
Optimal Admission Control for a QoS-aware

Service-oriented System

Marco Abundo, Valeria Cardellini, and Francesco Lo Presti

DISP, Università di Roma “Tor Vergata”, Italy
marco.abundo@gmail.com, cardellini@ing.uniroma2.it,

lopresti@info.uniroma2.it

Abstract. In the service computing paradigm, a service broker can
build new applications by composing network-accessible services offered
by loosely coupled independent providers. In this paper, we address the
admission control problem for a a service broker which offers to prospec-
tive users a composite service with a range of different Quality of Service
(QoS) classes. We formulate the problem as a Markov Decision Process
(MDP) problem with the goal of maximizing the broker revenue while
guaranteeing non-functional QoS requirements to its already admitted
users. To assess the effectiveness of the MDP-based admission control,
we present experimental results where we compare the optimal decisions
obtained by the analytical solution of the MDP with other policies.

1 Introduction

In the Service Oriented Architecture (SOA) paradigm, the design of complex
software is facilitated by the possibility to build new applications by composing
loosely-coupled services. The so built composite service is offered by a service

broker to different classes of users characterized by diverse Quality of Service
(QoS) requirements. To this end, the broker and its users generally engage in a
negotiation process, which culminates in the definition of a Service Level Agree-

ment (SLA) about their respective duties and QoS expectations.
In the upcoming Internet service marketplace, multiple service providers may

offer similar competing services corresponding to a functional description but at
differentiated levels of QoS and cost. Therefore, in undertaking the management
of the SOA-based system that offers the composite service, the broker has to
select at runtime the best set of component services implementing the needed
functionalities (with which we assume the service broker has contracted a SLA
specifying the QoS the component service will provide to the broker) in order to
maximize some utility goal (e.g., its revenue) while guaranteeing the QoS levels
to the composite service users.

A significant number of research efforts have been devoted to service selection
issues, e.g., [1, 6, 7]. The common aim of these works is to identify for each

⋆ The original publication is available at http://www.springerlink.com/ in Towards a

Service-based Internet, LNCS Vol. 6994, pp. 179-190, 2011.

abstract functionality in the composite service a pool (eventually a singleton)
of corresponding concrete services, selecting them from a set of candidates. All
these efforts implicitily assume that a user is admitted to the service as long
as enough resources are available to serve its requests at the required QoS level
without violating existing users’ QoS. Nevertheless, it is not surprising that such
a simple policy, which we will call hereafter blind, might not turn to be optimal
with respect to maximizing the broker utility.

In this paper, to overcome the limitations of the aforementioned results we
study the admission problem for the MOdel-based SElf-adaptation of SOA sys-

tems (MOSES) service broker we proposed in [4,7], which manages a composite
service offering differentiated QoS service classes. We formulate the optimal ad-
mission control problem as a Markov Decision Process (MDP) problem with
the goal to maximise the broker discounted expected infinite horizon reward
while guaranteeing non-functional QoS requirements to its users. Our results
show the MDP-based admission control always guarantees significantly higher
average rewards than the blind policy. We also considered finite horizon policies
which are computationally more efficient than the infinite horizon counterpart
and that allow us to tradeoff optimality with computational complexity/time-
horizon length. Our findings show that even with the simple 1-step horizon policy
it is possible to achieve better results with respect to the blind policy, quite close
to the infinite horizon optimum, but at a fraction of the computational cost.

A considerable number of research efforts have focused on the application
of MDP-based models and stochastic programming to SOA systems and, more
generally, to software systems [2,3,5,8–10,12,14]. Some of these works have pro-
posed self-healing approaches in order to support the reconfiguration of running
services, e.g., [3, 8], considering also proactive solutions for SOA systems [12].
Some recent approaches [9,10,14] have used MDPs to model service composition
with the aim to create automatically an abstract workflow of the service compo-
sition that satisfies functional and non-functional requirements, and also to allow
the composite service to adapt dynamically to a varying environment [14]. Some
of the aforementioned works have proposed MDP-based admission control in
service-oriented systems [2,5] and are therefore most closely related to ours. In [2]
Bannazadeh and Leon-Garcia have proposed an admission control for service-
oriented systems which uses an online optimization approach for maximizing
the system revenue, while in [5] Bichler and Setzer have applied an MDP-based
formulation to tackle admission control for media on demand services. However,
both these works do not consider composite services organized according to some
business logic, while our approach is able to manage the admission control for
a composite service whose workflow entails the composition patterns typical of
orchestration languages such as BPEL [11], which is the de-facto standard. To
the best of our knowledge, the approach we propose in this paper is the first
admission control policy based on MDPs for QoS-aware composite services.

