
A Scalable Approach to QoS-Aware

Self-Adaption in Service-oriented Architectures

Valeria Cardellini1, Emiliano Casalicchio1, Vincenzo Grassi1,
Francesco Lo Presti1, and Raffaela Mirandola2

1 Università di Roma “Tor Vergata”, Viale del Politecnico 1, 00133 Roma, Italy
{cardellini,casalicchio}@ing.uniroma2.it,

{vgrassi,lopresti}@info.uniroma2.it

2 Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
mirandola@elet.polimi.it

Abstract. In this paper we consider a provider that offers a SOA appli-
cation implemented as a composite service to several users with different
Qos requirements. For such a system, we present a scalable framework to
the QoS-aware self-adaptation based on a two layer reference architec-
ture. The first layer addresses the adaptation at the provisioning level:
operating at a slower time scale, its role is to identify the set of can-
didate services to implement the system functionality at the required
user QoS. The second layer addresses the adaptation at the service se-
lection level: operating on a faster time scale, its role is to determine at
running time the actual services which are bound to each user request
while meeting both provider and user QoS. We formulate the adapta-
tion strategy of both layers as suitable optmization problems which can
be efficiently solved using standard techniques. Numerical experiments
show the effectiveness of the proposed approach.

Key words: Service-oriented architecture, self-adaptation, quality of
service

1 Introduction

The today increasingly complex software systems operating in a dynamic oper-
ational environment ask for management policies able to deal intelligently and
autonomously with problems and tasks. Besides, the way software systems are
developed is more and more based on the Service Oriented Architecture (SOA)
paradigm, which encourages the construction of new applications through the
identification, selection, and composition of network-accessible services offered
by loosely coupled independent providers. In a “service market”, these different
providers may offer different implementations of the same functionality (we re-
fer to the former as concrete services and the latter as abstract service). These
competing services are differentiated by their quality of service (QoS) and cost
attributes, thus allowing a prospective user to choose the services that best suit
his/her needs. The QoS contracted by users and providers must meet certain re-

2 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

spective obligations and performance expectations which the parties agree upon
in the Service Level Agreement (SLA) contracts.

The fulfillment of global QoS requirements, such as the application response
time and availability, by a SOA system offering a composite application is a
challenging task, because it requires the system to take complex decisions within
short time periods, in an operational environment characterized by a dynamic
and unpredictable nature. A promising way to manage effectively this task is
to make the SOA system able to self-adapt at runtime in response to changes
in its operational environment, by autonomously reconfiguring itself through a
closed-loop approach with feedback [1]. In this way, the system can timely react
to environment changes (concerning for example available resources, type and
amount of user requests), in such a way to fulfill its requirements at runtime.

Several methodologies have been already proposed for QoS-aware SOA sys-
tems able to dynamically self-adapt in order to fulfill non-functional or functional
requirements (e.g., [2, 3, 4, 5, 6, 7]). Most of the proposed methodologies address
this issue as a service selection problem: given the set of abstract services needed
to compose a new added value service, the goal is to identify for each abstract
service a corresponding concrete service, selecting it from a set of candidates
(e.g., [2, 3, 4, 6, 7]). When the operating conditions change (e.g., a selected
concrete service is no longer available, or its delivered QoS has changed, or the
user QoS requirements have changed), a new selection can be calculated and the
abstract services which compose the offered SOA application are dynamically
bound to a new set of concrete services.

In this paper, we follow the service selection approach towards self-adaptive
SOA systems, but, differently from previous work in the area, we propose a
two-layer adaptation strategy carried out by the service broker that offers the
SOA application. In our approach, adaptation decisions occur at different time
scales in order to exploit the optimal provisioning of the component services
and maintain QoS guarantees to various classes of users. Specifically, the first
layer operates at a slow time scale and addresses the adaptation task at the
service provisioning level. Its role is to identify, from a given set of functionally
equivalent candidate concrete services, the actual pool of concrete services that
will be used to implement the component functionalities such that the aggregated
QoS values satisfy the users’ end-to-end QoS requirements and, at the same time,
the service broker’s utility function is maximized. The first layer also determines
how much the identified concrete services are being utilized (i.e., it reserves the
resource capacities). The solution provided by the first-layer is used on a long
term for planning and defining SLAs with the service providers. The second
layer operates at a fast time scale and addresses the adaptation at the service

selection level. Its role is to determine, from the pool identified by the first layer,
the actual concrete services which are bound to each incoming user request while
meeting both provider and user QoS requirements.

