©2023 IEEE - This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published at https://doi.org/10.1109/PERCOM56429.2023.10099372

Serverledge: Decentralized Function-as-a-Service
for the Edge-Cloud Continuum

Gabriele Russo Russo*, Tiziana Mannucci®, Valeria Cardellini* and Francesco Lo Presti*
* University of Rome Tor Vergata, Rome 00133, Italy
Email: {russo.russo, cardellini} @ing.uniroma2.it, tiziana.mannucci@alumni.uniroma2.eu, lopresti@info.uniroma2.it

Abstract—As the Function-as-a-Service (FaaS) paradigm en-
joys growing popularity within Cloud-based systems, there is
increasing interest in moving serverless functions towards the
Edge, to better support geo-distributed and pervasive appli-
cations. However, enjoying both the reduced latency of Edge
and the scalability of FaaS requires new architectures and
implementations to cope with typical Edge challenges (e.g., nodes
with limited computational capacity). While first solutions have
been proposed for Edge-based FaaS, including light function
sandboxing techniques, we lack a platform with the ability to
span both Edge and Cloud and adaptively exploit both.

In this paper, we present Serverledge, a FaaS platform de-
signed for the Edge-to-Cloud continuum. Serverledge adopts a
decentralized architecture, where function invocation requests
can be fully served within Edge nodes. To cope with load
peaks, Serverledge also supports vertical (i.e., from Edge to
Cloud) and horizontal (i.e., among Edge nodes) computation
offloading. Our evaluation shows that Serverledge outperforms
Apache OpenWhisk in an Edge-like scenario and has competitive
performance with state-of-the-art frameworks optimized for the
Edge, with the advantage of built-in support for vertical and
horizontal offloading.

Index Terms—serverless, edge computing, offloading

I. INTRODUCTION

Function-as-a-Service (FaaS) allows users to deploy units of
computation, defined as functions, to be executed in response
to events (e.g., HTTP triggers) in a serverless fashion [1], with
the underlying platform taking care of most the operational
issues, including resource provisioning and scaling. The fine-
grained pricing models and the seamless scalability of FaaS
have boosted its popularity for the last years, with all the
major Cloud providers now offering FaaS platforms (e.g.,
AWS Lambda, Google Cloud Functions, Azure Functions).

While Cloud-based applications increasingly adopt the FaaS
paradigm, it is natural to wonder whether and how FaaS can be
exploited by pervasive applications deployed at the edge of the
network [2], [3]. Domains like Industrial Internet-of-Things,
smart healthcare, and augmented/virtual reality, usually require
their inputs to be processed with very low latency [4] and, thus,
their requirements can hardily be satisfied by transferring data
to remote Cloud data centers and back.

In addition to public Cloud platforms, various open-source
FaaS frameworks are available nowadays (e.g., Apache Open-
Whisk and OpenFaaS), but, unfortunately, they are mostly
designed to run in Cloud or clustered environments. Key
limiting factors towards their seamless adoption at the Edge
include (i) frequent use of centralized schedulers or gateway

components, which introduce latency in geo-distributed set-
tings, and (ii) memory-demanding function sandboxes, usually
based on software containers.

The research community has started investigating solutions
to better support FaaS at the Edge and novel frameworks
have been recently presented that better suit Edge environ-
ments, often exploiting lightweight function sandboxing mech-
anisms instead of OS-level virtualization (e.g., Faasm [5] and
Sledge [6], which rely on software-fault isolation). However,
these solutions either work within single Edge nodes (e.g.,
[6], [7]), or scale over multiple nodes without considering ge-
ographical distribution (e.g., [5]). Other works (e.g., [8]-[10])
study architectures and algorithms for function placement and
load distribution in decentralized FaaS systems, but relying
on the existing Cloud-oriented frameworks for actual function
execution, possibly incurring the issues mentioned above when
running at the Edge.

In this paper we present Serverledge, a new FaaS system
that aims to fill the gap between Edge and Cloud and provides
a flexible and extensible framework for FaaS in geographically
distributed environments. Serverledge adopts a decentralized
architecture, with nodes organized into Edge zones and Cloud
regions based on their location. Every Serverledge node, being
it at the Edge or in the Cloud, is able to schedule and execute
invocation requests with minimal or no interaction with remote
nodes, keeping latency as low as possible. To cope with load
peaks, Serverledge also supports vertical (i.e., from Edge to
Cloud) and horizontal (i.e., among Edge nodes) computation
offloading, allowing nodes to forward invocation requests
that cannot be served locally. Serverledge supports functions
written in multiple programming languages, currently relying
on simple-yet-popular Docker containers for isolated function
execution.

We design Serverledge with flexibility in mind, aiming
to contribute an easy-to-extend prototype to the research
community, for future investigations on FaaS at the Edge. Our
key contributions can be summarized as follows:

¢ We design a decentralized FaaS framework for Edge-
Cloud environments, where Edge nodes schedule and
execute functions with minimal interaction with the rest
of the system. To extend their serving capacity, nodes can
offload requests to neighbor Edge nodes or to the Cloud.

o« We implement Serverledge in Go, exploiting Docker
containers for isolated function execution.

o We perform an experimental comparison to assess the rel-
ative performance of Serverledge against state-of-the-art
FaaS platforms (namely, OpenWhisk, Faasm [5] and tiny-
FaaS [7]). We also evaluate the benefits of the offloading
mechanisms integrated in Serverledge and demonstrate
their flexibility by means of a proof-of-concept QoS-
aware offloading policy.

The remainder of the paper is organized as follows. We
review related work in Sec. II. An overview of our solution is
given in Sec. III, before describing the design of Serverledge
in Sec. IV and its implementation in Sec. V. We discuss the
experimental evaluation in Sec. VI and conclude in Sec. VIIL.