The rest of the paper is organized as follows. In Section 2 we present the
SOA system managed by the service broker. In Section 3 we present our MDP
problem. Then, in Section 4 we sketch out the implementation of our admission

policies and present the simulation experiments to assess the effectiveness of the
proposed MDP-based approach. Section 5 concludes the paper.

2 MOSES System

MOSES is a QoS-driven runtime adaptation framework for SOA-based systems,
designed as a service broker. In this section, we provide an overview on the
MOSES system for which we propose in this paper MDP-based admission control
policies. A detailed description of the MOSES methodology, architecture and
implementing prototype can be found in [7] and [4], respectively.

Fig. 1. MOSES operating evenironment (left); MOSES-compliant workflow (right).

MOSES acts as a third-party intermediary between service users and providers,
performing a role of provider towards the users and being in turn a requestor
to the providers of the concrete services. It advertises and offers the composite
service with a range of service classes which imply different QoS levels and mon-
etary prices. Figure 1 (left) shows a high-level view of the MOSES environment,
where we have highlighted the MOSES component on which we focus in this
paper, i.e., the SLA Manager. The workflow that defines the composition logic
of the service managed by MOSES can include all the different types of BPEL
structured activities: sequence, switch, while, pick, and flow [11]. Figure 1
(right) shows an example of BPEL workflow, described as a UML2 activity dia-
gram, that can be managed by MOSES. The figure also shows the functionalities
(named tasks and represented by S1, . . . , S6) needed to compose the new added
value service.

MOSES performs a two-fold role of service provider towards its users, and
of service user with respect to the providers of the concrete services it uses to
implement the composite service it is managing. Hence, it is involved in two
types of SLAs, corresponding to these two roles. MOSES presently considers the
average value of the following attributes:

– response time: the interval of time elapsed from the service invocation to its
completion;

– reliability: the probability that the service completes its task when invoked;

– cost : the price charged for the service invocation.

Our general model for the SLA between the provider and the user of a service
consists of a tuple 〈T,C,R, L〉, where: T is the upper bound on the average
service response time, C is the service cost per invocation, R is the lower bound
on the service reliability. The provider guarantees that thresholds T and R will
hold on average provided that the user request rate does not exceed L.

In the case of the SLAs between the composite service users and MOSES
(acting the provider role), we assume that MOSES offers a set K of service
classes. Hence, the SLA for each user u of a class k ∈ K is defined as a tuple
〈T k

max, C
k, Rk

min, L
k
u, P

k
τ , P

k
ρ 〉. The two additional parameters P k

τ and P k
ρ repre-

sent the penalty rates MOSES will refund its users with for possible violations of
the service class response time and reliability, respectively. All these coexisting
SLAs (for each u and k) define the QoS objectives that MOSES must meet. We
observe that MOSES considers SLAs stating conditions that should hold globally
for a flow of requests generated by a user. To meet these objectives, we assume
that MOSES (acting the user role) has already identified for each task Si ∈ F in
the composite service a pool of corresponding concrete services implementing it.
The SLA contracted between MOSES and the provider of the concrete service
i.j ∈ Ii is defined as a tuple 〈tij , cij , rij , lij〉. These SLAs define the constraints
within which MOSES should try to meet its QoS objectives.

New users requesting the composite service managed by MOSES are subject
to an accept/deny decision, with which MOSES determines whether or not it
is convenient to admit the user in the system according to the user SLA and
the system state. We will present in Section 3 the MDP-based formulation of
the admission control carried out by the SLA Manager component. Once a user
requesting a SLA has been admitted by the SLA Manager, it starts generating
requests to the composite service managed by MOSES until its contract ends.
Each user request involves the invocations of the tasks according to the logic
specified by the composite service workflow. For each task invocation, MOSES
binds dynamically the task of the abstract composition to an actual implemen-
tation (i.e., concrete service), selecting it from the pool of network accessible
service providers that offer it. We model this selection by associating with each

task Si a vector xi = (x1
i , ...,x

|K|
i), where xk

i = [xk
ij] and i.j ∈ Ii. Each entry xk

ij

of xk
i denotes the probability that the class-k request will be bound to concrete

service i.j. MOSES determines the service selection strategy x by solving the

following revenue maximization problem MAXRW:

max C(Λ,x) =
∑

k∈K

Λ
k
[

C
k
−

(

C
k(Λ,x) + P

k
τ τ

k + P
k
ρ ρ

k
)]

subject to: T k(Λ,x) ≤ T k
max + τk, k ∈ K (1)

