return str

Fig. 1. Pseudocode for the f(id) operator; ⊕ is the string concatenation
operator

Require: str = f(id, charset)
Ensure: nextStr = f(id+ 1, charset)
nextStr = str
currentPosition← length(str)− 1
repeat

temp← (id+ 1) mod length(charset)
nextStr[currentPosition]← charset[temp]
id← ⌊ id

length(charset)⌋
currentPosition← currentPosition− 1
if currentPosition = −1 then

nextStr[length(str)]← charset[0]
return nextStr

end if
until temp = 0
return nextStr

Fig. 2. Pseudocode for the next operator

The generated string f(i), that is, the candidate solution to
the cracking problem, should be checked with the test function
C(f(i)). This is essentially the application of the hash function
to the string and the comparison of the result with the input
hash. The conversion function f(i) requires more time for
longer inputs, and in practice it can become dominant with
respect to the hash function.

On the other hand, the next(f(i)) function can be obtained
with a much smaller effort. A possible implementation is
described in Figure 2; in most cases it modifies just a single
character.

For relatively small strings, that is less than 57 characters,
the execution time of both algorithms is essentially indepen-
dent of the string length. For longer strings, the intermediate
result of the hashing algorithm may be saved and reused for a
large number of instances sharing the first bytes of the string;
thus, for each key we can process only the last block of 64
bytes.

When we apply the performance model presented above, it
is then reasonable to approximate the cost of the test function
KC to a constant. This means that the algorithm that dispatches
work to computing units and nodes can select intervals of keys
just considering the size of each interval and the computing
performance of the target node, disregarding the keys lengths.
In particular, the ratio between the number of identifiers to be
provided to different nodes should be equal to the ratio of the
computing power of the nodes.

Given a charset made by N elements, the number of unique
strings of length K is NK , and the number of unique strings
with length from K0 to K is NK0 +NK0+1 + · · ·+NK−1 +
NK . In closed form:

S
K

K0
=

K∑

i=K0

N i = NK0 +NK0+1 + · · ·+NK−1 +NK

NS
K

K0
= NK0+1 + · · ·+NK+1 = S

K

K0
−NK0 +NK+1

Therefore,

S
K

K0
=

NK+1 −NK0

N − 1
(2)



If N = 1, then

S
K

K0
=

K∑

i=K0

1i = 1K0 + 1K0+1 + · · ·+ 1K−1 + 1K

that is,

S
K

K0
= K −K0 + 1 (3)

Given a maximum and minimum size for our solution, we can
use Equations (2) and (3) to compute the size of our search
space. Our f(id) is similar to the concept of a base-n-like
number found in [6], in which the dispatching task itself needs
to generate strings and recursively subdivide the search space,
and needs some overhead when working with keys having
different lengths.

A. GPU Kernel

The hash functions that we implemented on GPU are the
Message Digest algorithm 5 (MD5) [8] and the Secure Hash
Algorithm 1 (SHA1) [9]. Both of them work in principle on
arbitrarily long strings of any length; however, in the context of
our application we limited the maximum number of character
to 20.

Mapping an interval of solution identifiers to the threads of
a CUDA grid is straightforward; the environment guarantees
that each thread has a unique identifier that can be used to
select a unique subset of the search space.

This requires that each thread should call the conversion
routine for each testing key; to reduce the time spent on the
conversion routine, it is possible to assign a larger number of
strings per thread by applying the next operator. In this case,
each thread would generate its start identifier multiplying its
unique id by a factor equal to the number of solutions per
thread to be tested.

The operating system may put a limit on the maximum
time that a driver of a graphic card should wait for the
completion of a running kernel; we can easily bypass this
problem by adjusting the amount of tests per call and spreading
the computation over multiple grids.

In our previous works on the CUDA platform ([10], [11]
and [12]) we found it easier and effective to implement an
optimized kernel for a class of cases that met a set of favorable
conditions, then we adapted the other cases by e.g., padding
the input to meet alignment requirements in global memory;
similar concepts apply to the current problem.