II. RELATED WORKS

As surveyed in [11] and [12], the increasing popularity
of FaaS has attracted significant interest from the research
community. A recent surge of interest is related to running
serverless functions at the Edge [2], [3], in particular to handle
IoT workloads [13] bringing functions closer to devices and
thus reducing latency and energy consumption. However, run-
ning serverless functions and applications at the Edge raises a
different set of research challenges, mainly because of resource
constraints and geographic distribution of Edge nodes. In this
section, we narrow our attention to serverless proposals that
explicitly cope with Edge challenges, first discussing FaaS
frameworks for the Edge related to our proposal and then
considering function placement and load distribution.

Table I compares Serverledge to related FaaS systems
proposed in the literature, as well as two established open-
source frameworks, namely OpenWhisk and OpenFaaS. The
solutions closest to ours are Colony [14] and Faasm [5], as
they support function execution offloading.

Colony is a framework for parallel FaaS in the Cloud-Edge
continuum. Its goal is to let nodes process data on their re-
sources while also offering their computing capacity to the rest
of the infrastructure. Colony differs from most existing FaaS
frameworks, as it transparently converts the logic of complex
user-given functions into task-based workflows backing on
task-based programming models through COMPSs [15]. The
generated workflows are then executed over the infrastructure,
possibly offloading tasks both horizontally and vertically. To
the best of our knowledge, the source code of Colony has not
been publicly released.

Faasm is an open-source research prototype that intro-
duced Faaslets, an isolation abstraction for high-performance
serverless computing. Faaslets isolate the memory of executed
functions using software-fault isolation (SFI), as provided by
WebAssembly, while allowing memory regions to be shared
between functions in the same address space. Relying on
Faaslets, Faasm significantly reduces the initialization time
and memory footprint of function sandboxes, compared to
container-based approaches. Moreover, Faasm has built-in sup-
port for function chaining and state management. Faasm runs
using multiple worker nodes, which can schedule and offload
requests horizontally to other workers. However, Faasm does
not explicitly consider geographical distribution of the nodes.

Sledge [6], [16] and tinyFaaS [7] are other FaaS frameworks
specifically designed for Edge environments, aiming to provide
serverless execution with reduced resource consumption. The
key difference between the solutions mentioned above, includ-
ing Serverledge, and these two frameworks lies in the fact that
Sledge and tinyFaaS target single-node deployment scenarios
and, thus, they lack the ability to exploit Cloud resources.

As regards the sandboxing mechanism used for function
execution, Sledge adopts an approach similar to Faasm,
exploiting software-fault isolation and WebAssembly-based
runtime environments. Sledge has recently been extended
in [16] to orchestrate and schedule the execution of function
compositions through QoS-aware policies. While Serverledge
does not currently support function chains or compositions,
we plan to introduce similar features in the future.

Similarly to our approach, tinyFaaS relies on traditional
Docker containers for isolated function execution. However, to
limit the overhead due to dynamic management of running and
idle containers, tinyFaaS uses a “static” pool of containers for
each function. Indeed, a configurable number of containers are
spawned upon registration of a new function, without waiting
for invocation requests. Furthermore, tinyFaaS, which only
supports JavaScript functions, allows multiple requests to be
served concurrently within the same container, avoiding the
additional memory footprint of concurrent container instances.

Compared to the research prototypes described above,
OpenFaaS and OpenWhisk are feature-rich open-source FaaS
frameworks, which have been primarily designed for Cloud
and clustered computing environments. In particular, the ar-
chitecture of OpenFaaS and OpenWhisk does not suit well
geographically distributed environments, as they include cen-
tralized scheduling and management components (e.g., the
Controller in OpenWhisk, the Gateway in OpenFaaS). Both
these frameworks rely on software containers for isolation.

Research efforts have been also devoted to propose solutions
to place and manage serverless functions and applications
in Edge environments, also considering their integration with
serverless Cloud services. Scheduling of serverless functions
across heterogeneous and possibly resource-constrained Edge
servers has been considered in a number of works (e.g., [8],
[17]-[19]). They investigate optimal function placement with
the goal of minimizing the completion time of serverless
applications under the trade-off between processing time and
communication overhead. For example, Deng et al. [18] pro-
pose a proactive algorithm to split the data traffic between
Edge nodes. Schedulix [8] comprises a greedy algorithm to
determine both the order and placement of functions over a
hybrid public-private cloud. Optimization problem formula-
tions have been employed for resource provisioning and allo-
cation in Edge and Cloud serverless environments, e.g., [19],
[20]. For example, by means of Mixed Integer Programming,
NEPTUNE [19] places latency-constrained functions on Edge
nodes according to user locations, by avoiding their satura-
tion and exploiting GPUs if available. Model-driven resource
management algorithms based on queuing theory have been
also proposed, for example in LaSS [21] to determine the

TABLE I: Comparison of FaaS frameworks. (Dist. = System Distribution, C = Cluster-level, G = Geographical; H = Horizontal

Offloading, V = Vertical Offloading, Comp. = Composition)

Dist. Offload Comp. Runtime State Languages

Colony [14] G H+V Yes COMPSs [15] - C++, Python

Faasm [5] C H Yes Faaslet (SFI-based) Yes C++, Python, (any compiled to Wasm)

OpenWhisk C — Yes Containers — Go, Java, JS, Python, PHP + ...

OpenFaaS C - (Yes) Containers - Go, Java, JS, Python, PHP + ...

Sledge [6], [16] - - Yes [16] SFI-based Yes [16] C++, (any compiled to Wasm)

tinyFaaS [7] - - - Containers (static) - JS

Serverledge G H+V - Containers - Python, JS, (any through custom images)
placement of each function and to auto-scale the allocated Global
resources in response to workload dynamics. Cloud Region

The above approaches rely on centralized decision-making
components and may suffer from scalability in large-
scale Edge-Cloud environments. Decentralized approaches
(e.g., [20], [22]) aim to address this issue by distributing
decisions for admission, scheduling, and provisioning. For
example, AuctionWhisk [22] is an auction-inspired approach,
evaluated using OpenWhisk, where application users bid on
resources, while Edge nodes decide locally which functions
to execute and which to offload in order to maximize revenue.
Decentralized heuristic algorithms are proposed in [20] but
their evaluation is only by means of simulation.