Rk(Λ,x) ≥ Rk
min − ρk, k ∈ K (2)

Ck(Λ,x) ≤ Ck, k ∈ K (3)

lij(Λ,x) ≤ lij , j ∈ Ii, i ∈ F (4)

xk
ij ≥ 0,j ∈ Ii,

∑

j∈Ii

xk
ij = 1, i ∈ F , k ∈ K (5)

τk ≥ 0, ρk ≥ 0, k ∈ K (6)

where: Λ = (Λk)k∈K and Λk =
∑

u L
k
u is the aggregate class-k users service

request rate; T k(Λ,x), Rk(Λ,x), and Ck(Λ,x) the class-k response time, relia-
bility and implementation cost, respectively, under the service selection strategy
x. The objective function C(Λ,x) is the broker per unit of time reward. It is the
sum over all service classes of the service class-k invocation rate Λk times the
per invocation reward, that is Ck minus the cost Ck(Λ,x) (which is increased
by the penalty P k

τ τ
k +P k

ρ ρ
k for service violation). For space limitations we omit

the details on inequalities (1)-(6), which can be found in [7].
Since the proposed optimization problem is a Linear Programming problem

it can be efficiently solved via standard techniques. We will denote by x
∗(Λ) the

optimal service selection policy.

3 An MDP Formulation for MOSES Admission Control

In this section we formulate the MOSES admission control problem as a Continuous-
time Markov Decision Process (CTMDP). We first present our broker model and
define the user state space model. Then, we define the broker actions/decisions
and present the state transition dynamics. Finally, we present our performance
criterion and how to compute the optimal policy.

3.1 Model

We consider a broker that has a fixed set of candidate concrete services (and
associated SLAs) with which offers the composite service to prospective users.
Prospective users contact the broker to establish a SLA for a given class of service
k and for a given period of length. We model the arrival process for service class
k and contract duration of expected length 1/µd as a Poisson process with rate
λk
d. We assume that the contract durations are exponentially distributed with

finite mean 1/µd > 0, d ∈ D = {1, . . . , dmax} (which we assume for the sake of
simplicity to not depend on the service class k). Upon a user arrival, the broker
has to decide whether to admit a user or not. If a user is admitted, the user will

generate a flow of requests at rate Lk for the duration of the contract. When a
user contract expires, the user simply leaves the system. The broker set of actions
is then just the pair A = {aa, ar}, with aa denoting the accepting decision and
ar the refusal decision.

We model the state of our system as in [15]. The state s consists of the
following two components:

– the broker users matrix n = (nk
d)k∈K,d∈D, where nk

d denotes the number of
users for each service class k and expected contract duration 1/µd before the
last random event occurred;

– the last random event ω.

n takes values in the set N of all possible broker user matrices for which the
optimization problem MAXRW introduced in Section 2 has a feasible solution.
ω represents the last random event, i.e., a user arrival or departure, occurred
in the system. We will denote it by a matrix ω = (ωk

d)k∈K,d∈D, where ωk
d = 1

if a new user makes an admission request for service class k and for a contract
duration with mean 1/µd, ω

k
d = −1 if an existing user of class k and contract

duration of mean 1/µd terminates his contract, and ωk
d = 0 otherwise. We will

denote by Ω the set of all possible events.
The state space S consists of all possible user configuration-next event com-

binations, i.e., S =
{

s = (n, ω)|n ∈ N , ω ∈ Ω,ωk
d ≥ 0 if nk

d = 0
}

. It is important
to observe that, following [15], there is a subtle relationship between a state
s = (n, ω) value and the associated user configuration n. Indeed, if the current
state is s = (n, ω) it means that the user configuration was n before the last
occurred event ω. The actual current user configuration is instead n′, which de-
pends on both the event ω and the decision a taken by the broker as discussed
below.

