
SIMPL: a Pattern Language for Writing
Efficient Kernels on GPGPU

Davide Barbieri, Valeria Cardellini, Salvatore Filippone
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Università di Roma “Tor Vergata”, Roma, Italy
davide.barbieri@ghostshark.it, cardellini@ing.uniroma2.it, salvatore.filippone@uniroma2.it

Abstract—Graphics processing units (GPUs) have become an
integral part of both High Performance Computing (HPC) and
desktop systems. To fully exploit their potential, algorithms
should be specifically designed to fit the General Purpose com-
puting on GPU (GPGPU) programming paradigm and, above
all, an optimized implementation should be provided. In the
past, pattern languages were proven to be an effective way to
communicate experience and help researchers and developers to
reduce the learning curve over a particular expertise field. In
this paper we describe SIMPL, a pattern language dedicated
to GPGPU computing. We discuss in detail three example
patterns enabling optimal performance results on various classes
of applications.

I. INTRODUCTION

Driven by the increasing demand by video game indus-
try for better performance in realtime rendering, in recent
years Graphics Processing Units (GPUs) have evolved into
processors consisting in hundreds of cores with high ALU
throughput and memory bandwidth. Current GPUs represent a
pervasive high-performance parallel computing platform, with
extensive market demand that also allows for economies of
scale and therefore making them into a very cost-effective
option. Implementation on GPUs of algorithms that are not
strictly related to graphics has become a commonplace activity
in scientific computing, as outlined by the many GPU-based
machines found in the Top 500 list1. The GPGPU acronym
stands for General Purpose Computation Using Graphics
Processing Units and identifies the hardware/software com-
bination allowing the use of GPUs for general purposes.

Amdahl’s [1] and Gustafson’s [2] laws left us a dichotomy
between the task of latency reduction (that is, doing the same
work in less time) and the task of throughput increase (that is,
doing more work in the same time window) and they connect
these tasks to the proportion of the inherently sequential part
over the part that could be parallelized. Latency reduction can
take advantage from cores with complex circuits for out-of-
order execution, branch prediction, and large cache memories.
These resources require a large amount of the chip “real estate”
and for this reason complex processors tend to have relatively
few cores. Amdahl’s law states how the speedup attained by
an increasing number of processors tends quickly to a constant
on problems with a large inherent sequential percentage; this
seems to suggest that a CPU with few, complex cores is better

1http://www.top500.org

suited for this use. On the other hand, the task of throughput
increase can be accelerated by an architecture with a very
high number of cores. However, to fit on the same chip, these
cores should be heavily simplified; an effective way to do
this is to pack multiple ALUs in units working in a SIMD2

fashion. This is the approach taken by current GPU platforms.
With contemporary GPU architectures, instruction stalls are
hidden by concurrency of a large number of active threads
scheduled on the same multiprocessor, without the need of
large caches and out-of-order execution. Moreover, the overall
energy consumption rate is drastically reduced. These obser-
vations suggest that future architectures will likely continue
to provide different architectural modules to execute either
latency-aware or throughput-aware tasks, and presumably we
will see many efforts aimed at providing integrated solutions
comprising both capabilities.

Today we find octa-core CPUs and GPUs with hundred of
cores even inside commodity mobile devices; nevertheless the
learning curve for parallel programming is still quite steep.
Trying to figure out the main difficulties arising from parallel
programming we identify the following issues:

1) It is more natural to think about sequential steps than
orchestrating multiple flows;

2) Parallelization opportunities are often far from obvious,
especially when a solution depends on inherently se-
quential subtasks;

3) Specific data structures are needed to favor good mem-
ory access patterns and data reuse;

4) Modern compilers are quite efficient at optimizing se-
quential code, while parallel programs often require
subtle algorithmic changes beyond the capabilities of
current compilation techniques;

5) Even if the problem is suitable to achieve good scala-
bility, many related programming tasks are quite effort
intensive and error prone;

6) Multiple threads or processes that concurrently work
on the same problem need to synchronize, and this
gives rise to many challenging issues, including race
conditions, deadlocks, and consistency errors;

7) Debugging is harder because faults show up apparently
at random and it is very hard to follow step by step
many concurrent threads;
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8) Energy efficiency adds to the already long list of chal-
lenges;

9) Hardware may fail; the fault probability increases with
the size of the parallel platform, so a fault tolerance
model is an absolute necessity on massively parallel
platforms.