Offloading strategies among Edge nodes have been also in-
vestigated in the field of serverless edge computing. DFaaS [9]
leverages an overlay network to balance load within a fed-
erated Edge FaaS platform, composed of OpenFaaS nodes.
Cicconetti et al. [10] propose an Internet Protocol-inspired
algorithm to offload invocation requests within a network
of FaaS nodes. Both the solutions can be considered to
extend our work and introduce new strategies for horizontal
offloading. Vertical offloading to Cloud has been also studied,
for example in [23], which allows users to specify latency and
cost requirements and determines where to execute the task
on the basis of prediction models.

We observe that most of these proposals have been evaluated
either by means of simulation or prototypes implemented
on top of Cloud-native platforms such as OpenFaaS and
OpenWhisk. Our proposed solution Serverledge represents a
platform natively designed for the Edge that could be used by
future works to investigate serverless function scheduling and
load distribution in the Cloud-Edge continuum.

III. OVERVIEW OF SERVERLEDGE

Serverledge is a decentralized FaaS platform designed
for Edge-Cloud computing environments. Serverledge allows
users to define functions through high-level programming
languages and automatically allocates resources for their ex-
ecution upon invocation. Following the approach adopted by
most the existing FaaS platforms, including OpenWhisk and
OpenFaaS, we execute functions within software containers,
which are spawned as needed and initialized with the code
and libraries required by each function.

Figure 1 illustrates the high-level architecture of a
Serverledge installation, which. consists of one or more nodes,

? @ Registry ==

Load Balancer]

:

N

E}@é\

Edge Zone 2

E] Serverledge Node

Invocation
Request/Response
Computation Offloading

Fig. 1: Serverledge Overview.

deployed either in Cloud data centers or at the edge of the
network, and a global registry. The latter provides distributed
nodes with the required data about the system, including
membership information about each deployed node. Within
the registry, nodes are organized into different cloud regions
(e.g., data centers) and edge zones based on their location.
Cloud regions typically represent geo-distributed data centers,
while Edge zones may be associated with, e.g., single towns
or cities. Each Cloud region may further comprise a load
balancer to distribute incoming requests to the nodes deployed
in the region. Note that, while the global registry represents a
single logical entity in the architecture, it may be associated
with multiple replicas for scalability and fault tolerance.

The core idea underpinning the design of Serverledge is
that there are not single or privileged entry points for function
invocation. Indeed, users can send invocation requests to any
node (e.g., one in their proximity). Compared to popular FaaS
platforms designed for the Cloud, scheduling functionalities
are not centralized and, thus, every node is able to schedule the
execution of incoming requests. This is particularly important
for Edge-generated requests, which are not forced to reach a
centralized gateway in the Cloud for scheduling.

Serverledge adopts a per-request container scaling behavior,
where new containers are only spawned when needed. In
particular, when an invocation request enters the system, if
enough resources (i.e., CPU and memory) are available, a new
container is spawned and initialized to execute the function.

g N
o ' s\E
© B
i) :
uO: Container Pool
—
‘ Scheduler ‘ LO.Cal ~
Registry
[API Server I

A J
v

Fig. 2: Architecture of a Serverledge node.

When this happens, the request has to wait for the container
to be fully initialized before being served and it is said to
experience a “cold start”. Following a common approach to
reduce cold start frequency, containers are not immediately
destroyed after function completion and are kept in a warm
pool until a fixed timeout expires (e.g., 10-15 minutes in
Cloud-based FaaS offerings). If one or more warm containers
are available, these can be re-used to serve new requests for
the same function avoiding a cold start.

Because of the limited resource capacity of Edge nodes,
it is likely that a single node (and perhaps a whole Edge
zone) cannot sustain the incoming load. Therefore, Serverledge
allows nodes to offload invocation requests to other nodes,
when needed. In particular, we support both vertical and
horizontal offloading. The former refers to execution requests
being forwarded from Edge to Cloud nodes, whereas the latter
indicates request offloading among Edge nodes. According
to the node organization described above and in the aim of
keeping latencies under control, we assume that each Edge
zone is associated with a single Cloud region for offloading.
Similarly, horizontal offloading is enabled by default only
within a single Edge zone.

IV. ARCHITECTURE

A Serverledge node comprises a few key components, as
depicted in Fig. 2: API server, Scheduler, Local Registry,
Offloader and Container Pool. By interacting with each other
and possibly with the Global Registry and other nodes, these
components support the execution and scheduling function-
alities we have introduced in the previous section. In the
following, we will describe the design of each component and
the interactions between different components.

A. Node API

Each node provides a set of key functionalities through an
HTTP API, served by the API server component. The API
is meant to be primarily used by client applications (e.g., to
create and invoke their own serverless functions), but it is also
accessible to other Serverledge nodes (e.g., for offloading, as
illustrated in the following). In particular, each node supports
the following key operations:

e /create: to register a new serverless function in the

system, providing its source code and the required infor-

mation for its execution (e.g., the amount of memory to
reserve for its container instances).

e /invoke: to invoke an existing function, possibly speci-
fying one or more input parameters and QoS requirements
for the submitted request (e.g., QoS class, maximum
response time).

e /list: to get a list of the registered functions.

e /delete: to de-register an existing function.

e /status: to obtain information about a node, including,
e.g., the amount of available computational resources and
the current state of its container pool.