For each state s = (n, ω), the set of available broker actions/decisions A(s)
depends on the event ω. If ω denotes an arrival, the broker has to determine
whether to accept it or not; thus A(s) = {aa, ar}. If, instead, ω denotes a contract
termination, there is no decision to take and A(s) = ∅.

System transitions are caused by users arrivals or departures. Given the cur-
rent state s = (n, ω), the new state s′ = (n′, ω′) is determined as follows:

– ω′ is the event occurred;
– n′ is the user configuration after the event ω (the previous event) and the

decision a ∈ A(s) taken by the broker upon ω. n′ differs from n upon a user
departure or a user arrival provided it is accepted. In compact form we can
write n′ = n+ ω1{a 6=ar}, where 1{.} is the indicator function.

Observe that while the system is in state s the actual user configuration is n′,
which will characterize the next state s′. Table 1 summarizes all the possible
transitions. The associated transition rates are then readily obtained:

qss′ =

{

λk
d ω′k

d = 1
µdn

′k
d ω′k

d = −1
(7)

Table 1. System transitions.

Event ω Decision Next state s′ = (n′, ω′)

arrival admitted (a = aa) (n + ω, ω′)
refused (a = ar) (n, ω′)

departure - (n + ω, ω′)

An admission control policy π for the service broker is a function π : S → A
which defines for each state s ∈ S whether the broker should admit or refuse a
new user. We are interested in determining the admission control policy which
maximizes the broker discounted expected reward/profit with discounting rate
α > 0. For a given policy π let vπα(s) be the expected infinite-horizon discounted

reward given s as initial state, defined as vπα(s) = Eπ
s

{

∑∞
i=1

∫ σn+1

σn
e−αuc(si, ai)du

}

where σ1, σ2, . . . represents the time of the successive system decision epochs
which, in our model, coincide with user arrivals and departures. c(si, ai) is the
broker reward between decision epochs i and i + 1, that is MOSES reward un-
der the optimal service selection strategy x∗ between the two decision epochs.
To compute its value, let us denote by Λk(s, a) the aggregate class-k users
service request rate when the state is s and the broker action was a and let
Λ(s, a) = (Λk(s, a))k∈K . Then, Λk(s, a) = n′kLk where n′ = n+ω1{a 6=ar} is the
next state configuration, given the actual state is s = (n, ω) and decision a was
taken, and n′k =

∑

d∈D n′k
d is the number of users in service class k. We thus

have

c(s, a) = C(Λ(s, a), x∗(Λ(s, a)) (8)

The optimal policy π∗ satisfies the optimality equation (see 11.5.4 in [13]):

v
π∗

α (s) = sup
a∈A(s)

{

c(s, a)

α+ β(s, a)
+

∑

s′∈S

qss′

α+ β(s, a)
v
π∗

α (s′)

}

, ∀s ∈ S (9)

where β(s, a) is the rate out of state s if action a is chosen, i.e., β(s, a) =
∑

k∈K

∑

d∈D(λ
k
d +n′k

d µd). In (9), the first term c(s,a)
α+β(s,a) represents the expected

total discounted reward between the first two decision epochs given the system
initially occupied state s and taken decision a. The second term represents the
expected discounted reward after the second decision epoch under the optimal
policy. The optimal policy π∗ can be obtained by solving the optimality equa-
tion (9) via standard techniques, e.g., value iteration, LP formulation [13].

A potential limitation of the infinite-horizon approach we presented above
arises from the curse of dimensionality which gives rise to state explosion. As
shown in the next section, in our setting, even for small problem instances, we
incurred high computational costs because of the large state space. As a conse-
quence, this approach might not be feasible for online operation where a new
policy must be recomputed as user statistics or the set of concrete services vary
over time unless we resort to heuristics. In alternative, we also consider finite
horizon policies which not only are amenable to efficient implementations, and
allow to trade-off complexity vs horizon length, but also take into account the

fact that in a time varying system it might not be appropriate to consider a
stationary, infinite horizon policy. In a finite-horizon setting, our aim is to op-
timize the expected N step finite-horizon discounted reward given s as initial
state, vπN

α (s), which is defined as (3.1) with ∞ replaced by N in the summa-
tion, where N defines the number of decision epochs over which the reward is
computed.