All of these complications can be managed with practice and
experience, but the related training takes a long time.

In the past years, we had experiences over several appli-
cation fields of GPU computing, including sparse and dense
linear algebra, domain partitioning techniques, cryptography,
and computational fluid-dynamics [3], [4], [5], [6], [7]. During
these research activites, we faced all the difficulties listed
above; as a result, we propose SIMPL, a pattern language
to communicate knowledge about GPGPU programming so-
lutions. As first introduced in [8], a pattern language defines
a structured collection of design practices within a field of
expertise.

Proposing a pattern language does not eliminate the need for
the programmer to get acquainted with the underlying architec-
ture; however, it helps the programmer organize his thinking
and it reduces the required effort in the path to proficiency,
for instance the novice programmer will need to concentrate
on the identification of the few parameters discussed in the
pattern presentation. To the best of our knowledge, this is the
first pattern language exclusively dedicated to GPGPUs.

The rest of the paper is organized as follows. In Section II
we trace the “pattern” terminology and discuss related work
on the use of patterns in computing. We introduce our pattern
language for GPU in Section III. In Sections IV, V and VI we
present three case studies, the Vectorize, Enumerate and Sort
and Pack patterns, respectively, and discuss the performance
improvements that arise from their application. Finally, we
conclude in Section VII.

II. RELATED WORK

The definition of “Pattern language” appeared first in the
completely different context of urban design, in the book [8];
the term “Design patterns” as a software development tool
gained popularity after the release of [9] by the so-called
“Gang of Four”, addressing solutions to common object-
oriented design problems. Another important work in this
field was done by Garlan and Shaw [10]; all these patterns
helped many engineers, experienced or not, to understand
implications of the object-oriented paradigm, discuss about
software architecture, and quickly find established solutions
to design problems.

Pattern-based software design has been extensively studied
in parallel and distributed programming, see e.g. [11], [12],
[13]. The pattern approach is considered a good tool to teach
parallel and distributed computing by [14]; other works related
to training with patterns include McCool [15] and Ortega [16].

Although the above works are useful to solve parallel
issues related to a generic computing cluster, the patterns they
discuss are seldom useful in the GPU context, because of the
constraints that the single GPU imposes to the communication

model that each thread should meet. Patterns based on coarse-
grain task parallelism are inapplicable on the GPU architec-
ture, which requires substantial data-parallelism. Moreover,
many existing patterns treat data-parallelism in a fairly generic
fashion to be as portable as possible, but their translation to
an actual GPU code is far from straightforward. Mattson et
al. in [17] add some extensions to their pattern language to
include a SIMD data-parallelism pattern for devices like the
GPU; while this work gives some good guidelines, it discusses
only a single pattern.

Software patterns are sometimes embodied in algorithmic
skeletons, that is, high-level models for parallel programming
hiding as much as possible of the implementation details.
Skeletons are often composed using skeleton frameworks; for
a discussion see [18], [19], [20]. Skeleton framework can
be a valuable choice for domain expert programmers that
are not expert parallel programmers, while parallel design
patterns may help programmers to acquire parallel program-
ming expertise. Skeleton-based programming has portability
problems; in fact, to the best of our knowledge, none of the
skeleton frameworks were adapted to generate GPU kernels.
Often algorithms don’t perfectly fit inside skeletons, and in
this case it is necessary to understand the patterns they are
based on to deal with exceptions. Moreover, delving into the
underlying platform details is often necessary to reach optimal
performance.

