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Abstract—Given the always increasing size of computer sys-
tems, manually protecting them in case of attacks is infeasible and
error-prone. For this reason, several Intrusion Response Systems
(IRSs) have been proposed so far, with the purpose of limiting
the amount of work of an administrator. However, since the most
advanced IRSs adopt a stateful approach, they are subject to
what Bellman defined as the curse of dimensionality. In this paper,
we propose an approach based on deep reinforcement learning
which, to the best of our knowledge, has never been used until
now for intrusion response. Experimental results show that the
proposed approach reduces the time needed for the computation
of defense policies by orders of magnitude, while providing near-
optimal rewards.

I. INTRODUCTION

Modern computer systems require a flexible architecture
to handle sudden and unpredictable variations in application
workloads, caused by an increasing number of connected
devices. This flexibility is generally achieved by breaking
down the system components into smaller, loosely coupled,
and separably scalable units. Consequently, the increase in
size and complexity of the aforementioned systems makes it
difficult for system administrators to keep track of the large
number of alerts generated by Intrusion Detection Systems
(IDS) and take proper countermeasures to prevent the attacker
from inflicting further damage to the system.

To overcome the need for human intervention, various Intru-
sion Response Systems (IRS) have been developed (e.g., [3],
[5], [9], [13], [16]). They are designed to continuously monitor
IDS alerts and generate appropriate actions to defend the
system from a potential attack. They are classified according
to their level of automation, ranging from simple static attack-
response mappings (e.g., [21], [22]) to more sophisticated,
automated, stateful IRSs, which require an accurate model of
the system to produce an optimal long-term defense policy
(e.g., [6], [7], [14]).

However, using a stateful model-based planning technique
to generate a defense policy could be time prohibitive for
large-scale systems, because the size of the state space grows
exponentially with the size of the defended system [1]. In

order to deal with this issue, several optimal [12], [18]
and sub-optimal [8], [10] approaches have been proposed,
based either on planning or learning algorithms. The first
is a class of algorithms that requires complete knowledge
of the dynamics of the system. The second class involves
instead the formulation of a Multi-Armed Bandit problem [20],
where an agent has to maximize its revenue in presence of
alternative and possibly unknown choices, while trying to
acquire additional experience that it can leverage for future
decisions. Reinforcement Learning (RL) problems are typical
instances of Multi-Armed Bandit problem.

In general, approaches based on RL, such as Q-
Learning [20], leverage tabular methods to solve the decision-
making problem by building an approximation of the optimal
action-value function, the function that helps in choosing
the best action in a given state. For large-scale systems, the
major drawbacks of tabular methods are the high demand in
computer memory to store the state-action values for the huge
state space, and the lack of generalization of past experiences,
making it impossible for the IRS to know how to behave in
unseen states.

Deep Reinforcement Learning overcomes the aforemen-
tioned limitations because, instead of storing the full action-
value table, it only needs to store the parameters of the
underlying neural network, and a single forward pass is enough
to find the best action to take in a particular state. Deep
Learning and in particular Deep Reinforcement Learning have
been recently applied to intrusion detection (e.g., [11], [23]).
However, to the best of our knowledge, this approach has never
been used for intrusion response.

This work intends to explore the feasibility, in terms of
performance, of using Deep Q-Learning instead of the tradi-
tional Q-Learning for intrusion response. We model a large
microservice-based system, and compare the performance of
Q-Learning and Deep Q-Learning in terms of steps to conver-
gence, cumulative reward, and execution time. Our preliminary
results show that Deep Q-Learning is orders of magnitude
faster than Q-Learning in terms of time and number of
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episodes needed to converge to an optimal cumulative reward.
This paper is organized as follows: in Section II, the

background on the underlying mathematical framework and
on the system model is provided. Experimental results are
discussed in Section III. Finally, conclusions are drawn in
Section IV.

II. METHODOLOGY AND MODEL

The proposed IRS leverages a stateful model of the system
to plan sequences of defense actions to protect it, upon
detection of an attack by an IDS.

The system model is based upon a Markov Decision Process
(MDP [17]). An introduction to the MDP framework is given
in II-A, and different solvers are presented in Section II-B.
Finally, in Section II-C, the system model is described.

A. The MDP Framework

An MDP is a mathematical framework adopted to formalize
sequential decision making, where actions do not only affect
immediate rewards, but also future states and, consequently,
future rewards [17].

It is defined with the tuple: M = 〈S,A, P,R〉, where S
is the state space, that is the set of all the possible states in
which an agent can be at any discrete time step t = 0, 1, 2 . . . .
At each t, the agent receives a representation of the current
state from the environment, St ∈ S, and chooses an action
At ∈ A to execute. The outcome of the action is defined
by the transition matrix P : S × A × S → R, such that
p(St, At, St+1) is the probability that, by executing action At
in state St, the agent will move to state St+1. Every time an
action is executed, the MDP agent is rewarded with a bonus
(or penalized with a cost), according to the reward function
R : S×A×S → R. That is, Rt = R(St, At, St+1) represents
the reward that the agent will earn (or the cost the agent will
pay) for executing in state St the action At and being taken
to some state St+1.