We know that it is possible to implement a fast MD5/SHA1
function packing characters inside unsigned integer regis-
ters [13]. Therefore, we manage strings by aligning them
to integer variable boundaries, i.e. multiples of 4 characters,
padding with the EOF character as necessary.

V. GPU OPTIMIZATIONS

In this section we describe how to maximize the perfor-
mance for a SIMT-oriented GPU like a CUDA device, by
limiting the kernel overhead and maximizing the throughput of
a MD5 hash function. The same considerations can be applied
to other hash functions, including SHA1.

A GPU kernel grid should have a sufficiently large number
of threads to be efficient, since all multiprocessors should be
used at the same time and hazards caused by instruction depen-
dencies should be hidden by other active warps scheduled on
the same multiprocessor. It is also important that each thread
should produce a certain quantity of useful work per kernel
call to reduce the impact of the thread overhead on the total
execution time.

Since the application at hand is clearly limited by the
throughput of arithmetic instructions, in order to optimize its
performance it is very important to study the characterization
of the load and the way the GPU hardware fetches and executes
the various instructions involved.

With this knowledge we can build a model useful to
identify the bottleneck of our kernels and to forecast the
percentage of the theoretical peak performance we can achieve.

A. CUDA Multiprocessor Architecture

CUDA capable GPUs are divided in several architecture
families, which are identified by some sets of specifications
called compute capabilities. GPUs having the same compute
capability share the same multiprocessor design; what varies
is essentially the number of multiprocessors, the amount of
dedicated RAM, and the clock frequency of compute units
and memory.

The CUDA model forces the developer to design a par-
allel algorithm in order to be automatically scalable on the
available multiprocessors. The developer has to maximize the
throughput of the single multiprocessor defining how a block
of threads does a part of the whole work. If we want to
optimize our kernel for the widest possible set of devices, we
have to produce an optimized version of code for each compute
capability, and not necessarily for each device model.

At the time of this writing, there are 8 different compute
capabilities in the NVIDIA GPUs [14]. Most of their differ-
ences concern the global memory access, caching hierarchies,
and floating-point precision. These properties do not affect the
performance of our kernel, since memory accesses are very
infrequent, On the other hand, what is interesting for us is
the throughput of each class of instructions and how these
instructions are issued to the different pipelines. Therefore,
we can actually simplify our considerations by identifying a
smaller set of multiprocessor architectures.

Table I summarizes the architecture specifications for each
compute capability. We exclude from our considerations the
devices having compute capability 3.5, since we were unable
to get access to such type of device in time for this writing.

TABLE I. MULTIPROCESSOR ARCHITECTURE

Compute capability 1.* 2.0 2.1 3.0

Cores per MP 8 32 48 192

Groups of cores per MP 1 2 3 6

Group size 8 16 16 32

Issue time (clock cycles) 4 2 2 1

Warp schedulers 1 2 2 4

single-issue single-issue dual-issue dual-issue

An arithmetic instruction belonging to a warp (a set of 32
threads) is issued by a warp scheduler to a group of cores.



As shown in Table I, from compute capability 2.1 and above,
the warp schedulers are dual-issue; this means that each warp
scheduler can dispatch two independent instructions of the
same warp in the same clock cycle. Moreover, since the num-
ber of warp schedulers in these architectures is less than the
number of groups of cores, the kernel should provide enough
instruction level parallelism (ILP) to exploit the computing
power of all the cores.

There are some arithmetic instructions, however, that can-
not be executed on all cores. Different throughputs are listed
in the CUDA programming guide [14] for different arithmetic
operations, specific to each NVIDIA architecture family. Such
information is summarized in Table II.