B. Registry

As mentioned above, Serverledge uses a registry to store
information about the nodes in the system and the registered
functions, including their code. At system-level, the Global
Registry keeps this information and makes it available to the
nodes as needed. As such, updates to the existing functions
(e.g., creation of a new function) must be communicated to
the Global Registry, in order to make them visible to the
whole system. In addition to accessing the Global Registry,
each node is equipped with a Local Registry, which has a
twofold role. First of all, it acts as a local cache for information
retrieved from the Global Registry. By doing so, it provides
local components (e.g., the scheduler) with low-latency access
to most the data they use, avoiding unnecessary reads from the
Global Registry. A time-to-live is associated with each cache
entry to guarantee that information is periodically refreshed
from the Global Registry.

Besides caching, the Local Registry is responsible for
storing information that we aim to collect and manage on
the node, without propagating it at global level. Specifically,
each node deployed at the Edge runs periodic monitoring
tasks to gather information about its neighbor nodes, located
within the same Edge zone (e.g., the same town). In particular,
these nodes run the well-known Vivaldi [24] algorithm to
build and update a virtual coordinate space, which allows
nodes to estimate the network distance among each other. The
Vivaldi algorithm require nodes to periodically exchange their
own virtual coordinates. We exploit such message exchange
to spread additional information about each node, including
the current amount of available resources (i.e., CPU and
memory) and a synthetic snapshot of the container pool in
terms of existing warm containers. Such monitoring allows
nodes to identify non-overloaded close neighbors, in terms of
network distance, which can be regarded as ideal candidates
for computation offloading, when needed.

C. Function Scheduling and Execution

When a function invocation request is received, the node
retrieves the necessary information about the function (i.e.,
required runtime environment, memory and CPU demand,
source code) from the Local Registry, which — in turn — will
interact with the Global Registry if the required data have
not been cached. Then, the request is passed to the Scheduler

component, which must provision the required resources for
execution, if possible, or drop the request.

In principle, the scheduling process boils down to identify-
ing a suitable container for function execution, either retrieving
it from the pool of warm containers or creating a new one. If
a new container is needed, we create it from a suitable base
image as specified by the function (e.g., functions written in
Python require the Python interpreter). Once the container is
started, we finalize the initialization by copying the source
code package of the function into the container. The invocation
request has to wait for the whole initialization procedure
before the actual execution starts (i.e., the well-known cold
start issue).

As mentioned, containers are not terminated after function
execution and are instead kept in a pool of warm containers
for future re-use. Containers remain in the warm pool until
any of two events occurs and, specifically: (i) the container
has been idle for a period longer than a threshold 7¢*Pired,
or (ii) we need to create a container for a different function
and must reclaim memory from the warm pool to do so. While
more advanced techniques have been explored in the literature
for cold start reduction and mitigation (e.g., [25], [26]), they
are out of the scope of this paper and will be considered for
future extensions.

As depicted in Fig. 3, besides picking or creating containers
for function execution, the Scheduler can make other decisions
for incoming requests. First, the scheduler can decide to
offload requests to another node, which will take care of
actual function execution (more details in the next section).
Furthermore, requests can be dropped by the Scheduler and,
thus, not executed at all (e.g., during heavy-load periods).

D. Execution Offloading

Offloading the execution of functions allows nodes to cope
with high load periods, by moving a share of their own
workload to peers. Besides node congestion, offloading may be
useful in general to optimize the provided service level, e.g.,
letting particular requests being served remotely on specialized
hardware for higher performance.

Serverledge supports both vertical (i.e., from the Edge to the
Cloud) and horizontal (i.e., within an Edge zone) offloading.
On the one hand, vertical offloading typically allows nodes
to significantly increase their accessible computing capacity,
as Cloud regions likely offer more and/or more powerful
nodes. Conversely, horizontal offloading involves single nodes
in the neighborhood, which do not necessarily offer better
performance than the originally targeted node. On the other
hand, the network delay between Edge and Cloud may impose
non-negligible overhead on offloaded requests, especially if
their computation demand is limited. In this regard, horizontal
offloading is attractive, as target nodes are selected based on
proximity metrics and can be reached with reduced delays.

While horizontal and vertical offloading appear as distinct
levers to the Scheduler, which should carefully pick one
or the other depending on the circumstances, the offloading
mechanisms are not significantly different on a system design

perspective. When the Scheduler makes an offloading decision
for a request, a target node is selected relying on the Local
Registry, which provides information on the neighbor Edge
nodes and the available Cloud regions (if any). Then, the
request is forwarded to the selected node. For this purpose, the
local node acts as a reverse proxy, submitting the invocation
request to the API of the remote node. The local node waits for
the computation result travelling back from the remote node
and sends it back to the invoking client as soon as possible.

Offloaded requests incur the same scheduling process on
the remote node, although we may and actually distinguish
them from regular, client-generated ones. For instance, a
default constraint we integrated in Serverledge is that offloaded
requests cannot be further offloaded by the remote node.
While our design would support such recursive offloading,
a longer forwarding chain may easily undermine the ability
of the Scheduler to estimate and control incurred latency.
We will show in the following that the proposed offloading
mechanisms significantly boost the capacity of single nodes,
with minimal overheads.

V. IMPLEMENTATION

Serverledge has been implemented in Go.! In this section,
we briefly review the main implementation aspects for each
component of the architecture.

API server. Each Serverledge node exposes an HTTP API,
which is implemented on top of Echo?, a high performance
web framework for Go.

Registry. For the Global Registry, we exploit efcd’, a
distributed, reliable key-value store. As regards the Local
Registry, we implement it by means of two sub-components:
(i) a cache for the function metadata retrieved from the Global
Registry, and (ii) a neighborhood monitoring service. The
latter uses UDP messages for communication among Edge
nodes and latency estimation through network coordinates.

Scheduler. The Scheduler is a multi-threaded compo-
nent that receives invocation requests from the API server
and manages their execution. The Scheduler relies on a
Policy interface to support flexible policy definition.
The Policy interface comprises three operations, namely
Init (), OnArrival (), OnCompletion (). The first op-
eration is used at startup to initialize any necessary data
structure, whilst the remaining ones are, respectively, used
upon arrival or completion of a request.