We formulate the adaptation strategies of both layers as suitable optimiza-
tion problems which can be solved using standard techniques. Specifically, the
second-layer optimization problem is formulated as a Linear Programming (LP)

A Scalable Approach to QoS-Aware Self-Adaption in SOA 3

problem and is suitable to be solved at runtime because of its efficiency. On
the other hand, the first-layer optimization problem is a Mixed Integer Linear
Programming (MILP) one and is known to be NP-hard. However, its solution is
required on a larger time scale than the second-layer problem: we estimate that,
in a real scenario, the times at which the solution of two problems occurs differ
by at least two orders of magnitude. Therefore, our two-layer approach can be
deployed directly in a broker-based architecture operating in a highly variable
SOA environment, where the scalability and effectiveness in replying to the users
are important factors. To the best of our knowledge, this paper represents in the
SOA environment the first proposal of a two-layer adaptation strategy operating
at different time scales in order to manage dynamically the service provisioning
and selection issues.

There is a significant body of research about how to realize the self-adaptation
of systems to let them cope with a dynamic operational environment [1]. Existing
proposals about how to architect a self-adaptive system share the common view
that self-adaptation is achieved by means of a monitor-analyze-act cycle [8]: the
system collects relevant events concerning itself and its context, analyzes them
to decide suitable adaptation actions, and then act to execute the adaptation
decisions. The main classes of approaches proposed in the SOA research com-
munity to tackle the dynamic adaptation of a SOA system include QoS-based
service selection and workflow recostructuring.

In the first case, as already outlined above, new service components are se-
lected to deal with changes in the operating scenario [2, 6, 7, 3, 4, 9, 10, 11].
Some of the works dealing with this general problem propose heuristics (e.g.,
[9, 10] or genetic algorithms in [3]) to determine the adaptation actions. Others
propose exact algorithms to this end: [6] formulates a multi-dimension multi-
choice 0-1 knapsack problem as well as a multi-constraint optimal path problem;
[7] presents a global planning approach to select an optimal execution plan by
means of integer programming; in [2, 10, 11] the adaptation actions are selected
through mixed integer programming. A general drawback of most proposals for
dynamic adaptation based on service selection is that they pay little attention
to efficiency and scalability. The approaches that we presented in [4, 12] and
adopt also in this paper address these issues by performing the optimization on
a per-flow rather than per-request basis. In these approaches, the solution of the
optimization problem holds for all the requests in a flow, and is recalculated only
when some significant event occurs (e.g., a change in the availability or the QoS
values of the selected concrete services). Moreover, the optimization problem
is solved taking into account simultaneously the flows of requests generated by
multiple classes of users, with possibly different QoS constraints.

The second class includes research efforts that have instead considered work-

flow restructuring, exploiting the inherent redundancy of the SOA environment
to meet the QoS (basically, dependability) requirements [13, 10, 14]. In [12] we
proposed a methodology that integrates within a unified framework the two
classes of approaches by binding each abstract service to a set of functionally
equivalent concrete services, coordinated according to some spatial redundancy

4 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

pattern. The two-layer approach we present in this paper can be extended by
applying the above methodology.

The rest of the paper is organized as follows. In Section 2 we present the
system architecture. In Section 3 we describe the composite service model we
refer to, the type of SLA contracts used for the service users and providers, and
define the goals of the two optimization problems. In Section 4 we present the
mathematical formulation of the optimization problems used in the two-layer
adaptation approach. In Section 5 we present the results of some numerical
experiments. Finally, we draw some conclusions and give hints for future work
in Section 6.

2 System Architecture

The service broker acts as a third-party intermediary between service users and
providers, performing a role of provider towards the users and being in turn a
requestor to the providers of the concrete services. It advertises and offers the
composite service with a range of service classes wich imply different QoS levels
and monetary prices. To carry out its task, the broker architecture is structured
around the following components, as illustrated in Figure 1: the Workflow En-

gine, the Composition Manager, the SLA-P Manager, the Selection Manager,
the SLA Monitor, the Optimization Engine, the Provisioning Manager, and the
Data Access Library. Our envisioned architecture is inspired by existing imple-
mentation of frameworks for Web services QoS brokering, e.g., [15, 16].

Workflow

Engine

Composition

Manager

SLA-P Manager

Data Access Library

Optimization

Engine

SLA Monitor

Selection

Manager

Service

Registry

Provisioning

Manager

Fig. 1. Broker architecture.

The respective tasks of the broker architecture components can be summa-
rized as follows. The main functions of the Composition Manager are the spec-
ification of the business process and the discovery of all the service providers

A Scalable Approach to QoS-Aware Self-Adaption in SOA 5

offering functionally equivalent service implementations. The Workflow Engine
is the software platform executing the BPEL business process (e.g., ActiveBPEL
or ApacheODE) and represents the user front-end for the composite service pro-
visioning. The Workflow Engine interacts with the Selection Manager to allow
the invocation of the component services. Indeed, for each service invocation,
the Selection Manager binds dynamically the request to the real endpoint that
represents the concrete service. The latter is identified through the solution of
the service selection optimization problem. Therefore, in the envisioned architec-
ture the Selection Manager is in charge of the adaptation actions of the service
selection layer. It also keeps up to date information about the composite service
usage profile. Together, the Workflow Engine and the Selection Manager are re-
sponsible for managing the user requests flow, once the user has been admitted
to the system with an established SLA.