TABLE II. INSTRUCTION THROUGHPUT

Compute capability 1.* 2.0 2.1 3.0

32-bit integer ADD 10 32 48 160

32-bit bitwise AND/OR/XOR 8 32 48 160

32-bit integer shift 8 16 16 32

32-bit integer MAD 8 16 16 32

To understand which units actually carry out the instruc-
tions presented in Table II, we had to write some ad-hoc
kernels repeating many times a certain set of instructions,
because such a level of detail is not present in the NVIDIA
official documentation. What we figured out is that:

• devices of compute capability 1.* execute each of
the instructions in Table II using the same cores; in
some cases, integer additions are also executed on the
special functions units which provide an additional
throughput of 2 instruction/cycle per multiprocessor;

• devices of compute capability 2.* execute each of
the instructions in Table II using the same cores;
among these, instructions with lower throughput are
only executed on a single group of 16 cores.

• devices of compute capability 3.0 execute integer
ADD and logical operations on 5 of the 6 groups of
32 cores, while they execute integer shifts and integer
MAD (multiply and add) on only 1 group of 32 cores.

The thread overhead can be reduced by limiting the amount
of code outside of the main hash function’s body. To do this,
we let each thread generate and test more than a single string,
thus iterating the core instructions for a substantial number of
times.

The hashcode to be looked up can be passed to the GPU
kernel through constant memory since all threads will read it,
so that it can be read very quickly. The constant memory can
also be used to load the substring common to all the strings
generated on the GPU.

B. The Main Bottleneck

In Table III we list the number of arithmetic instructions
that a single MD5 hash function requires on a multiprocessor;
we are simply counting all the operations that cannot be
evaluated at compile time in the CUDA source code.

TABLE III. INSTRUCTIONS COUNT (MD5)

32-bit integer ADD 320

32-bit bitwise AND/OR/XOR 160

32-bit NOT 160

32-bit integer shift 128

We verified how these instructions were actually compiled
into machine code for each target architecture we are consid-
ering, by using the cuobjdump -sass tool included in the
CUDA toolkit.

Some differences among the target architectures are related
to how the bit rotate operator is actually translated by the
compiler into machine code. The left rotation of x by n bits
is implemented in CUDA as (x << n)+ (x >> (32−n)) on
unsigned integers.

On target architectures with compute capability 1.* we
found that this operation is translated into a pair of SHL

and SHR shift instructions plus an additional ADD instruction.
When compiling for compute capability 2.* and 3.0, the same
code is translated in a SHL instruction followed by a IMAD.HI
(integer multiply-add) instruction. The latter emulates the
SHR instruction (a >> N ) by performing a multiplication
(a∗232−N ) that actually shifts left by 32−N in a temporary 64-
bit register; then, the .HI part means that the most significant
32-bit half of the result should be taken and added to the
resulting register.

On different compiler versions the same operation is
translated into a SHR instruction followed by an ISCADD

(integer add with scale) instruction. The latter represents a
shift left followed by an addition. These two versions are
totally interchangeable, since they provide the same function
and performance.

Devices with compute capabilities 3.5 provide higher
performance opportunities since they can execute a 32-bit
rotate operation in a single machine instruction, called funnel
shift [15]. This new, previously unsupported instruction per-
forms a complete rotation, or the work of two shift instructions
and one add, and has a double speed, so that the overall
throughput is quadrupled with respect to compute capability
3.0 [14].

In all these cases, the number of ADD decreases since
ISCADD, IMAD, and the funnel shift instructions implicitly
perform the addition.

Table IV shows the actual count of the above mentioned
instructions in the kernel optimized for strings of length 4. We
have found that the compiled code that produces a single MD5
hash is only made by these instructions, while the overhead
caused at each iteration by the next operator is less than the
1% of the time spent by the hash function.

The unary NOT operations are omitted since they are
merged with other instructions in the final phase of compi-
lation.

Looking at the throughput specification in Table II and the
compilation output in Table IV, we can identify 3 classes of
arithmetic instructions for both the MD5 and SHA1 kernels:

• addition instructions;



TABLE IV. ACTUAL INSTRUCTION COUNT (MD5)

1.* 2.* and 3.0

IADD 284 220

AND/OR/XOR 156 155

SHR/SHL 128 64

IMAD/ISCADD 0 64

• logical instructions;

• shift/MAD instructions.