For finite horizon problem, the optimal policy π∗
N satisfies the following op-

timality equation:

v
π∗

N

i,α (s) = supa∈A(s)

{

c(s,a)
α+β(s,a)+

∑

s′∈S

qss′

α+ β(s, a)
v
π∗

N

i+1,α(s
′)

}

, ∀s ∈ S (10)

where vπN

i,α (s) is the expected discounted reward under policy π from decision
epoch i up to N and vπN

α (s) = vπN

1,α(s). The optimal policy π∗
N can be computed

directly from (10) via backward induction by exploiting the recursive nature of
the optimality equation [13].

4 Experimental Analysis

In this section, we present the experimental analysis we have conducted through
simulation to assess the effectiveness of the MDP-based admission control. We
first describe the simulation model and then present the simulation results.

4.1 Simulation Model

Following the broker model in Section 3, we consider an open system model,
where new users belonging to a given service class k ∈ K and expected contract
duration 1/µd arrive according to a Poisson process of rate λk

d. We also assume
exponential distributed contract duration. Once a user is admitted, it starts
generating requests to the composite service according to an exponential inter-
arrival time with rate Lk

u until its contract expires.
The discrete-event simulator has been implemented in C language using the

CSIM 20 tool. Multiple independent random number streams have been used
for each stochastic model component. The experiments involved a minimum
of 10,000 completed requests to the composite service; for each measured mean
value the 95% confidence interval has been obtained using the run length control
of CSIM. The admission control policies have been implemented in MATLAB.

4.2 Experimental Results

We illustrate the dynamic behavior of our admission control policies assuming
that MOSES provides the composite service whose workflow is shown in Figure 1
(right). For the sake of simplicity, we assume that two candidate concrete services
(with their respective SLAs) have been identified for each task, except for S2 for
which four concrete services have been identified. The respective SLAs differ in

terms of cost c, reliability r, and response time t (being the latter measured in
sec.); the corresponding values are reported in Table 2 (left) (where i.j denotes
the concrete service). For all concrete services, lij = 10 invocations per second.

On the user side, we assume a scenario with four classes (i.e., 1 ≤ k ≤ 4)
of the composite service managed by MOSES. The SLAs negotiated by the
users are characterized by a wide range of QoS requirements as listed in Table 2
(right), with users in class 1 having the most stringent performance requirements
and highest cost paid to the broker, and users in class 4 the least stringent
performance requirements and lowest cost. The penalty rates P k

τ and P k
ρ are

equal to the reciprocal of the corresponding SLA parameter. Furthermore, for

Table 2. Concrete service (left) and service class (right) SLA parameters.

i.j cij rij tij

1.1 6 0.995 2
1.2 3 0.99 4
2.1 4.5 0.99 1
2.2 4 0.99 2
2.3 2 0.95 4

i.j cij rij tij

2.4 1 0.95 5
3.1 2 0.995 1
3.2 1.8 0.995 2
4.1 1 0.995 0.5
4.2 0.8 0.99 1

i.j cij rij tij

5.1 2 0.99 2
5.2 1.4 0.95 4
6.1 0.5 0.99 1.8
6.2 0.4 0.95 4

Class k Ck Rk
min Tk

max

1 25 0.95 7
2 18 0.9 11
3 15 0.9 15
4 12 0.85 18

each service class we consider two possible contract durations (i.e., dmax = 2),
which can be either short or long. Therefore, the system state s = (n, ω) is
characterized by a 4× 2 broker users matrix n, as defined in Section 3.1.

We compare the results of the following admission control policies for MOSES.
Under the infinite horizon policy, the admission control decisions are based on
the optimal policy π∗, which is obtained by solving the optimality equation (9)
via the value iteration method setting the discount rate α = − ln(0.9) = 0.1054.
With the 1-step horizon policy, the admission control decisions are based on
the optimal policy π∗

N with a local 1-step reasoning, i.e., N = 1. In this case,
as explained in Section 3, we obtain π∗

N by solving (10). Finally, with the blind

policy, no reasoning about future rewards is considered, because MOSES accepts
a new contract request if the service selection optimization problem MAXRW

described in Section 2 can be solved given the SLA requested by the new user
and the SLAs agreed by MOSES with its currently admitted users.

We consider three different scenarios, where we vary the arrival rate of
the contract requests. In all the scenarios the amount of request generated
by an admitted user is Lk

u = 1 req/sec and the contract duration is fixed to
(1/µd)d∈D = (50, 200), where the first component corresponds to short con-
tracts and the latter to longer contracts. In the following, we will denote short
and long contracts with s and l, respectively.