The main task of the SLA-P Manager is the SLA negotiation with the users
of the composite service. It is also in charge of the admission control and rate
limiting functionalities. The first allows to determine whether a new user can be
accepted, given the associated SLA and without violating already existing SLAs.
To this end, the SLA-P Manager may trigger a new solution of the service selec-
tion problem. The rate limiting functionality is motivated by the need to limit the
requests submitted to the composite service to the maximum arrival rate agreed
in the SLAs. As a control mechanism for rate limiting, our broker architecture
employs the classic token bucket [17]. This mechanism permits burstiness, but
bounds it. The SLA-P Manager maintains a separate token bucket for each user,
and each token in a bucket enables a single request to the composite service.
Upon arrival, a request for the composite service will be sent out with the token
bucket of the corresponding user decreased by one, provided there are available
tokes for the request. Otherwise, the request is enqueued for subsequent trans-
mission until tokens have been accumulated in the bucket. A SOA middleware
architecture that employs the token-bucket algorithm for admission control is
presented in [18].

The SLA Monitor collects information about the QoS level perceived by the
users and offered by the providers of the used component services. Furthermore,
the SLA Monitor signals whether there is some variation in the pool of service
instances currently available for a given abstract service (i.e., it notifies if some
service goes down/is unavailable).

The Optimization Engine is the broker component that executes the two
adaptation algorithms (i.e, service provisioning and service selection), passing
to them the updated instance of the optimization problem with the new values
of the parameters. The calculated solutions provide indications about the adap-
tation actions that must be performed to identify the pool of resources (i.e., the
concrete services) and to optimize their use with respect to the utility criterion
of the broker as well as to the QoS levels agreed with the users.

The Provisioning Manager is in charge of organizing the service provisioning
policy that makes the broker able to meet its utility objective, that is it manages
the first-layer adaptation actions in the proposed system architecture. Once the

6 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

Optimization Engine has identified through the solution of the service provision-
ing problem the new subset of component services to be used, the Provisioning
Manager negotiates the SLAs with their respective providers.

Finally, the Data Access Library is used by all the modules to access the
model parameters of the composite service operations and environment (among
which the abstract and the corresponding concrete services with their QoS values,
and the values determined by the solution of the optimization problems, as
discussed in Section 3). In Figure 1 the lines connecting the components to the
Data Access Library have been omitted for clarity.

The SLA-P Manager, SLA Monitor, Selection Manager, and Composition
Manager modules are collectively responsible for monitoring, detecting and de-
ciding about the activation of a new adaptation strategy. When one of these
modules detects a significant variation of the system model parameters, it sig-
nals the event to the Optimization Engine, which executes a new instance of
the service provisioning or selection optimization problem and determines a new
solution (in case it exists). Specifically, in our two-layer adaptation strategy the
triggering to the Optimization Engine can occur either periodically or aperiod-
ically and at different time scales. Given the efficiency of the service selection
problem (formulated as LP problem in Section 4), it is suitable for being exe-
cuted frequently in such a way to react quickly to detected changes. Its solution
may be caused by a change in the effective request arrival rates measured by the
SLA-P Manager at the exit of the token buckets, by a variation in the QoS levels
determined by the SLA Monitor, and by a change in the composite service usage
measured by the Selection Manager. If existing, the calculated solution provides
indications to the Selection Manager on how to use the pool of available concrete
services.

Since the first-layer service provisioning is a time-consuming reaction to de-
tected changes (formulated as MILP problem in Section 4), it has to be invoked
moderately and on a larger time scale. Its activation may be either periodic or
aperiodic and it corresponds to modifications in the broker utility, in the ar-
rival/departure of users, and also some change in the available resources (i.e.,
new concrete services identified by the Composition Manager, unreachability
of some used concrete service determined by the SLA Monitor). The first-layer
solution can be also triggered as a consequence of a second-layer optimization
problem withouth a feasible solution. We postpone to a future paper the study of
the possible activation schemes of the two layers and their performance impact
on the system.

3 System Model

3.1 Composite Service Model

The SOA system managed by the broker offers a composite service, that is, a
composition of multiple services in one logical unit in order to accomplish a
complex task. We assume that the composite service structure is defined using

A Scalable Approach to QoS-Aware Self-Adaption in SOA 7

BPEL [19], the de-facto standard for service workflows specification languages.
Here, without lack of generality, we restrict on the BPEL structured style of
modeling, and consider workflows which include, besides the primitive invoke

activity, all the different types of structured activities: sequence, switch, while,
pick, and flow. Figure 2 shows an example of a BPEL workflow described as a
UML2 activity diagram. With the exception of the pick construct, this example
encompasses all the structured activities listed above.

Fig. 2. An example of BPEL workflow.