Container Pool. The Container Pool comprises a few data
structures that store and provide access to the existing running
and warm containers for each function. The Container Pool has
been implemented avoiding coupling with a specific container-
ization platform and provides interfaces for the integration of
multiple platforms. However, in this work we focused on a
single platform, Docker, given its popularity and ease of use.
In particular, we exploited the Docker SDK for Go to interact
with the Docker daemon on each node.

'https://github.com/grussorusso/serverledge
Zhttps://echo.labstack.com/
3https://eted.io/

Global

D

Offload
X ;

Regist —

sty =, X4 (D,

; rop . : \

V) : P \/
—> Local R R Container
API Server Registry Scheduler Pool

¥{.;—MX¥J

Fig. 3: Illustration of function scheduling. If local execution is not possible, the Scheduler can drop the request or offload it.

Offloading. The offloading mechanisms have been intro-
duced with minimal impact on the node architecture and de-
sign. Indeed, the same API used by regular clients is exploited
for offloading requests, with the originally targeted node acting
as a reverse proxy. Nonetheless, the implementation of this
mechanism required same care. While we relied on the HTTP
client provided by Go for making new requests towards,
e.g., Cloud nodes, we found it essential to tune the client
configuration to achieve good performance. Specifically, as the
default configuration does not allow to keep more than two idle
TCP connections per single host, TCP connection reuse was
not properly exploited in the offloading scenario. Letting the
client keep a much larger number of idle connections (e.g.,
2,000) significantly reduced the offloading overheads.

VI. EVALUATION

To evaluate Serverledge, we first compare it against state-
of-the-art FaaS platforms. Then, we evaluate the offloading
mechanisms integrated in Serverledge.

A. Experimental Setup

Infrastructure. We run the experiments on AWS EC2
virtual machines. To mimic an Edge-Cloud scenario, we
deploy Edge and Cloud nodes in different AWS regions, i.e.,
respectively, eu-central-1 in Germany and eu-west-1
in Ireland. To further differentiate Edge and Cloud nodes, we
consider different types of EC2 instances for them. Edge nodes
run in c4.large instances with 2 vCPUs and 3.75 GB of
memory, whilst Cloud nodes run in c4.xlarge instances,
with 4 vCPUs and 7.5 GB of memory. A c4.2xlarge
instance is used as a client and located in the same region
of Edge nodes. Unless differently specified, for the Global
Registry of Serverledge, we deploy a single instance of etcd
in one of the Cloud nodes.

Workloads. We use Locust, a Python-based load test-
ing tool, for load generation. Locust allows us to emulate
the behavior of Ny users concurrently issuing requests to
Serverledge, with configurable think times or maximum rates.
The duration of each experiment is set to 900s.

We use the following functions in the experiments:

e Sieve: implementation of the Sieve of Eratosthenes,
which computes the list of primes up to a given
bound (i.e., 10,000 in the experiments). Implemented in
JavaScript by authors of [7].

e Fib: recursive computation of the n-th element of the
Fibonacci sequence. Implemented in Python and Go.

e Classification: simple binary image classifier
based on a convolutional neural network, implemented
in Python on top of Keras and Tensorflow.

e Validator: validator of user-submitted JSON objects,
according to a given schema. Implemented in Python.

Serverledge Configuration. We set the warm container
expiration timeout to 600s. The Local Registry monitoring
interval is set to 30s, with its cache time-to-live set to 60s.

B. Performance Comparison

We consider three state-of-the-art platforms, namely Open-
Whisk, Faasm and tinyFaaS, which have been introduced
in Sec. II, to compare Serverledge performance. For this
comparison, we deploy each platform using a single Edge
node, with an additional node used for load generation. Note
that OpenWhisk is usually deployed in Cloud-based clusters
through Kubernetes, as it relies on several distributed compo-
nents. Because OpenWhisk also supports a “lean” deployment
mode for Edge scenarios, we will consider this setup for the
experiments. Both tinyFaaS and Faasm are deployed using
Docker containers, following the official instructions. For this
experiment, we also deploy the etcd-based Global Registry
in the Edge node, to have a fair comparison with the other
systems, deployed in a single node.

To assess the maximum throughput sustained by each
platform, we let Ny = 20 parallel users generate as many
requests they can (i.e., with no think time between consecutive
requests)*. All the platforms execute the Sieve function. Un-
fortunately, we were not able to run Faasm at high throughput,
with the system keeping an excessive number of open files
and crashing.’ Therefore, we perform the comparison against
Faasm using a different, reduced workload, which is presented
later in this section.

1) Results with OpenWhisk and tinyFaaS: The results of
this comparison are reported in Table II. Figure 4 shows the
throughput over time, while Fig. 5 compares response time
distributions (with whiskers from the 5" to the 95" per-
centile). We first note that OpenWhisk, which is not designed

4We verified that the workload saturates system capacity by doubling the
number of users without observing evident throughput increases.

5The issue we encountered is likely the same reported here: https://github.
com/faasm/faasm/issues/504. The issue is “open” at the time of writing.

TABLE II: Comparison of Serverledge, tinyFaaS and OpenWhisk.