III. SIMPL: A PATTERN LANGUAGE

A pattern language defines a structured collection of design
practices within a field of expertise [8]. We propose a data-
parallel pattern language for hardware based on the Single-
Instruction Multiple-Threads (SIMT) paradigm, like CUDA
or OpenCL. We call the language SIMPL (SIMT Pattern
Language); it is currently made by sixteen patterns divided
into five categories. In the following we present the template
used to define our design patterns, the taxonomy employed to
categorize them and the underlying architectural model.

A. Pattern Template

Richard Gabriel [21] suggests the following definition for
the field of software design:

Each pattern is a three-part rule, which expresses
a relation between a certain context, a certain system
of forces which occurs repeatedly in that context,
and a certain software configuration which allows
these forces to resolve themselves.

Usually, a common scheme used to present a design pattern
comprises the following sections:
• Name of the pattern, should be easy to remember;
• Context illustrating the scenario in which it arises;
• Problem summarizing the goal of the pattern;
• Forces listing the main difficulties and conflicting require-

ments;
• Solution identifying a model that can be used to solve the

problem;



• Consequences listing the main constraints that the solu-
tion imposes to the resulting design;

• Example uses.
Our pattern language, as opposed to other parallel pattern
languages found in literature, is focused on optimization of
parallel algorithms on a single architectural model, that is a
SIMT machine. As such, all patterns share a common context
which is therefore not listed explicitly. In a similar way, all of
our patterns share a common set of forces affecting parallel
programs on a SIMT device:
• Efficiency, saturating memory bandwidth, ALU through-

put or both;
• Portability;
• Scalability;
• Reproducibility of results3;
• Maintainability;
• Simplicity (as much as possible!);
• Avoidance of locking schemes (as much as possible).

Additional forces may appear in a given pattern discussion.

B. Taxonomy

The taxonomy used by SIMPL is based on a list of common
problems, described in Section I, that arise in parallel com-
puting. Based on these, we construct the five basic categories
of our pattern language:
• Mapping Patterns: adapting a parallel algorithm to a

SIMT architecture in an efficient way;
• Consistency Patterns: help designing semantically correct

and high performance synchronization between threads;
• Transformation Patterns: used to transform a problem to

expose data-parallelism;
• Construction Patterns: building data structures in parallel;
• Tuning Patterns: exposing parameters to fine-tune kernel

performance on different architectures.
From the list in Section I we are still missing some categories
that will be the subject of future work; they include Fault
Tolerance, Energy Efficiency and Debugging/Profiling.

C. Underlying Architecture Model

Given the peculiarities and the constraints of a throughput-
oriented architecture, a meaningful discussion about optimiza-
tion requires some background on the programming paradigm
and the hardware architecture. However, creating a pattern
language focused on just one concrete architecture would be
too limiting; therefore we provide a simplified and sufficiently
general model of SIMT architecture and its programming
paradigm, on which to base our language. We try to focus
on common implementation features of GPUs that are likely
to be present in future as well as current devices. Similarly,
we concentrate on a subset of optimal memory access patterns
to ensure portability on a wide set of GPU architectures.

The programming model follows the basic principles of the
CUDA and OpenCL languages. A program (kernel) is invoked

3Exact reproducibility is not always possible, e.g. when using floating-point
operations.

on the GPU (device) using a remote procedute call made by the
host, that is, the CPU along with its RAM. In the invocation
(also called grid), the host defines the execution configuration,
that is:
• how many blocks of threads should be executed, possibly

defined using multiple coordinates;
• the number of threads per block, defined possibly using

multiple coordinates;
The programming environment provides constraints on the
number of blocks per grid and of threads per block. Each
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Fig. 1. A 2D grid of threads

thread obtains an identifier within the block and an identifier
of its block within the grid, as shown in Figure 1. All
threads share the same entry point in the kernel; their different
identifiers can be used for specialization, for example, to
address different offsets inside linear memory.