The business process for the composite service defines a set of abstract ser-
vices V . We denote by Si ∈ V each abstract service (i.e., a functionality needed
to compose a new added value service), and by sij ∈ Pi a specific concrete ser-
vice, where Pi is the set of functionally equivalent concrete services that have
been identified by the Composition Manager as candidates to implement Si. For
each abstract service Si, we also denote by Ii ⊆ Pi the pool of concrete ser-
vices determined by the solution of the service provisioning problem and used
at runtime for offering the composite service.

The overall QoS of a composite service implementation depends not only on
the QoS of the concrete services that have been bound to the abstract services
and on the way they are orchestrated, but also on the usage profile of those
services for each given class of users: a rarely invoked service has obviously a
smaller impact on the overall QoS than a frequently invoked one, and different
classes of users may invoke the same services with different frequencies. To em-
body this knowledge in our model, we model the usage profile of each service
class k ∈ K (where K denotes the set of the considered classes), by annotat-
ing each abstract service Si with the average number of times V k

i it is invoked
by k-class requests addressed to the composite service. The Selection Manager
performs a monitoring activity to keep up to date the V k

i values.

3.2 SLA Model

Since the broker offering the composite service plays both the provider and
requester roles, it is involved in two types of SLA, corresponding to these two

8 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

roles: we call them SLA-P (provider role) and SLA-R (requester role). In general,
a SLA may include a large set of parameters, referring to different kind of QoS
attributes (e.g., response time, availability, and reputation). In this paper, we
restrict our attention to the following three attributes (but other attributes could
be easily added to our framework without changing the methodology):

– response time: the interval of time elapsed from the service invocation to its
completion;

– availability: the probability that the service completes its task when invoked;
– cost : the price charged for the service invocation.

The SLA-R contracted by the broker with the provider of the concrete service
sij ∈ Ii is specified by an instance of the tuple 〈rij , aij , Lij , cij , dij〉, where rij

and aij are the average response time and logarithm of availability of sij . In
our SLA model, we assume that the price paid by the broker to the provider of
sij is given by the sum of a fixed cost cij plus a variable cost, which is linearly
proportional through dij to the amount of service capacity Lij reserved by the
broker. By solving the service provisioning optimization problem, the broker
identifies the pool of concrete services with each of whom it negotiates an active
SLA-R. The set of all the active SLAs-R defines the constraints within which
the broker can organize the second stage of the adaptation strategy carried out
through the service selection.

We denote by K the set of QoS classes offered by the broker. Each class
k ∈ K is characterized in terms of bounds on the expected response time Rk

max

and availability Ak
min

as well as the service costs: a fixed component ck and a
variable component which is proportional to a rate dk per unit per request per
unit of time. A user u requesting a given class of service k has to define the
maximum load Lk

u it will generate. The SLA-P established by the broker with
the requestor u for the QoS class k is therefore a tuple 〈Rk

max
, Ak

min
, Lk

u, ck, dk〉.
As discussed in Section 2, our broker architecture implements the token

bucket mechanism for request rate limiting. The bucket of each user is refilled
at rate Lk

u, until the bucket reaches its capacity. We denote by λk
u the effective

arrival rate processed by the system.

3.3 Service Selection Model

The goal of the Selection Manager is to determine, for each QoS class, the con-
crete service sij that must be used to fulfill a request for the abstract service
Si ∈ V . The selection can be modelled by associating with each Si a vector

xi = (x1

i , ..., x
|K|
i), where xk

i = [xk
ij] and sij ∈ Ii. Each entry xk

ij of xk
i denotes

the probability that the class-k request will be bound to the concrete service sij .
With this model, we assume that the Selection Manager can probabilistically
bind to different concrete services the requests (belonging to a same QoS class
k) for an abstract service Si. The deterministic selection of a single concrete
service corresponds to the case xk

ij = 1 for a given sij ∈ Ii.

A Scalable Approach to QoS-Aware Self-Adaption in SOA 9

As an example, consider the case Ii = {si1, si2, si3} and assume that the
adaptation policy xk

i for a given class k specifies the following values: xk
i1 =

xk
i2 = 0.3, xk

i3 = 0.4. This strategy implies that 30% of the class-k requests
for service Si are bound to service si1, 30% are bound to service si2 while the
remaining 40% are bound to si3. From this example we can see that, to get some
overall QoS objective for a given class flow of requests, the Seleciton Manager
may switch different requests to different providers (using xk

i to drive the switch).

Fig. 3. Flow partitioning among different providers.

The Selection Manager determines the values of the xk
ij by invoking the

Optimization Engine. The goal is to determine an overall selection strategy
x = (x1, ..., x|V|) which maximizes a suitable QoS objective function F (x). The
optimization problem takes the following general form:

find x which maximizes F (x)

subject to: Class-k QoS due to strategy xk does not violate class-k SLA, k ∈ K;
the load induced by strategy x on provider sij does not
exceed Lij , sij ∈ Ii, Si ∈ V.

In our setting, the optimization problem takes the form of a LP problem.
The details will be spelled out in Section 4.