In the first scenario, we set the matrix (λk
d)k∈K,d∈D =

(

0.02 0.02
0.02 0.02
0.02 0.02
0.02 0.02

)

, that is all

the contract requests arrive at the same rate, irrespectively of the service class.

In the second scenario, (λk
d)k∈K,d∈D =

(

0.02 0.02
0.02 0.02
0.04 0.04
0.08 0.08

)

, that is contract requests

for service classes 3 and 4 arrive at a double (class 3) or quadruple (class 4)
rate with respect to requests for service classes 1 and 2. In the third scenario,

(λk
d)k∈K,d∈D =

(

0.08 0.08
0.04 0.04
0.02 0.02
0.02 0.02

)

, that is contract requests for service classes 1 and 2

arrive at a quadruple (class 1) or double (class 2) rate with respect to requests for
service classes 3 and 4. To compare the performance of the different admission

Table 3. Average reward per second.

Admission policy Scenario 1 Scenario 2 Scenario 3

Blind 40.536 25.012 58.801
1-step horizon 59.607 63.865 75.751
Infinite horizon 66.737 65.553 76.116

control policies, we consider as main metrics the average reward per second of
the service broker over the simulation period and the percentage of rejected
contract requests. Furthermore, for the MDP-based admission control policies
we analyze also the mean execution time. For space reason, we do not show the
QoS satisfaction levels achieved by the users for the response time, reliability,
and cost SLA parameters. Anyway, we found that once a contract request has
been accepted, the QoS levels specified in the SLAs are quite largely met by
MOSES for each flow of service class, independently on the admission policy.

Table 3 shows the average reward per second earned by the service broker
for the various admission control policies and under the different considered
scenarios. As expected, the infinite horizon policy maximizes the broker reward,
achieving significant improvements over the blind policy under all scenarios. In
these scenarios, the 1-step horizon policy yields results close to the optimum.

We now separately analyze the performance metrics for each scenario. From
Table 3 we can see that in the first scenario the 1-step horizon policy let the
broker earn 47% more than the blind policy, while the improvement achieved by
infinite horizon policy over blind is even higher, being equal to almost 65%.

Figure 4.2 (left) shows the percentage of rejected SLA contracts for all the
service classes, distinguishing further between short and long contract durations,
achieved by the different admission control policies (for each policy, the first four
bars regard the short-term contracts for the various service classes, while the
latter four the long-term ones). While the blind policy is not able to differentiate
among the service classes from the admission control point of view, the MDP-
based policies tend to accept the more profitable classes 1 and 2, which pay more
for the composite service, and to reject the less profitable ones.

For the second scenario, which is characterized by a higher contract request
arrival rate for classes 3 and 4, Figure 4.2 (right) shows that, as expected, all
the admission control policies reject a higher percentage of contract requests for
these classes with respect to the first scenario. However, MDP-based admission
control, independently on the horizon width, prefers clearly service classes 1 and

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Blind 1-step horizon Infinite horizonP
e

rc
e

n
ta

g
e

 o
f

re
je

c
te

d
 c

o
n

tr
a

c
t

re
q

u
e

s
ts

Admission control policy

1s
2s

3s
4s

1l
2l

3l
4l

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Blind 1-step horizon Infinite horizonP
e

rc
e

n
ta

g
e

 o
f

re
je

c
te

d
 c

o
n

tr
a

c
t

re
q

u
e

s
ts

Admission control policy

1s
2s

3s
4s

1l
2l

3l
4l

Fig. 2. Rejected contract requests under scenario 1 (left) and 2 (right).

2 with respect to 3 and 4, since the former ones yield higher rewards than the
latter which instead experienced high refusal percentages. We also observe that
the infinite horizon policy slightly differentiates within classes 1 and 2 according
to the contract duration: long-term contracts are preferred to short-term ones (a
reduction in the rejection decisions equal to 16% and 11% for long-term classes
1 and 2, respectively). Analyzing the average reward reported in Table 3, we
can see that under the second scenario the MDP-based policies allow the broker
to more than double its revenue: the 1-step horizon and infinite horizon policies
let the broker earn 155% and 162% respectively more than the blind policy. In

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Blind 1-step horizon Infinite horizonP
e

rc
e

n
ta

g
e

 o
f

re
je

c
te

d
 c

o
n

tr
a

c
t

re
q

u
e

s
ts

Admission control policy

1s
2s

3s
4s

1l
2l

3l
4l

Fig. 3. Rejected contract requests under scenario 3.

the third scenario, where classes 1 and 2 experience higher arrivals rates the
MDP-based admission control policies still allow to achieve a good improvement
in the reward gained by the broker, as reported in Table 3 (29% and 29.5% for
1-step horizon and infinite horizon policies, respectively, when compared to the
blind one). Figure 3 shows the corresponding rejection percentage.