The overall behavior of the agent is described by a policy
π, that specifies a probability distribution such that π : S ×
A → [0, 1]. That is, π(At|St) represents the probability that
the agent will execute action At while in state St. Solving
an MDP means to find a policy π∗ such that the discounted

reward Rt =
∞∑
j=0

γjRt+j+1 is maximized [20], where γ is

the discount factor, which is used to balance the preference of
short-term rewards over long-term ones.

In order to avoid the explicit enumeration of the states in the
state space, a factored representation of the MDP is adopted,
such that each state s ∈ S is described as a multivariate
random variable s = (a1, a2, . . . , an), where each variable
(or attribute) ai ∈ s can take a value in its domain Dom(ai).
Furthermore, this representation simplifies the model of the
actions, which can now be described by a set of difference
equations over the state variables associated with each action
post-condition. Finally, the factored representation is leveraged
to build the termination function TF : S → {true, false}, used

to identify T ⊆ S =
⋃
s∈S
{s|TF (s) = true}, the set of states

in which the system is considered secure.

B. MDP Solvers

One of the most commonly used MDP planners is Value
Iteration (VI) [17], [20], because of its simplicity. It is based
on the concept of state-value function Vπ(St) = Eπ[Rt|St]
that is, the expected achievable reward by the agent starting
from state St and then following policy π. The base step of the
algorithm is to assign an initial random state-value V 0 to all
the states, and then to execute the iterative refinement process
described in [20]:

V i+1(St) = max
At∈A

R(St) + γ
∑

St+1∈S
P (St, At, St+1)V i(St+1)

(1)

The sequence of functions V i converges linearly to the optimal
value V ∗ in the limit, and thus, it provides the expected
maximum reward obtainable by following the optimal policy
π∗ from state St.

As opposed to planning algorithms, which require a full
knowledge of the system, learning algorithms are not aware
of P and R. Indeed, they use an approach based on trial-
and-error interactions with a dynamic environment to learn its
behavior. One of the most commonly used learning algorithms
is Q-Learning [20]. It is a Temporal-Difference approach to
estimate the action-value function Qπ(St, At) (also known as
q-value function) of an MDP, which, similarly to the state-
value function, denotes the expected return starting from state
St, taking the action At, and thereafter following policy π.
State-values can easily be derived from state-action values,
and viceversa. The update rule of Q-Learning is defined by:

Q(St, At)← Q(St, At)+

+α[Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At)]
(2)

The action At to perform at time step t can be chosen applying
an ε-greedy policy, in which At = argmaxaQ(St+1, a) with
probability 1 − ε (exploitation step), while At is randomly
chosen from the set of possible actions A with probability ε
(exploration step). In other words, the ε parameter determines
the exploration-exploitation trade-off. It has been shown that,
by using the update rule described in Equation 2, the Q-Value
function Q converges to Q∗, the optimal action-value function.

As already mentioned in Section I, one of the main lim-
itations of both VI and Q-Learning is that they are tabular
methods, that is, they store in memory the state-values (in case
of VI) or the state-action values (in case of Q-Learning) for
every (visited, in case of Q-Learning) state in the state space.
For this reason, and since the state space grows exponentially
according to the number of attributes used to characterize
the states, their application is limited to small-scale systems.
Furthermore, another weakness of Q-Learning is the lack of
generalization. Indeed, it cannot determine which action to
take in an unseen state.



Deep Q-Learning [15], a variation of classic Q-Learning,
addresses these problems by using a convolutional neural
network as a non-linear function approximator to estimate the
action-value function, Q(St, At|Θ) ≈ Q∗(St, At). The neural
network with parameters Θ is known as Q-Network, and it
allows generalization of the experience of the learning agent
from the interaction with the environment. A Q-Network can
be trained by minimizing a sequence of loss functions Li(Θi)
that changes at each iteration i of the algorithm:

Li(Θi) = ESt,Atvρ(.)[(yi −Q(St, At; Θi))
2] (3)

where ρ(St, At) is the behavior distribution over states St and
actions At, and

yi = ESt+1
[Rt + γmax

At+1

Q(St+1, At+1; Θi−1|St, At)] (4)

is a quantity similar to the target of the update rule of Q-
Learning. As opposed to Q-Learning, in Deep Q-Learning
the average value of multiple (s, a) tuples observed from the
interaction with the environment is used, instead of a single
one. The target value yi depends on the parameters Θi of the
network at the previous iteration i− 1, and it is not changed
while optimizing the loss function Li(Θi). The gradient of
the loss function with respect to the weights ∇Θi

Li(Θi) is
used in the Stochastic Gradient Descent algorithm to train the
network.