3.4 Service Provisioning Model

The goal of the Provisioning Manager is to determine from the set of candidate
concrete services the subset that will be used to implement the system func-
tionalities and the capacity to be reserved on each selected concrete service. We
model this selection with two vectors. The first vector is y = [yij]sij∈Pi

, i ∈ V ,
yij ∈ {0, 1}: yij = 1 if service sij ∈ Pi is included in the pool Ii; otherwise,
yij = 0. We also define the vector L = [Lij]sij∈Pi

, i ∈ V . Lij is the service
capacity the application reserves with the concrete service sij . Lij = 0 if yij = 0
and Lij ≥ 0 if yij = 1.

The Provisioning Manager determines the values of the yij and Lij by in-
voking the Optimization Engine. The goal is to determine the service pool and
capacity which minimize a suitable cost function C(y, L). The optimization
problem takes the following general form which we will detail in the next sec-
tion:

10 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

find (x, y, L) which minimizes C(y, L)

subject to: Class-k QoS due to strategy xk does not violate class-k SLA, k ∈ K;
the service pool y and capacity L are such that the load
induced by strategy x on provider sij does not exceed
Lij , sij ∈ Ii, Si ∈ V for any possible class request arrival rate.

To understand the role of x in this problem observe that for (y, L) to be feasible
there must be at least one redirection strategy x such that: 1) the load induced
by x on any provider does not exceed the capacity reserved on that provider for
any class request arrival rate; and 2) the QoS of each class is not violated. On
the other hand, we are not interested in optimizing (or even identifying) such
strategy as long as one actually exists.

4 Optimization Problems

In this section, we first present how to compute the QoS attributes of the compos-
ite service. We then detail the instances of the optimization models we presented
in Section 3.

4.1 QoS Metrics

For each class k ∈ K offered by the broker, the overall QoS attributes are the
expected response time Rk and the expected availability Ak. To compute these
quantities, let Zk

i (x), Z ∈ {R, A}, denote the QoS attribute of the abstract
service Si ∈ V . We have Zk

i (x) =
∑

sij∈Ii
xk

ijz
k
ij where zk

ij , z ∈ {r, a} is the
corresponding QoS attribute offered by the concrete service sij which can im-
plement Si. We now derive closed form expressions for the QoS attributes of
the composite service we will later use in the formulation of the optimization
problem.
Availability. The (logarithm of the) availability QoS metric is an additive met-
ric [20]. Therefore, for its expected value we readily obtain

Ak(x) =
∑

i∈V

V k
i Ak

i (x) =
∑

i∈V

V k
i

∑

sij∈Ii

xk
ijaij

where V k
i is the expected number of times Si is invoked for a class-k request.

Response Time. The response time metric is additive only as long as the
composite service does not include flow structured activities. In such cases, we
readily have:

Rk(x) =
∑

i∈V

V k
i

∑

sij∈Ii

xk
ijrij . (1)

In the general case, instead, we need to account for the fact that the response time
of a flow activity [19] is given by the largest response time among its component
activities. Hence, in the general case, the response time is not additive and (1)
does not hold. In this case, we derive an expression for the response time Rk(x)
by recursively computing the response time of the constituent workflow activities
as shown in [4] which we will later use in the actual problem formulation.

A Scalable Approach to QoS-Aware Self-Adaption in SOA 11

4.2 Second-layer Problem: Service Selection Optimization

In this section we detail the service selection optimization problem. The goal
is to determine the variables xk

ij , i ∈ V , k ∈ K, sij ∈ Ii which maxi-
mize a suitable QoS function. We assume that the broker wants, in general,
to optimize multiple QoS attributes (which can be either mutually indepen-
dent or possibly conflicting), rather than just a single one, i.e., the response
time. We thus consider as objective function F (x) an aggregate QoS measure
given by a weighted sum of the (normalized) QoS attributes. More precisely, let
Z(x) = 1

P

k∈K λk

∑
k∈K λkZk(x), where Z ∈ {R, A} is the expected overall re-

sponse time and availability, respectively, and λk =
∑

u λk
u is the instantaneous

aggregate flow of class-k requests. We define the objective function as follows:

F (x) = wr
Rmax − R(x)

Rmax − Rmin
+ wa

A(x) − Amin

Amax − Amin
(2)

where wr, wa ≥ 0, wr + wa = 1, are weights for the different QoS attributes.
Rmax (Rmin), and Amax (Amin) denote, respectively, the maximum (minimum)
value for the overall response time and the (logarithm of) availability. We will
describe how to determine these values shortly.