An optimization, which was originally introduced in the Bar-
sWF password cracker [4], achieves a speedup of about 1.25
in almost all architectures, since it reduces each class of
instructions more or less by the same percentage. To explain
this trick, note that we can test a candidate solution for a MD5
lookup in two ways:

• we can start from a string, then apply the MD5 steps to
generate a hash, and compare it with the target hash;

• we can start from the target hash, then apply the
inverse MD5 steps to generate a string that should
be equal to a reference A.

Both approaches lead to a procedure with 64 steps. The MD5
algorithm has one interesting property: the first block of 4
bytes is used inside the first step of the algorithm but not in
the last 15 steps. Therefore, we can mix these two approaches
in this way:

If a thread iterates modifying only the first block
of 4 bytes, it can apply once the second approach
to revert the hash function by 15 steps, then it
can iterate over the different strings (with different
prefixes) using only the first 49 steps of the first
approach and testing the result with the reverted
hash.

Since we can cache results from each iteration, such a kind
of optimization produces a speedup for both sequential and
parallel architectures.

This technique can be applied if just one thread iterates to
modify characters from the first 4 bytes of the string; therefore,
we have to modify the f(i) and next(i, f(i)) functions in such
a way that the mapping described in (1) becomes:

[0, 1, 2, 3, 4, 5, 6, 7, ...]→ [ǫ, a, b, c, aa, ba, ca, ab, bb, ...]. (4)

This can be achieved by a simple change to line 6 of the
algorithm in Figure 1:

str = str ⊕ currentChar

and the body of the algorithm in Figure 2 in order to modify
the prefix of the string accordingly.

Another optimization can help us save three more steps in
most of the cases. Each step modifies just 4 of the 16 bytes
result; the last four steps therefore will produce one part of the
final result each. So, rather than waiting for the completion of
all the four steps, we can anticipate the checks as soon as each
part is computed.

In Table V we report the instruction count of the optimized
kernel.

TABLE V. REAL INSTRUCTIONS COUNT (MD5)

1.* 2.* and 3.0

IADD 197 150

AND/OR/XOR 118 120

SHR/SHL 90 46

IMAD/ISCADD 0 46

To identify further tuning opportunities we need to know
if the full throughput for each class of instruction can be
achieved. With the NVIDIA CUDA Profiler [16] we found that
the kernel does not achieve any instruction level parallelism,
since the number of instructions dispatched in a dual-issue
fashion is very low (less than 10%). This means that on devices
with compute capability 2.1, we leave a group of cores unused
most of the time, while on devices with compute capability 3.0
two groups of cores are left unused.

On compute capability 2.* and 3.0, the ratio between
addition/logical operations and shift/MAD operations is R =
270
92 = 2.93. On Fermi cards, ignoring the unused groups

of cores, the shift/MAD instructions would be completely
overlapped with addition/logical instructions, since only 2
groups of cores can be used and R > 1. On Kepler cards, the
shift/MAD instructions would become the bottleneck, hiding
the addition/logical instructions, since 4 groups of cores could
be used but R < 3. Therefore, we need to account for different
critical paths on different architectures.

By using the CUDA intrinsic byte perm it is possible
to reduce the number of shifts needed by MD5 on compute
capability 3.0. The intrinsic function is used to execute a
rotation by 16 bits in a single instruction, thus having the same
cost of a single shift instead of two.

In Table VI we can find the instruction count of the final,
optimized kernel.