Response Time (ms)

Thr. (req/s) Avg Min Max P25 P50 P75 P90 P95 P99
OpenWhisk 55.47 32225 4320 4801.10 250 290 340 430 510 740
tinyFaaS 1357.84 13.06 1.89 240.04 7 12 17 24 29 39
Serverledge 805.06 22.03 2.39 3049.65 16 21 28 34 39 50
Serverledge (with offloading) 1827.28 10.17 244 1466.29 7 9 12 15 18 24
OpenWhisk (reduced workload) 53.56 33258 30.64 476579 260 290 360 450 520 810
tinyFaaS (reduced workload) 89.44 342 1.88 209.37 3 3 4 5 6 7
Serverledge (reduced workload) 89.38 3.73 2.56 1767.85 3 3 4 4 5 8
2000 g 40
1800 Py 35
e 30
1600 = 25
o 20
@ 1400 @ 18
o
% 1200 § 8
2 1000 Q : ‘ :
£ o S e Q\
2 \
g 800 \‘\(\‘J?a o e(\edg ge,(o
= S e(\je(
F 600 . S
OpenWhisk - -
400 tinyFaaS - - - -
b Serverledge
200 I Serverledge-+offloading Fig. 5: Response time of tinyFaaS and Serverledge (with and
e = - -, without offlading).

0 100 200 300 400 500 600 700 800 900
Time (s)

Fig. 4: Throughput of OpenWhisk, tinyFaaS and Serverledge

running in a single node. tinyFaaS has the highest throughput

among them, but Serverledge can exploit additional nodes to

offload and serve more requests.

for resource-limited deployments, shows poor performance in
the considered scenario, with an average throughput equal to
55.5 req/s. Similarly, OpenWhisk has the worst performance in
terms of response time, with the median response time being
290ms, compared to 21ms achieved by Serverledge.

The platform showing the best performance is tinyFaaS,
whose measured throughput is 1358 req/s and median response
time equal to 12 ms. Serverledge processes 805 req/s with a
median response time equal to 21 ms. While not exciting, these
results were expected. Indeed, tinyFaaS adopts a simplified
container management approach that significantly reduces the
overheads associated with function execution. Specifically, it
statically allocates a pool of containers for each function
when the system is started, with each container allowed to
serve multiple requests concurrently. By doing so, tinyFaaS
avoids cold starts and the overheads due to container man-
agement. This is evident looking at the maximum response
time achieved using tinyFaaS (i.e., 240 ms) compared to that
measured in Serverledge (i.e., 3,049 ms, which corresponds to
a cold start). While the design of tinyFaaS appears optimal,
it may hardily scale in a more general scenario, as pre-
spawning containers for every existing function, regardless of
its invocation patterns, would likely require more memory than
provided by the node.

Furthermore, tinyFaaS is not able to scale its execution
across multiple nodes. To demonstrate the different direction

pursued by Serverledge, we also consider the case where an
additional node is available in the same region to offload
requests. By doing so, we are able to process more than
1800 req/s, reducing also the median response time to 9 ms.
As a final comparison, we consider what happens under
a reduced workload, with each user issuing requests at a
maximum rate of 5 req/s. OpenWhisk has the worst results
even in this case, completing about 54 req/s. Serverledge and
tinyFaaS shows almost identical throughput, with minimal
differences in the response time distribution (see, Table II).
2) Results with Faasm: Because of the aforementioned
issue, we consider a reduced throughput scenario to compare
Serverledge and Faasm, where we focus on response time
evaluation. Specifically, we consider Ny = 5 users, issuing
no more than 5 req/s. We use the Fib function for the experi-
ments, considering the cases where it is invoked with argument
n = 20 and, then, n = 25. As regards Faasm, we rely
on the recursive Fibonacci implementation comprised in the
official repository. The latter consists of C++ code, compiled
to WebAssembly for execution. Since we are not able to run
an identical function implementation, we implement the same
algorithm both in Python and Go for execution in Serverledge.
The results of these experiments are reported in Table III,
with Fig. 6 showing the measured response time. Clearly,
as the rate of incoming requests is low, both Faasm and
Serverledge can sustain the incoming load. Looking at the
response time, we note that Faasm serves 99% of the requests
in no more than 13 ms, with both the considered inputs.
Serverledge with the Python runtime has worse performance,
especially when computing Fib (25), with a median response
time equal to 31 ms. The response time of Serverledge is
dramatically reduced when running the compiled Go imple-

TABLE III: Comparison of Serverledge and Faasm.

Response Time (ms)

Thr. (req/s) Avg Min Max P25 P50 P75 P90 P95 P99
Faasm - Fib(20) 14.51 4.67 1.93 219.70 3 4 5 6 7 12
Serverledge - Fib(20) Python impl. 14.49 8.60 5.68 1146.65 7 7 10 11 11 13
Serverledge - Fib(20) Go impl. 14.50 3.76 2.46 480.40 3 3 4 5 5 7
Faasm - Fib(25) 14.51 5.14 2.69 223.00 4 5 6 7 8 13
Serverledge - Fib(25) Python impl. 1449 6322 2992 1325.18 31 65 92 94 96 120
Serverledge - Fib(25) Go impl. 1450 404 260 47692 4 4 4 4 5 7
& 12 » 35
E 10 ! £ 30 =
© 2 25
€
E 8 = 20
; - | T
= — R
5._) 5 2 5 #
Q
) o 0
o
0 Local Edge Offl. Cloud Offl.
Faasm Serverledge Serverledge
Python Go (a) Validator function.
(a) Fib (20) @ 3000
= 125 % 2500
£ 100 . £ 2000
g - > 1500
i: ()
° g 1000 =
& 50 & 500
o [0
3 25 o 0
o} Local Edge Offl. Cloud Offl.
o 0 — —_—
Faasm ServerledgeServerledge (b) Classifier function.
Python Go
(b) Fib (25) Fig. 7: Response time of the Validator and Classifier

Fig. 6: Response time of Faasm and Serverledge running the
Fib function with different inputs.

mentation of the function. In this case, Serverledge shows
response times comparable to those measured with Faasm, and
even better on average.

We remark that the benefits of Faasm are still evident
looking at the maximum response time in Table II. In-
deed, exploiting lightweight function runtimes, cold starts in
Faasm have reduced impact on response time compared to
Serverledge. We also plan to consider alternatives to Docker
containers for function execution as future work.