The Optimization Engine task consists in finding the variables xk
ij , i ∈ V ,

k ∈ K, sij ∈ Ii, which solve the following optimization problem:

max F (x)

subject to: Rk(x) ≤ Rk
max k ∈ K (3)

Rk
l′(x) ≤ Rk

l (x) l′ ∈ d(l), l ∈ F , k ∈ K (4)

Rk
l (x) =

X

i∈V,i≺ddl

V k
i

V k
l

X

sij∈Ii

xk
ijrij+

+
X

h∈F,h≺ddl

V k
h

V k
l

Rk
h(x), l /∈ F , k ∈ K (5)

Ak(x) ≥ Ak
min k ∈ K (6)

X

k∈K

xk
ijV

k
i λk ≤ Lij i ∈ V, sij ∈ Ii (7)

xk
ij ≥ 0, sij ∈ Ii,

X

sij∈Ii

xk
ij = 1 i ∈ V, k ∈ K (8)

Equations (3)-(6) are the QoS constraints for each service class on response time
and availability, where Rk

max
and Ak

min
are respectively the maximum response

time and the minimum (logarithm of the) availability that characterize the QoS
class k. The constraints for the response time take into account the fact the
response time of a flow activity is given by the largest response time of its
component activities. This is reflected in the constraints (4)-(5), where F denotes
the set of flow activities in the composite service. Inequalities (4), in particular,
allow us to express the relationship among the response time Rs

l of a flow

activity and that of its component activities Rs
l′ . For each flow activity l, d(l) is

the set of top-level activities/services which are nested within l; i ≺dd l means

12 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

that service i occurs within activity j in the BPEL code and, within j, i does
not appear within a flow activity (see [4] for details). Equations (7) are the
SLA-R constraints and ensure that the application does not exceed the volume
of invocations agreed with the service providers. Finally, Equations (8) are the
functional constraints.

The maximum and minimum values of the QoS attributes in the objective
function (2) are determined as follows. Rmax and Amin are simply expressed re-
spectively in terms of Rk

max and Ak
min

. For example, the maximum response time
is given by Rmax = 1

P

k∈K
λk

∑
k∈K λkRk

max
. Similar expression holds for Amin.

The values for Rmin and Amax, instead, are determined by solving a modified
optimization problem in which the objective function is the QoS attribute of
interest, subject to the constraints (7)-(8).

We observe that the proposed Optimization Engine problem is a Linear Pro-
gramming problem which can be efficiently solved via standard techniques. The
solution thus lends itself to on-line operations.

4.3 First-layer Problem: Service Provisioning Optimization

We now turn our attention to the Provisioning Manager optimization problem.
The goal is to determine the value of the variables yij and Lij , sij ∈ Pi, i ∈
V , which minimize the broker cost function. We consider as objective function
F (y, L) the following simple cost function:

F (y, L) =
∑

sij∈Pi,i∈V

cijyij + dijLij (9)

where cij represents a fixed/flat cost to be paid for using concrete service sij

and dij is the cost for unit of capacity of service sij , reserved by the broker.
The Optimization Engine task consists in finding the yij and Lij , sij ∈ Pi,

i ∈ V (and also xk
ij , sij ∈ Pi, i ∈ V , k ∈ K) which solve the following optimization

problem:

min F (y, L)

subject to: (10)

QoS constraints (3) − (6)
X

k∈K

xk
ijV

k
i Lk ≤ Lij i ∈ V, sij ∈ Pi, (11)

Lij ≤ Mijyij , i ∈ V, sij ∈ Pi (12)

xk
ij ≤ yij i ∈ V, k ∈ K (13)

xk
ij ≥ 0, sij ∈ Pi,

X

sij∈Pi

xk
ij = 1 i ∈ V, k ∈ K (14)

yij ∈ {0, 1}, i ∈ V, sij ∈ Pi (15)

The constraints (3)-(6) are the QoS constraints as in the service selection op-
timization. The constraints (11) are the provider capacity constraints which

A Scalable Approach to QoS-Aware Self-Adaption in SOA 13

require that the reserved capacity Lij , sij ∈ Pi, i ∈ V must accommodate any
request load for the concrete service sij (under service selection strategy x),
where Lk =

∑
u Lk

u denotes the maximum class k request rate. Finally, equa-
tions (12)-(14) are the functional constraints. (12) requires that yij = 1 for Lij

be greater than 0; similarly, (13) requires yij = 1 for xk
ij be greater than 0. In (11)

we also introduce the constant Mij which denotes the maximum capacity that
can be reserved on provider sij (Mij thus captures the finiteness of provider sij

resources).
The proposed optimization problem is a MILP problem. It is known to NP-

hard with the complexity being exponential in the number of integer variables,
which is O(maxi∈V |Pi| × |V|).

5 Numerical Experiments

In this section, we illustrate the behaviour of the proposed two-layer adaptation
strategy through the simple abstract workflow of Figure 2. We consider a broker
which offers two QoS classes gold and silver, denoted by the superscript 1 and
2, respectively. Table 1 summarizes the two classes QoS attributes. The gold
class guarantees to its users low response times at a high cost, while the silver
class offers a cheaper alternative with higher response times. We consider the
following values for the the number of service invocations: V k

1
= V k

2
= V 3

k = 1.5,
and V k

4 = 1 for k = 1, 2, V 1
5 = 0.7, V 1

6 = 0.3, and V 2
5 = V 2

6 = 0.5. We assume

QoS Class Rk
max Ak

min ck dk

gold 12 log(0.95) 10 5

silver 20 log(0.9) 6 3

Table 1. Composite service class attributes.

that for each abstract service there are four providers which implements it. The
concrete services differ in terms of response time, cost and availability. Table 2
summarizes their system parameters. They have been ordered so that for each
abstract service Si ∈ V , sij represents the better, albeit more expensive, service,
with respect sij ′, j′ > j. For all services, we assume Mij = 10.