TABLE VI. REAL INSTRUCTIONS COUNT FOR THE OPTIMIZED KERNEL

(MD5)

1.* 2.* and 3.0

IADD 197 150

AND/OR/XOR 118 120

SHR/SHL 90 43

IMAD/ISCADD 0 43

PRMT ( byte perm) 0 3

In this case, on the compute capability 3.0, shifts and
additions contribute equally to the bottleneck, since 43+43+
3 = 89 ≈ 270

3 . At first glance, replacing a left shift by four
bits with four separate additions:

t = a+ a // a >> 1
t = t+ t // a >> 2
t = t+ t // a >> 3
t = t+ t // a >> 4

should provide a better throughput, since addition has 5 times
the peak throughput of a shift operation, but in the context of
our kernel it would actually decrease the overall performances.
Providing a better ILP factor would also be pointless on c.c.
3.0, since the additional cores would be used by a portion of
code (addition/logical instructions) that is already completely
hidden.



A better ILP factor, that is achievable interleaving the
production of the hash of two strings at a time, is nevertheless
a good choice on Fermi, since that architecture is limited by
addition/logical instructions.

The same kind of analysis and optimizations were applied
to the implementation of the SHA1 hash function, which
shows an even lower ratio between addition and shifts/MAD
operations (≈ 1.53).

VI. EXPERIMENTAL RESULTS

In this section, we present some numerical results of the
cracking system described in this paper. First, in Section VI-A
we describe the experimental setting; then, in Section VI-B we
discuss the experimental results.

A. Reference Hardware

Our tests were made on a small network of PCs, each one
equipped with one or two GPUs. The system is heterogeneous
and the performance power of the network tree is deliberately
unbalanced to demonstrate the system flexibility.

The network is composed by the following nodes:

• Node A, which holds a CUDA device:

◦ one NVIDIA Geforce GT 540M;

• Node B, which holds two CUDA devices:

◦ one NVIDIA Geforce GTX 660;
◦ one NVIDIA Geforce GTX gTi;

• Node C, which holds a CUDA device:

◦ one NVIDIA Geforce 8600M GT;

• Node D, which holds a CUDA device:

◦ one NVIDIA Geforce 8800 GTS 512.

The hardware specifications of the GPUs are summarized in
Table VII.

TABLE VII. GPU SPECIFICATIONS TABLE

8600M 8800 540M 550Ti 660

Multiprocessors 4 16 2 4 5

Cores 32 128 96 192 960

Clock (MHz) 950 1625 1344 1800 1033

Compute capability 1.1 1.1 2.1 2.1 3.0

The network topology is the following:

• Node A dispatches part of the work to nodes B and
C;

• Node C dispatches part of the work to node D.

B. Performance Results

In Table VIII we show the average performance of our
cracking software when executed on a single GPU. As perfor-
mance index we consider the throughput in terms of Mkeys/s
(million key tests per second). Table IX shows the same metric
for the execution on the entire network. The search space is the
set of password containing up to 8 alphanumeric characters,
both lower and upper cases.

We compare the performance results of our approach with
the throughput achieved by Cryptohaze Multiforcer [17] and
BarsWF [4] tools on a single GPU. Both are open source
high performance brute-force tools and provide support to
NVIDIA CUDA devices. Moreover, we compare the through-
put achieved by our approach to the theoretical throughput,
that is the maximum throughput that we can expect from our
implementation of MD5/SHA1 on the target hardware. We cal-
culated the theoretical throughput by considering the number
of instructions required by each MD5 hash function listed in
Table VI and the properties of the concerned architecture as
follows.

On compute capability 1.* devices there is only one warp
scheduler, so all types of warp instructions executed on the
same multiprocessor will be serialized. Each multiprocessor
will receive a batch of hash functions to be executed and, in
the best case, they will be dispatched evenly between multi-
processors and executed at the peak throughput. Each function
will require a multiprocessor to execute N = NADD +NLOP +
NSHM instructions, comprising additions, logical operations,
and shifts/MAD operations. The time needed to execute all
these instructions for a large enough set H of hashes will
be at least TH = H·NADD

XADD
+ H·NLOP

XLOP
+ H·NSHM

XSHM
; so the average

execution time per hash is T = TH

H
= NADD

XADD
+ NLOP

XLOP
+ NSHM

XSHM
.