Figures 2 and 3 describe the underlying Single-Instruction
Multiple-Threads (SIMT) architecture. As shown in Figure 2,

Fig. 2. SIMT model: host and devices

a single host may coexist with multiple devices. Each device
is made up by an array of multiprocessors and a global
memory; no cache hierarchy is considered. The global memory
is divided in channels (or banks). An address addr is within
channel Ch if ( addr

channelSize mod numChannels) == Ch;
the size of a channel channelSize is usually equal to 256
bytes. Memory requests to the same channel are enqueued and
each channel provides only a fraction of the whole bandwidth;
to exploit the full device bandwidth the grid should access all
channels at the same time.

The host is connected to devices using a bus, often with
a much smaller bandwidth than the device global memory.



Each multiprocessor in Figure 3 contains a set of schedulers,

Fig. 3. SIMT model: a multi-processor

a set of vector units, a set of registers, and a shared memory.
Multiprocessors execute only vector instructions; a vector
instruction specifies the execution on a set of threads (called
warp, or wavefront) with contiguous identifiers inside the
block. The warp size is a characteristic of the architecture
(currently, it is 32 for Nvidia’s GPUs and 64 for AMD’s
GPUs). A grid is executed on a single device; each thread
block is enqueued and then scheduled on a multi-processor
with enough available resources (registers, shared memory and
block slots) and retains all its resources until completion. A
warp is issued by a scheduler on an available vector unit
that supports that class of instructions. If threads in the same
warp execute divergent code branches, the scheduler issues
instructions in turn for the various control flows, and masks
the threads executing each of them. If a warp scheduler has
more than one dispatcher, multiple independent instructions
from the same warp may be issued. The throughput of a class
of instructions will thus depend on: the number of schedulers
and dispatchers, the number of vector units supporting the
instruction class, the number of internal scalar units, and the
warp size. Threads belonging to the same thread block can
share data using shared memory and can synchronize waiting
on a barrier.

The shared memory is divided into banks; to exploit its
full throughput, warp instructions that access shared memory
must avoid bank conflicts. In our model, the number of banks
B is equal to the warp size and each bank is four bytes wide.
Accesses to global memory may be modeled in the same way.
For best performance each thread with index k within the warp
(0 ≤ k < warpSize) should access the element of size D
(with D equal to 4, 8 or 16 bytes) at address D ·(Offset+k).
A memory access that follows these rules is called a coalesced
access; the cost of this access is proportional to the number
of aligned blocks of size warpSize · 4 bytes.

These access patterns work on all current GPU architec-
tures. Some specific models may either impose additional

requirements or relax some constraint. For example, old
NVIDIA cards with compute capability 1.0 and 1.1 (depre-
cated in CUDA 6.5) require that Offset is a multiple of
D · (warpSize/2), while the AMD GCN architecture does
not support coalescing for 64-bit wide reads.

Due to space limitations, we will describe in details only
three patterns in Sections IV, V, and VI; a full description of
all patterns currently included in SIMPL will be the subject
of future publications.

IV. VECTORIZE PATTERN

Problem

How to map a data-parallel algorithm on a SIMT architec-
ture in a way that fully exploits its compute performances?

Forces

• To fully exploit the many-core parallelism, threads should
work in lock-step; warps (32) and wavefronts (64) are
examples of this vector processing feature;

• To fully exploit the high memory bandwidth of these
devices, accesses to memory should occur in a coalesced
fashion, that is threads executing the same vector instruc-
tion should read or write aligned and sequential linear
addresses of size D. Acceptable values of D are usually
4 bytes, 8 bytes or 16 bytes.