We study now the broker behaviour over a period of 1000 time units during
which we have a fixed set of users. The associated peak request rate for the two
service classes is assumed equal to (L1, L2) = (4, 7). We assume that during
this period the only meaningful event is the unavailability of service s14 from
time 400 onward. First we consider the behaviour of the Provisioning Manager.
The role of the manager is to identify the optimal - cost wise - set of concrete
services to implement the abstract services and the associated capacities. For the
given workflow, the solution of the optimization problem is illustrated in Table 3,
which reports the set Ii of concrete services selected for each abstract service

14 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

sij rij aij cij dij

s11 1 log(0.999) 3 2

s12 1.5 log(0.995) 4 1.5

s13 1.5 log(0.99) 3 1.5

s14 3.5 log(0.98) 2.5 1

s21 2 log(0.999) 4 1.5

s22 4 log(0.99) 2 1.5

s23 1 log(0.99) 4.5 1

s24 5 log(0.95) 1 1

sij rij aij cij dij

s31 1 log(0.999) 4 1.5

s32 1 log(0.99) 2 1.5

s33 2 log(0.99) 4.5 1

s34 3 log(0.99) 1 1

s41 0.5 log(0.999) 0.6 2

s42 1 log(0.995) 0.5 1

s43 1 log(0.99) 0.4 1.5

s44 2 log(0.99) 0.3 1

sij rij aij cij dij

s51 2 log(0.999) 1 2

s52 2 log(0.995) 0.7 1

s53 2.2 log(0.99) 0.5 1.5

s54 3 log(0.99) 0.2 1.5

s61 1.8 log(0.999) 0.5 1.5

s62 2 log(0.995) 0.4 1

s63 2 log(0.99) 0.3 1

s64 4 log(0.99) 0.2 1.5

Table 2. Concrete services QoS attributes.

Si ∈ V and the capacity Lij reserved in each concrete service. A first solution
(Table 3 (left)) is first computed at the beginning of the period (for a minimum
cost equal to 93.8). The solution guarantees enough resources to sustain peak
rate traffic, i.e., (L1, L2) = (4, 7) at the required QoS of each class. Observe that
since the different abstract services are characterized by different frequencies of
invocations, the overall capacity to be reserved differs from service to service,
e.g., S1 requires an overall capacity of 16.5, while S5 requires only a capacity
of 6.3. At time 400, we assume that service s14 becomes unavailable. In our
example, this forces the Provisioning Manager to execute again the provisioning
optimization problem (it is not possible to serve the requests for the abstract
service S1 with the sole concrete service s13) and adjusts the SLA with the
providers accordingly. Table 3 (right) shows the new solution where, essentially,
the concrete service s13 replaces s14 and the reserved capacity of some providers
are slightly modified.

Service Sets Reserved Capacity

I1 = {s13, s14} L13 = 6.5, L14 = 10

I2 = {s23, s24} L23 = 9.2, L24 = 7.8

I3 = {s32, s34} L32 = 10, L34 = 6.5

I4 = {s42, s44} L42 = 6.9, L44 = 4.1

I5 = {s52} L52 = 6.3

I6 = {s63} L63 = 4.7

Service Sets Reserved Capacity

I1 = {s12, s13} L12 = 8.35, L13 = 8.15

I2 = {s23, s24} L23 = 8.93, L24 = 7.57

I3 = {s32, s34} L32 = 10, L34 = 6.5

I4 = {s42, s44} L42 = 6.36, L44 = 4.64

I5 = {s52} L52 = 6.3

I6 = {s63} L63 = 4.7

Table 3. SLA Manager solution. Service pool and reserved capacities.

We now turn our attention to the Selection Manager. Differently from the
Provisioning Manager, the Selection Manager adaptation role is to determine at
running time the actual services to be bound to each user request. To illustrate
its behaviour we consider the sample path arrival rates for the two classes shown
in Figure 4 (the sample paths have been generated by superposition of several
regulated sources, with each source being a two state on-off source). We assume
that the Selection Manager uses the measured actual aggregate arrival rates

A Scalable Approach to QoS-Aware Self-Adaption in SOA 15

λk ≤ Lk, k = 1, 2 and solves the service selection optimization problem to settle
the vector x, according to which randomly determines the concrete service to
select. Different values of λk, k = 1, 2 result into different optimal vectors which
in turn yield different QoS metrics.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 100 200 300 400 500 600 700 800 900 1000

λk

time

class 1
class 2

Fig. 4. Sample path arrival rate λk.