C. Offloading Evaluation

In this set of experiments, we focus on the offloading
mechanisms integrated in Serverledge. As such, we now
consider both Edge and Cloud nodes, deployed in different
geographical locations. Specifically, we deploy two nodes at
the Edge and two nodes in the Cloud. The Cloud region also
comprises a round-robin load balancer, which is the target
for vertically offloaded requests from the Edge. An additional
node is located at the Edge for load generation, with all
requests directed to a single Edge node. As such, the other
Edge node and the Cloud nodes are available for offloading.

functions in the Edge-Cloud scenario. For Validator,
Cloud offloading has evident impact on response time due
to network delay, as expected. Conversely, for the resource-
demanding Classifier, the speedup provided by Cloud
nodes clearly outweighs the impact of network delay.

The measured median latency between the Cloud and Edge
region is about 25 ms.

We run the experiments running the Classifier func-
tion, which uses a TensorFlow model to classify input images,
and the Validator function, which validates input JSON
data. Among them, Classifier is more computationally
demanding than Validator and we will show that this has
a major impact on the offloading performance.

As a first experiment, we want to compare local function
execution, vertical offloading to the Cloud and horizontal
offloading to the Edge. For this purpose, we consider three
configurations in which only one of these scheduling options
is enabled at a time (e.g., the node can only offload requests to
the Edge). Being mainly interested in evaluating the impact of
different offloading strategies on response time, we consider
medium-intensity workloads for each function and, specifi-
cally: 5 users issuing at most 0.5 req/s for Classifier,
20 users with the same rate limitation for Validator.

Figure 7a shows the response time for the Validator

200
Q)
8 150
5
2 100
=3
2 50 - Edge Offloading
= i .| Cloud Offloading s

0 : Local
0 100 200 300 400 500 600 700 800 900

Time (s)

Fig. 8: Throughput of the system in the Edge-Cloud scenario.

35

éso

> 25

£

= 20

3 15

c

g 10

(2]

£ 5 I
0

Best Effort Latency-sensitive

Fig. 9: Response time of different QoS classes in the Edge-
Cloud scenario.

function. As expected, local function execution leads to the
least response times (no more than 9 ms for 99% of the
requests), while requests offloaded to the Edge experience
moderately higher response times (up to 14 ms for 99% of
the requests). As such, we can observe that the offloading
mechanism itself introduces limited overhead, in the order of
few milliseconds. Requests offloaded to the Cloud show much
higher response times, exceeding 30 ms. This is not surprising,
as the extra latency corresponds to the observed network delay
between Edge and Cloud in our experimental setting.

We then repeat this experiment with the Classifier
function, which is computationally heavier. As shown in
Fig. 7b, the results in this case are quite different. In fact,
locally executed and Edge-offloaded requests are the those
experiencing the highest response time, with a median value
larger than 2 s. Conversely, requests offloaded to the Cloud
report a median response time lower than 1 s. While these
results seem to conflict those discussed above, we must keep
in mind that the Cloud region provides a total of 8 vCPUs,
compared to the 2 vCPUs of each Edge node. As this function
has a higher CPU demand, the benefits provided by more
CPU resources outweigh the additional network latency (about
25 ms).

On the one hand, these experiments demonstrate the func-
tionality of our offloading mechanisms, which cause limited
overhead. On the other hand, we observe that vertical and
horizontal offloading must be properly exploited depending
on the considered scenario, including the function to execute.

As such, a scheduling and offloading policy should be adaptive
and take into account multiple factors to make optimal use of
the available local and remote resources.

Although we plan to investigate the definition of proper
offloading policies as future work, we present a final experi-
ment to demonstrate how Serverledge supports the definition
of QoS-aware policies, and how offloading mechanisms can
be exploited along with local execution.

We focus on the Validator function and consider two
different service classes, associated with each incoming re-
quest: (i) latency-sensitive requests, which should be served as
quickly as possible; (ii) best effort requests, which do not have
any particular requirement on the response time. We randomly
associate each request with a service class, such that each
request has 20% probability of being latency-sensitive. We
aim to generate a load higher than what a single Edge node
can sustain and consider 40 users issuing at most 5 req/s.

We define a proof-of-concept policy for this experiment,
which works as follows. The scheduler tries to process each
request locally on the node. If this is not possible, because
there is not enough memory on the node, the request is
offloaded. Specifically, latency-sensitive requests are offloaded
to the Edge, to avoid the additional network delay. Conversely,
best effort requests are offloaded to the Cloud, to preserve
Edge resources.

Figure 8 shows the system throughput in this experiment,
highlighting the share of requests that are served locally and
those offloaded. We can note that the vast majority of the
requests get served locally. As the node capacity does not
allow to process all the requests, some of them are offloaded
to the Cloud (i.e., the best effort ones, according to the policy
in use) or to the Edge (i.e., the latency-sensitive ones). The
response time for the two classes of requests is shown in Fig. 9.
We can note that latency-sensitive requests benefit from the
scheduling policy in use with significantly reduced response
times, as desired.

VII. CONCLUSION

We presented Serverledge, a FaaS platform that blends
together decentralized control, to suit geographically dis-
tributed infrastructures, and the ability to offload computation
to exploit Cloud resource richness. Our evaluation shows
that Serverledge outperforms existing platforms designed for
clustered environments and has competitive performance com-
pared to state-of-the-art frameworks designed for the Edge,
while also supporting computation offloading.

As future work, we plan to extend Serverledge to support
function compositions and state management, enabling the
execution of complex applications. Furthermore, we will con-
sider the integration of lighter function sandboxing techniques,
following the approach adopted, e.g., by [5], [6].

ACKNOWLEDGMENTS

This work is partially supported by the Italian National
Research Centre in High Performance Computing, Big Data
and Quantum Computing (ICSC) funded by MUR within the
NextGenerationEU program.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, 1. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase of
cloud computing,” Commun. ACM, vol. 64, no. 5, pp. 76-84, 2021.
[Online]. Available: https://doi.org/10.1145/3406011

M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: Vision and challenges,” in Proc. of 2021 Australasian
Computer Science Week Multiconference, ACSW 21. ACM, 2021.