Solution

Re-parametrize your program in such a way that the funda-
mental unit of data (i.e., the piece of data that a single thread
computes) to be processed in each part of the code is not a
single value (e.g., a float or an integer), but rather a vector
of K values. Then, choose K according to a multiple of the
vector size of the computing and load/store units of the target
architecture (e.g., 32 for Nvidia GPUs, 64 for AMD GPUs).
This naturally maps to operations in which threads with
increasing identifier, belonging to the same warp/wavefront,
operate in lock-step mode, accessing subsequent elements in
memory.

Very often in programming, the different properties of a
single domain element for a particular application are stored
in a structure. When we have multiple elements to process, we
have an array of structures. To apply the Vectorize pattern to
the general case, we turn this array of structures into a structure
of arrays, in order to pack values of the same property for
different elements in sequence in the same allocation. Doing
this way, it is easier to access and process the data of a vector
of K near elements at once. On a GPU, this applies also if
the properties are themselves small vectors (float2/float4).

The single property sometimes occupies a relatively large
amount of memory space, say P · D (with D equal to 4
bytes, 8 bytes or 16 bytes), which could not be read using a
single memory instruction. To accomodate this, it is possible
to transform the array of N elements of size P · D into a
matrix (stored column-major) of N × P elements of size D.

Since N is ensured to be a multiple of K, operations like
“load the i-th part of the property for each vector element”



would be compliant with the memory access requirements.
This is true also on multidimensional domains, since the
last vector element of each row would implicitly contain the
padding needed to align accesses for the subsequent rows.

Consequences

The main consequence of this pattern is that the data struc-
tures involved in the whole application should be modified
to accomodate this vector nature. This implies also that host
functions should be changed accordingly. If this is not feasible
or convenient, the application should manage both formats and
use conversion routines when host and device should exchange
data. In [6] we present an object-oriented architectural model
that represents a seamless integration of the GPU support for
a pre-existing sparse computations library ([22], [23]).

Case Study

This is the most frequent pattern inside GPU implementa-
tions, and most likely the most frequent pattern used on each
vector platform. We applied it to the design of dense and sparse
linear algebra routines ([3], [24], [4], [6]) and to the simulation
of interacting particles [5].

Here we provide an example of its application on a sparse
linear algebra application. The multiplication of a sparse
matrix by a dense vector (spMV) is a centerpiece of scientific
computing applications and the CSR (Compressed Sparse
Row) format is one of the most popular formats for sparse
matrices. As illustrated in Figure 4, the CSR format comprises
three arrays. The first two are used to store non zero entries
(AS array) and their relative column index (JA array) and
are sorted per row index. In the third array (IRP), the i-th
element represents the starting position, in the previous two
arrays, of the row i. Let us assume that our multiply routine

1 2 8 1 3

1 4 7 10 14

9 2 8

AS ARRAY

JA ARRAY

IRP ARRAY

Fig. 4. CSR sparse matrix format

y = Ax assigns the computation of a different resulting
element of y to each thread. Thus, each thread will read
a full row of non zero entries, use their column indices to
identify and access which elements in x should be read, and
perform the computation. We note that there is not a way, in
the general case, to efficiently read both x and A. We apply
here the vectorize pattern to efficiently read the matrix A.
To read a row from CSR format, a thread would read two
elements from the IRP array to know where its row begins
and where it ends, then it would read the row’s elements
in the AS and JA arrays. To apply the vectorize pattern, we
consider a row as the fundamental unit of data. So we modify

the CSR format in such a way that a set of W rows (with
W equal either to the warp size or to a multiple of it) is
considered. The parts that constitute a row, in this case, are
of course its elements, since each one could be read using
a single read instruction. Following the pattern, we store
those elements as depicted in Figure 5. Inside the memory
those matrices (called hacks in our HLL format) are stored in
column-major format, and each hack is stored sequentially.
The IRP array is replaced by a new array that stores the
start element of each hack instead of the single row. All