In Figure 5 we show how the expected composite service QoS metrics vary
over time for the two classes under the assumption the Selection Manager min-
imizes the service response time, i.e., wr = 1. Both service response time and
availability vary with the request rates but are always within the performance
bound defined by the class SLA metrics. Not surprisingly, users experience bet-
ter response time and service availability for lower request rates since a large
fraction - if not all - of the requests are bound to the best services in the pool.
Observe that after t=400, the response time for both service classes improves
significantly. This can be explained by observing that the unavailability of ser-
vice s14, which provides the cheapest - but slowest - service, forces the broker
to include in the pool the more expensive, but faster, service s12, which results
into overall better response times.

6 Conclusions

This paper deals with a two-layer approach for QoS-aware adaptation of SOA
systems. The basic guideline we have followed in its definition has been to devise
an adaptation strategy that is efficient and scalable to make realistic its use in
taking runtime decisions in a rapidly changing environment. This efficiency is
achieved by decomposing the service provisioning and service selection optimiza-
tions into two independent phases occuring at different time scales. The service
selection problem can be solved on a fast time scale at each detected significant
change which stems from the system’s self or context. The sustainable frequent
rate of solution derives from the formulation as a constrained optimization prob-
lem that can be efficiently solved via standard techniques and tools for linear
programming. The more time consuming service provisioning problem can be

16 V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, R. Mirandola

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 100 200 300 400 500 600 700 800 900 1000

R
es

po
nt

e
T

im
e

R
k (x

)

time

<- service s14 becomes unavailable

class 1
class 2

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
va

ila
bi

lit
y

eA
k (x

)

time

<- service s14 becomes unavailable

class 1
class 2

Fig. 5. Selection Manager solution. QoS metrics: response time Rk(x) (left); Avail-

ability eAk(x) (right).

solved on a slower time scale because it addresses the identification of the pool
of concrete services to be used by the broker for the SLA management with the
service providers. Besides being efficient, the proposed approach is also flexible,
because it can be simultaneously used to serve the requests of multiple classes
of users.

Our future work will address the issues concerning the implementation of the
two-layer adaptation approach, such as the temporal aspects of change (e.g..,
the monitoring and detection of significant changes that trigger the decision on
what needs to be changed). The implementation of a system prototype we are
currently working on will allow us to validate the proposed approach through a
real set of experiments.

Acknowledgments

This work is supported by the Italian PRIN 2007 project “D-ASAP: Dependable
Adaptable Software Architectures for Pervasive Computing”.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2) (2009) 1–42

2. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6) (2007) 369–384

3. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: A framework for qos-aware
binding and re-binding of composite web services. J. Syst. Softw. 81(10) (2008)
1754–1769

4. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Flow-based service selec-
tion for web service composition supporting multiple qos classes. In: ICWS 2007,
IEEE Computer Society (2007) 743–750

A Scalable Approach to QoS-Aware Self-Adaption in SOA 17

5. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection.
In: ICSOC 2004, ACM (2004) 212–221

6. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1) (2007) 1–26

7. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Trans. Soft. Eng. 30(5) (2004)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36(1) (2003) 41–50

9. Menascé, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in service
oriented architectures. Perform. Eval. (2009)

10. Guo, H., Huai, J., Li, H., Deng, T., Li, Y., Du, Z.: Angel: Optimal configuration
for high available service composition. In: ICWS 2007, IEEE Computer Society
(2007) 280–287

11. Qu, Y., Lin, C., Wang, Y., Shan, Z.: Qos-aware composite service selection in
grids. In: GCC 2006, IEEE Computer Society (2006) 458–465

12. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Qos-driven
runtime adaptation of service oriented architectures. In: ESEC/FSE 2009, ACM
(2009) 131–140

13. Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B.: Improved adaptation
of web service compositions using value of changed information. In: ICWS 2007,
IEEE Computer Society (2007) 784–791

14. Stein, S., Payne, T.R., Jennings, N.R.: Flexible provisioning of web service work-
flows. ACM Trans. Internet Technol. 9(1) (2009) 1–45

15. Menascé, D., Ruan, H., Gomaa, H.: QoS management in service oriented architec-
tures. Perform. Eval. 7-8(64) (2007)

16. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H.,
Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: WSLA-driven
automated management. IBM Systems J. 43(1) (2004)

17. Tang, P., Tai, C.: Network traffic characterization using token bucket model. In:
IEEE Infocom 1999. (1999)

18. Liu, Y., Tan, M., Gorton, I., Clayphan, A.J.: An autonomic middleware solution
for coordinating multiple qos controls. In: ICSOC 2008, Springer-Verlag (2008)
225–240

19. OASIS: Web Services Business Process Execution Language Version 2.0 (2007)
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

20. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.J.: Modeling quality
of service for workflows and web service processes. Web Semantics J. 1(3) (2004)