The throughput of a single multiprocessor, in terms of hash
tests in the time interval, should be XMP = 1

T
; ideally, the

whole GPU would provide X1.∗ = XMP ·MP count, where
MP count is the number of multiprocessors in the GPU.

On compute capability 2.1 devices, a multiprocessor has
two dual-issue warp schedulers, while on 3.0 devices each
multiprocessor has four dual-issue warp schedulers. Finding a
general formula for these architectures is more complicated,
since instructions can be executed in parallel on the same
multiprocessor; however, we can compute an upper bound
considering the properties mentioned in the previous section.
The throughput of the different instructions is only limited by
the fact that some instructions can be executed on only one
group of cores on the same multiprocessor.

On 2.1 devices there are three groups of cores; additions
and logical instructions can be executed on any group of
cores on the multiprocessor. Therefore, we may expect that
an MD5 lookup kernel, having three times additions/logical
operations as shifts/MAD operations, should evenly occupy
all the groups of cores. Hence, we can estimate the theoret-
ical throughput treating all types of instructions equally, as

X2.1 =
XADD/LOP ·MP count

NSHM+NADD+NLOP
.

On the other hand, the SHA1 function has only one and
a half as many addition/logical instructions than shift/MAD
instructions; thus, one group of cores would be always busy
on shift/MADD operations, while the other two would have
some idle cycles. The theoretical throughput would be X2.1 =
XSHM·MP count

NSHM
.

However, in actual practice there is not enough instruction
level parallelism in either algorithm, so that the bottleneck is
given in both cases by addition/logical instructions.

On 3.0 devices shifts and MAD operations are sufficient
to overlap completely other operations; therefore, X3.0 =
XSHM∗MP count

NSHM
. We expect a similar result to hold in actual



measurements, since 4 groups should be enough to run in
parallel shift/MAD operations and addition/logical operations
for both MD5 and SHA1.

TABLE VIII. THROUGHPUT ON SINGLE GPU

8600M 8800 540M 550ti 660

MD5 (theoretical, MKey/s) 83 568 359.4 962.7 1851

MD5 (our approach, MKey/s) 71 480 214 654 1841

MD5 (BarsWF, MKey/s) 71 490 205 560 1340

MD5 (Cryptohaze, MKey/s) 49.4 316 146 410 1280

SHA1 (theoretical, MKey/s) 25 170 128 345 390

SHA1 (our approach, MKey/s) 22 137 92 310 390

SHA1 (Cryptohaze, MKey/s) 20.8 132 68 185 377

TABLE IX. THROUGHPUT ON WHOLE NETWORK

theoretical (MKey/s) our approach (MKey/s) efficiency

MD5 3824.1 3258.4 0.852

SHA1 1058 950.1 0.898

By observing the results in Table VIII, we can see how
the actual performance of the devices with compute capability
1.* (8600M and 8800) are near to the expected throughput
with few differences. One reason for these differences is the
lack of ILP that prevents the SFU (Special Function Unit)
to be used to execute additions (thus the additions through-
put per multiprocessor falls from 10 instructions/cycle to 8
instructions/cycle). On Fermi architecture (540M and 550Ti),
since we do not exploit the maximum throughput of ADDs
and logical operations (which form the bottleneck) for the
lack of ILP, the actual performance is quite far from the
theoretical one. On the other hand, on the Kepler architecture
(660) we achieve roughly the maximum expected efficiency,
that is 99.46%.

The same table also shows how our code can provide simi-
lar, or even better, performances than well known tools, such as
BarsWF and Cryptohaze Multiforce, that aim to maximize the
performance. For example, on the Kepler architecture BarsWF
and CryptoHaze Multiforce achieve 72.39% and 69.15% of the
theoretical throughput, respectively.

The results of the full network reported in Table IX show
an actual overall throughput that is roughly equal to the sum of
the throughputs of the single devices, thus showing an almost
perfect parallelism achieved by our system.