R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang, “When
serverless computing meets edge computing: Architecture, challenges,
and open issues,” IEEE Wirel. Commun., vol. 28, no. 5, pp. 126-133,
2021.

M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017. [Online]. Available: https:
//doi.org/10.1109/MC.2017.9

S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for
efficient stateful serverless computing,” in Proc. of 2020 USENIX
Annual Technical Conference, ATC ’20. USENIX Association, 2020,
pp. 419-433. [Online]. Available: https://www.usenix.org/system/files/
atc20-shillaker.pdf

P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer,
“Sledge: a serverless-first, light-weight wasm runtime for the edge,” in
Proc. of 21st Int’l Middleware Conf., Middleware '20. ACM, 2020,
pp. 265-279.

T. Pfandzelter and D. Bermbach, “tinyfaas: A lightweight faas platform
for edge environments,” in Proc. of 2020 IEEE Int’l Conference on Fog
Computing, ICFC '20. 1EEE, 2020, pp. 17-24.

A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid
cloud scheduling for cost-efficient execution of serverless applications,”
in Proc. of IEEE 13th Int’l Conf. on Cloud Computing, CLOUD ’20.
IEEE, 2020, pp. 609-618.

M. Ciavotta, D. Motterlini, M. Savi, and A. Tundo, “Dfaas: Decen-
tralized function-as-a-service for federated edge computing,” in Proc. of
10th IEEE Int’l Conference on Cloud Networking, CloudNet "21. TEEE,
2021, pp. 14.

C. Cicconetti, M. Conti, and A. Passarella, “A decentralized framework
for serverless edge computing in the internet of things,” IEEE Trans.
Netw. Serv. Manag., vol. 18, no. 2, pp. 2166-2180, 2021.

Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless
computing survey: A technical primer for design architecture,” ACM
Comput. Surv., 2021, just Accepted.

A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on
resource management in serverless computing environments: Taxonomy,
and future directions,” ACM Comput. Surv., 2022, just Accepted.

G. S. Cassel, V. Rodrigues, R. da Rosa Righi, M. Rosecler Bez, N. A.
C., and C. André da Costa, “Serverless computing for internet of things:
A systematic literature review,” Future Gener. Comput. Syst., vol. 128,
pp. 299-316, 2022.

F. Lordan, D. Lezzi, and R. M. Badia, “Colony: Parallel functions as
a service on the cloud-edge continuum,” in Proc. of 27th Int’l Conf.
on Parallel and Distributed Computing, Euro-Par 21, ser. LNCS, vol.
12820. Springer, 2021, pp. 269-284.

R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan,
C. Ramon-Cortes, and R. Sirvent, “Comp superscalar, an interoperable
programming framework,” SoftwareX, vol. 3-4, pp. 32-36, 2015.

X. Lyu, L. Cherkasova, R. Aitken, G. Parmer, and T. Wood, “Towards
efficient processing of latency-sensitive serverless dags at the edge,”
in Proc. of 5th ACM Int’l Workshop on Edge Systems, Analytics and
Networking, EdgeSys ’22. ACM, 2022, p. 49-54.

L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configuration
in edge computing,” in Proc. of 2019 IEEE/ACM 27th Int’l Symp. on
Quality of Service, INWQoS ’19. 1EEE, 2019, pp. 1-10.

S. Deng, H. Zhao, Z. Xiang, C. Zhang, R. Jiang, Y. Li, J. Yin, S. Dustdar,
and A. Y. Zomaya, “Dependent function embedding for distributed
serverless edge computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 10, pp. 2346-2357, 2022.

L. Baresi, D. Hu, G. Quattrocchi, and L. Terracciano, “Neptune:
Network- and gpu-aware management of serverless functions at the
edge,” in Proc. of Int’l Symp. on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’22. 1EEE, 2022.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

O. Ascigil, A. Tasiopoulos, T. K. Phan, V. Sourlas, I. Psaras, and
G. Pavlou, “Resource provisioning and allocation in function-as-a-
service edge-clouds,” IEEE Trans. Serv. Comput., 2021.

B. Wang, A. Ali-Eldin, and P. Shenoy, “Lass: Running latency sensitive
serverless computations at the edge,” in Proc. of 30th Int’l Symp.
on High-Performance Parallel and Distributed Computing, HPDC ’21.
ACM, 2021, p. 239-251.

D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Thamsen,
“Auctionwhisk: Using an auction-inspired approach for function place-
ment in serverless fog platforms,” Softw. Pract. Exp., vol. 52, no. 5, pp.
1143-1169, 2022.

A. Das, S. Imai, S. Patterson, and M. P. Wittie, “Performance optimiza-
tion for edge-cloud serverless platforms via dynamic task placement,”
in Proc. of IEEE/ACM CCGrid ’20. 1IEEE, 2020, pp. 41-50.

R. Cox, F. Dabek, M. F. Kaashoek, J. Li, and R. T. Morris, “Practical,
distributed network coordinates,” ACM SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, pp. 113-118, 2004.

S. Agarwal, M. A. Rodriguez, and R. Buyya, “A reinforcement learning
approach to reduce serverless function cold start frequency,” in Proc. of
IEEE/ACM CCGrid °21. IEEE, 2021, pp. 797-803.

D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen, “Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting,” in Proc. of ASPLOS ’20. ACM, 2020,
pp. 467-481.

	Introduction
	Related Works
	Overview of Serverledge
	Architecture
	Node API
	Registry
	Function Scheduling and Execution
	Execution Offloading

	Implementation
	Evaluation
	Experimental Setup
	Performance Comparison
	Results with OpenWhisk and tinyFaaS
	Results with Faasm

	Offloading Evaluation

	Conclusion
	References