Fig. 5. HLL sparse matrix format

TABLE I
SPMV PERFORMANCE (GFLOP/S) - NVIDIA GEFORCE GTX 660

HLL Nvidia CSR Nvidia HYB

raefsky2 16.31 9.37 4.42

af23560 15 7.2 14.7

mhd4800a 8.2 5.2 3.47

bcsstk17 11 8 7.2

lung2 7.62 3.59 6.8

pde100 13.7 6.13 14.3

FEM 3D thermal2 14.56 7.5 15.77

mac econ fwd500 5.1 3.6 6.1

threads belonging to the same warp will read from the same
hack using coalesced accesses and maximum performance, as
long as the number of rows is sufficiently high and there is a
low variance among sizes of compressed rows. The resulting
pseudo-code to compute the matrix-vector product y = Ax
is shown in Fig. 6; in this case, AS and JA are accessed
using linear indexing. The code is written taking into account
a 0-based indexing and threadIdx ∈ [0, blockSize) and
blockIdx ≥ 0. In Table I we present some performance results

f u n c t i o n y=spMV( hackSize , h a c k O f f s e t s , as , j a , nzr , x )
i d x = t h r e a d I d x + b l o c k I d x∗ b l o c k S i z e ;
h ac k I d = i d x / h a c k S i z e ;
hackLaneId = i d x mod h a c k S i z e ;
h a c k O f f s e t = h a c k O f f s e t s ( h ac k Id ) ;
r e s = 0 ;
f o r i =0 : n z r ( i d x )−1

i n d = j a ( h a c k O f f s e t + i∗h a c k S i z e + hackLaneId ) ;
v a l = as ( h a c k O f f s e t + i∗h a c k S i z e + hackLaneId ) ;
r e s = r e s + v a l∗x ( i n d )

end
y ( i d x ) = r e s ;

end

Fig. 6. Matrix-Vector product in HLL-G format.



of three different implementations of the spMV multiply
routine: our HLL implementation, the CSR implementation
from the official Nvidia cuSPARSE library [25], the HYB
implementation also from cuSPARSE that aims to maximize
performance on Nvidia hardware for general-purpose sparse
matrices. The input matrices are taken from different real
applications [26].

V. ENUMERATE PATTERN

In Section IV we described the Vectorize pattern to define
an index space over a set of data that is compliant, in terms of
performance, with the GPU hardware. The goal of the Enu-
merate pattern is to define an index space on possible inputs,
rather than to stored data, and let each thread generate and
process them. This is usual in exhaustive search methods, also
known as brute-force methods, in which we must enumerate
all the candidate solutions for a particular problem and execute
a test to verify if any of them satisfies a given condition.

Since the evaluation of each candidate solution is generally
independent from all the others, an exhaustive search offers
very good parallelism potential: the solution space can be
partitioned in many ways with very few, if any, constraints.
Indeed, the entire solution space can be either assigned to
a single sequential process or partitioned and each part can
be computed by a different process, possibly running on a
different device.

Only a very small amount of data must be scattered at the
beginning of the computation to each computing node, to allow
the generation of the solutions’ subspace; we must also collect
periodically a fairly small amount of data from each device
to eventually terminate the search if a stop condition is met
(e.g., a satisfactory number of solutions has been found).

Although in many cases such subdivision seems trivial,
some design considerations should be kept in mind when opti-
mizing the performance on complex topologies of computing
nodes with different computing power.

Problem

The problem is to design an exhaustive search algorithm in
such a way that would ensure high efficiency and scalability
over a set of many-core devices.

Solution

Given the set S of all possible solutions to a class of
problems, we can execute an exhaustive search if there exist:
• a bijective function f from the set of natural numbers

N = {0, 1, 2, 3, . . . } into S, where S is either finite or
countable;

• a test function C : S → 0, 1.
Therefore, an exhaustive search involves the generation
through f(i) of all possible solutions, conducting tests with
an increasing identifier i, and the test of the condition C(f(i))
for each entry. Note that f(i) can be trivial or it can follow a
heuristics to favor testing of the most likely solutions.