Under all the considered scenarios, the 1-step horizon policy allows the service
broker to make a profit comparable, although slightly reduced, to the infinite
horizon policy. However, a strong argument in favor of the 1-step horizon policy
regards the execution time needed to achieve the optimal decision. We have
measured the mean execution time on a machine with Intel Core 2 Duo T7250 2

GHz and 2 GB RAM. The 1-step horizon policy requires only 0.0021 sec, while
the infinite horizon one requires 233 sec. for the state space generation, 5502
sec. for the matrix generation, and 800 sec. for the value iteration method. This
long execution time is also due to the computation of c(s, a), which requires to
solve the service selection optimization problem (see (8)). Therefore, the reduced
computational cost of the 1-step horizon policy makes it amenable to take online
admission control decisions.

5 Conclusions

In this paper, we have studied the admission control problem for a service bro-
ker, MOSES, which offers to prospective users a composite service with different
QoS levels. We have formulated the admission control problem as a Markov De-
cision Process with the goal to maximize the broker discounted reward, while
guaranteeing non-functional QoS requirements to its users. We have considered
both infinite-horizon and the less computational demanding finite-horizon cost
functions. We have compared the different solutions through simulation exper-
iments. Our results show that the MDP-based policies guarantee much higher
profit to the broker while guaranteeing the users QoS levels with respect to a
simple myopic policy which accepts users as long as the broker has sufficient
resources to serve them. In particular, the simple 1-step horizon policy achieves
near to optimal performance at a fraction of the computational cost which makes
it amenable to online implementation.

In our future work we plan to implement the MDP-based admission control
in the existing MOSES prototype and run experiments in realistic scenarios.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6), 369–384 (2007)

2. Bannazadeh, H., Leon-Garcia, A.: Online optimization in application admission
control for service oriented systems. In: Proc. IEEE APSCC ’08 (2008)

3. Beckmann, M., Subramanian, R.: Optimal replacement policy for a redundant
system. OR Spectrum 6(1), 47–51 (1984)

4. Bellucci, A., Cardellini, V., Di Valerio, V., Iannucci, S.: A scalable and highly
available brokering service for SLA-based composite services. In: Proc. ICSOC ’10.
LNCS, vol. 6470. Springer (Dec 2010)

5. Bichler, M., Setzer, T.: Admission control for media on demand services. Service
Oriented Computing and Applications 1(1), 65–73 (2007)

6. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A framework for QoS-aware
binding and re-binding of composite web services. J. Syst. Softw. 81 (2008)

7. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Flow-based service selec-
tion for web service composition supporting multiple QoS classes. In: Proc. IEEE
ICWS ’07. pp. 743–750 (2007)

8. Chen, M., Feldman, R.: Optimal replacement policies with minimal repair and
age-dependent costs. Eur. J. Oper. Res. 98(1), 75–84 (1997)

9. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition:
using Markov decision processes. Int’l J. Web Service Res. 2(1) (2005)

10. Gao, A., Yang, D., Tang, S., Zhang, M.: Web service composition using Markov
decision processes. In: Proc. WAIM ’05. LNCS, vol. 3739. Springer (2005)

11. OASIS: Web Services Business Process Execution Language Version 2.0 (Jan 2007)
12. Pillai, S., Narendra, N.: Optimal replacement policy of services based on Markov

decision process. In: Proc. IEEE SCC ’09. pp. 176–183 (2009)
13. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic, Dynamic Pro-

gramming. Wiley (1994)
14. Wang, H., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service composi-

tion based on reinforcement learning. In: Proc. ICSOC ’10. LNCS, vol. 6470, pp.
92–107. Springer (Dec 2010)

15. Wu, C., Bertsekas, D.: Admission control for wireless networks. Tech. Rep. LIDS-P-
2466, Lab. for Information and Decision Systems, MIT (1999)