VII. CONCLUSIONS

In this paper we have proposed a parallelizing pattern
for exhaustive searches in a hierarchical and heterogeneous
environment and we have proved its effectiveness by building
a cracking system for MD5 and SHA1 hashcodes that works on
a infrastructure composed of multiple nodes having different
GPU devices. Furthermore, we have shown how to identify
the performance bottleneck on a GPU implementation that

is limited by arithmetic and logical instructions and how to
optimize it.

In future work, we plan to apply the proposed paralleliza-
tion pattern for exhaustive searches to other architectures,
including multicore CPUs, manycore systems, and GPUs from
manufacturers other than NVIDIA. Our major goal would be to
obtain a high efficiency even on clusters of greater complexity,
size, and heterogeneity. To achieve this, we would need to
investigate better failure models that would provide a smart
way to reconfigure the cluster topology when a subset of
dispatching nodes becomes inactive.

REFERENCES

[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[2] S. Marechal, “Advances in password cracking,” Journal in Computer

Virology, vol. 4, no. 1, pp. 73–81, 2008.

[3] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proc. of 12th ACM Conf. on Computer

and Communications Security, ser. CCS ’05. ACM, 2005, pp. 364–372.

[4] S. Mikhail, “World fastest MD5 cracker BarsWF.” [Online]. Available:
http://3.14.by/en/md5

[5] J. A. Dev, “Cracking MD5 hashes by simultaneous usage of multiple
GPUs and CPUs over multiple machines in a network,” in Proc. of

2nd Int’l Conf. on Advances in Electronics, Electrical and Computer

Engineering, ser. EEC 2013, 2013, pp. 383–387.

[6] J. Zou, D.-D. Lin, and G.-C. Mi, “A universal distributed model for
password cracking,” in Proc. of 2011 Int’l Conf. on Machine Learning

and Cybernetics, ser. ICMLC 2011, vol. 3, 2011, pp. 955–960.

[7] A.-D. Vu, J.-I. Han, H.-A. Nguyen, Y.-M. Kim, and E.-J. Im, “A
homogeneous parallel brute force cracking algorithm on the GPU,” in
Proc. of 2011 Int’l Conf. on ICT Convergence, ser. ICTC 2011, 2011,
pp. 561–564.

[8] R. L. Rivest, “The MD5 message-digest algorithm,” Internet
RFC 1321, United States, Apr. 1992. [Online]. Available: http:
//tools.ietf.org/html/rfc1321

[9] D. Eastlake, 3rd and P. Jones, “US Secure Hash Algorithm 1 (SHA1),”
United States, Sep. 2001, rFC 3174.

[10] D. Barbieri, V. Cardellini, and S. Filippone, “Generalized GEMM ker-
nels on GPGPUs: experiments and applications,” in Parallel Computing:

from Multicores and GPU’s to Petascale, ser. Advances in Parallel
Computing. IOS Press, Apr. 2010, pp. 307–314.

[11] ——, “Sparse computations on GPGPUs,” DISP, Univ. Roma Tor
Vergata, Tech. Rep. RR-12.90, Jan. 2012. [Online]. Available:
http://art.torvergata.it/handle/2108/76470

[12] ——, “Fast uniform grid construction on GPGPUs using atomic oper-
ations,” in Proc. of Int’l Conf. on Parallel Computing, ser. ParCo 2013,
Sep. 2013.

[13] V. Volkov, “Better performance at lower occupancy,” in GPU

Technology Conf., ser. GTC 2010, 2010. [Online]. Available:
http://www.cs.berkeley.edu/∼volkov/volkov10-GTC.pdf

[14] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, July
2013.

[15] ——, PTX: Parallel Thread Execution ISA Version 3.2, July 2013.

[16] “CUDA Profiling Tools Interface.” [Online]. Available: https://
developer.nvidia.com/cuda-profiling-tools-interface

[17] “Cryptohaze Multiforcer.” [Online]. Available: http://www.cryptohaze.
com/multiforcer.php