We define the operator next such that next(i, f(i)) = f(i+
1). In many instances the execution of the next operator is

much faster than the execution of f(i+ 1), because it can be
obtained with few manipulations of the f(i) element’s data.

Given the following cost functions:
• Kf (i), the cost to generate a candidate solution from an

identifier;
• Knext(i, f(i)), the cost to generate a candidate solution

from another candidate;
• KC(f(i)), the cost to evaluate a candidate;

the cost Ksearch of an exhaustive search over a set of n
possible solutions on a single process is:

Ksearch = Kf (i0) +
in−2∑
i=i0

Knext(i, f(i)) +
in−1∑
i=i0

KC(f(i))

or if next(i, f(i)) ≡ f(i+ 1),

Ksearch =
in−1∑
i=i0

(Kf (i) +KC(f(i))).

If Knext(i, f(i)) < Kf (i + 1) then the process’ efficiency,
defined as the time needed to test a solution over the time
needed to generate the solution and then test it, will increase
for larger n.

In a SIMT environment, a kernel can evaluate an entire
interval of candidate solutions [startID, startID + len) by
passing the first input identifier startID as argument, con-
figuring the kernel’s size to be equal to len, and generating
i using startID and the identifier of each thread and block.
Then, the whole search space can be partitioned in multiple
intervals to be computed in different kernel calls, using dif-
ferent startID and optionally different grid size. A different
partitioning of the search space in intervals can of course be
provided, depending on the particular case.

The application of the Enumerate pattern is discussed in
details in [7], where we presented an exhaustive key search
on clusters of GPUs. In the same work we also proposed a
hierarchical subdivision of the search space in order to dis-
tribute the search process over multiple nodes providing some
metrics that can be used to obtain an optimal partitioning.

Consequences

In order to apply this pattern, both next and f functions
should be implemented, with a subsequent increase in code
complexity.

Case Study

We introduced the Enumerate pattern in [7], where we
proposed a password cracking application as case study (nev-
ertheless, the pattern can be applied to a wide set of exhaustive
search algorithms). In this example, f(i) generates all the
strings of a given charset using the algorithm in Figure 7. Since
the generation can be quite performance demanding, each
thread evaluates a multitude of candidate solutions executing
a single f(i) and then applying the next operator defined in
Figure 8, which in most of the cases just modifies the last
character of the string in order to obtain subsequent solutions.
The C function takes a string as input, evaluate its MD5 or its
SHA1 hashcode, then compare the result with the hashcode



Require: i ∈ N, charset = [′a′,′ b′,′ c′, . . . ])
Ensure: str = f(i, charset)

str = []
while i > 0 do

i← i− 1
currentCharId = i mod length(charset)
currentChar = charset[currentCharId]
str = currentChar ⊕ str
i = b i

length(charset)c
end while
return str

Fig. 7. Pseudocode for the f(i) operator; ⊕ is the string concatenation
operator

Require: str = f(id, charset)
Ensure: nextStr = f(id+ 1, charset)
nextStr = str
currentPosition← length(str)− 1
repeat

temp← (id+ 1) mod length(charset)
nextStr[currentPosition]← charset[temp]
id← b id

length(charset)c
currentPosition← currentPosition− 1
if currentPosition = −1 then

nextStr[length(str)]← charset[0]
return nextStr

end if
until temp = 0
return nextStr

Fig. 8. Pseudocode for the next operator

to crack. In Table II, we show how our password cracking
application, which exploits the Enumerate pattern, achieves
comparable or even better average performance results when
compared to other popular software (BarsWF and Crypto-
haze) over different architectures. The search space of this
experiment was the set of strings made up to 8 alpha-numeric
characters, including both lower and upper-case letters.

TABLE II
THROUGHPUT ON SINGLE GPU (MKEY/S)

8600M 8800 540M 550ti 660

MD5 (theoretical) 83 568 359.4 962.7 1851

MD5 (our work) 71 480 214 654 1841

MD5 (BarsWF) 71 490 205 560 1340

MD5 (Cryptohaze) 49.4 316 146 410 1280

SHA1 (theoretical) 25 170 128 345 390

SHA1 (our work) 22 137 92 310 390

SHA1 (Cryptohaze) 20.8 132 68 185 377

VI. SORT AND PACK PATTERN

Problem

We need to build a structure including an arbitrary number
of containers (buckets), each one filled by a variable number
of elements. The destination bucket of each element is only
known after a parallel computation on the elements. How to
populate in parallel the buckets using a lock-free algorithm?

Forces

• the distribution of elements inside buckets is assumed to
be random;

• the performance of the method should not depend on the
number of elements per bucket;

• the memory footprint of the method should be sufficiently
small to be contained in global memory;

• the insertion runtime should be as efficient as possible.

Solution

We know that each element can be inserted in only one
bucket; therefore it is possible to pre-allocate two arrays:
• elementIds, storing the unique identifier of each element;
• bucketIds, storing for each element the unique identifier

of the target bucket.
The main step (sort) of this pattern consists in sorting the
element/bucket pairs, using the bucket identifiers as keys; at
the end of this step, elements in the same bucket are stored
sequentially in memory. The fastest sorting method on GPU
reported in the literature is radix sort. It was first implemented
by Satish et al. in [27], improved by Merill and Grimshaw
in [28], and is included in the GPU Thrust library [29]; The
radix sort implementation is based on the parallel prefix sum
kernel, which constitutes itself the Scan pattern, belonging to
the Transformation category in SIMPL.

The following step (pack) creates two additional vectors,
with the same size of the set of destination buckets:
• bucketStart, in which the i-th element stores the index of

the start of the i-th bucket in the (elementIds, bucketIds)
array, or -1 if empty;

• bucketEnd, in which the i-th element stores the index of
the end of the i-th bucket in the (elementIds, bucketIds)
array, or -1 if empty;

Both arrays are initialized to -1; then we invoke a kernel
which, for each thread, reads Bi and Bi+1 from the bucketIds
array. If Bi 6= Bi+1, then bucketStart[Bi+1] ← i + 1
and bucketEnd[Bi] ← i. The boundary conditions are
bucketStart[B0]← 0 and bucketEnd[BN−1]← N − 1.

The contents of a bucket are retrieved by reading the entries
in the arrays from the bucket start index to the bucket end
index; the size of the bucket b is given bucketEnd[b] −
bucketStart[b]. The solution is illustrated in Figure 9.

Consequences

The sort pass knows only the size of the input vector,
and the method avoids the use of atomic functions; hence its
performance is not affected by the distribution of the elements



Fig. 9. Sort and Pack method for parallel insertion in a set of buckets

inside the buckets. Moreover, it scales with the number of
elements rather than the number of buckets, since no empty
container is considered in the sorting process. However, the
size of bucketStart and bucketEnd is equal to the number of
possible buckets; therefore the method is not applicable when
the number of possible buckets is very large.

Example Uses

Among the many works that use this pattern to construct
variable-sized lists we find [30], [31], [32], [33], [34].

VII. CONCLUSIONS

In this paper we presented a pattern language called SIMPL
that can be used to accelerate and optimize a data-parallel
algorithm on a SIMT architecture like a GPU. We started
enumerating the difficulties and the objectives that arise when
approaching parallel programming for the first time. Our
pattern language was structured to answer those issues in the
context of GPU programming. We classified five categories
of patterns that aim answering to five different categories of
difficulties. We then presented two example patterns from the
Mapping category, providing for each one a case study that
shows performance results in line with, or even superior, to
those achieved by popular highly optimized software. We also
described an example pattern from the Construction category,
which is frequently applied in GPU kernels. As future work,
besides publishing a full reference to the current language
version, we will include those categories (Fault Tolerance,
Energy Efficiency and Debugging/Profiling) that are missing
at this time in SIMPL.
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