C. The System Model
Given the ever-growing complexity and heterogeneity of

modern computer systems, realizing a general modeling frame-
work is an arduous task. In this paper, we mainly focus on
microservice-oriented architectures. However, the modeling
framework is flexible enough to consider traditional archi-
tectures, such as three-tier web applications. An overview
of the class diagram used to build the framework is de-
picted in Figure 1. The core element is ComponentGroup,
which represents a microservice and is made up of various
interchangeable instances (Component) offering the same
functionality. Every component j can be globally identified in
its group i as (i, j). The state of the components is modeled
as a list of StateVariables, each one identified by a
name and, for simplicity, but without loss of generality, all
of them are boolean. Furthermore, we also consider that all
the components in a group have the same state variables. In
general, the number and type of the variables can be different
for each component group, but they all share the default ones:
• Active. Act(i,j) defines whether or not the component is

currently turned on or off;
• Updated. Upd(i,j) determines if the element is updated

to the latest version;
• New Version Available. Nva(i,j) specifies if a new

software version can be used to update the current one;
• Corrupted. Corr(i,j) determines whether a component is

compromised and it needs corrective actions to take it
into a healthy state;

• Vulnerable. Vul(i,j) states whether or not the current
software version of the component can be subject to a

known attack. If it is vulnerable, upgrading to a new
version, if available, can reduce the probability of being
exposed to that particular threat.

The state variables are intentionally not application or attack-
specific, because our goal is to simulate complex large scale
systems and it can be a tedious task to enumerate specific
variables. State variable k of instance j in group i can be
identified by (i, j, k), where k ∈ {Act,Upd,Nva,Corr,Vul}
is the name of the variable.

The connection between a requesting component group that
uses services exposed by a providing group can be represented
with a Connector. The latter also specifies what protocol
the two microservices use to exchange data. Connectors are
contained in ConnectorGroups, an abstract class represen-
tative of a communication environment or component, e.g., a
network, a load balancer or a proxy. The connector group
can connect two microservices by instantiating a specific
Connector, adding it to the outgoing connectors list of
the requester service and to the incoming connectors list of
the provider service. For example, if on the same network
we have multiple NodeJS servers and a MongoDB cluster,
with the former using the latter as a persistence component,
the network’s ConnectorGroup instance will: (i) create
a Connector between the two; (ii) add the connector to
the outgoing list of the component group NodeJS (since it is
the requester); (iii) add the connector to the incoming list of
MongoDB component group (because it is the provider of the
service). Figure 2 provides a high-level overview on how to
map actual system components to our modeling framework.

The APIGateway is defined as a particular
ComponentGroup, since it has the same default state
variables (active, corrupted, vulnerable, etc) and it can
connect to other component groups over a connector group
(network, load balancer) to route incoming requests. The main
differences are that it has a public IP address and can add a
public-facing firewall as a defense mechanism. Firewall
instances can be also added to connector groups and have
the ability to block malicious IPs. The entire composition of
the system is contained in SystemModel, which is used by
the translation process to convert it into the underlying MDP
model, using the same approach described in [7].

The reward function is characterized as a penalty score on
the considered actions, and it is defined as:

R(St, a, St+1) = −wt
T (a)

Tmax
− wc

C(a)

Cmax
(5)

where the weights wt, wc ∈ [0, 1] represent the importance
of, respectively, the execution time T (a) and cost C(a) of
action a ∈ A. Time and cost values are normalized using their
respective maximum value, Tmax and Cmax.

The set of actions A consists of 6 actions that can be applied
to any component and can potentially modify its state. Each
action is identified with a name and the ID of the component
on which it can be executed, and is characterized by a
certain execution time T (a) and cost C(a). Furthermore, each
action is characterized by: a boolean pre-condition function



Fig. 1. System modeling framework class diagram

Fig. 2. Example of microservice-based system modeled with the elements of
the framework

PC : S × A → {true, false}, which identifies the subset of
the state space in which the action is executable; and by a post-
condition function, which defines a probability distribution
over the possible next states, after the execution of the action.
Table I summarizes the pre-conditions, post-conditions, and
reward parameters of the actions.

III. EXPERIMENTAL EVALUATION

The objective of this work is to show that, in the do-
main of intrusion response, Deep Q-Learning is a valid and

more effective alternative than standard planning and learning
techniques, such as VI and Q-Learning. Although learning
algorithms mainly target the control of a system at run-
time, where they can automatically learn a model from the
environment, by design they approximate the optimal q-value
function. Therefore, an agent based on either Q-Learning or
Deep Q-Learning asymptotically behaves like an agent that
follows a policy planned with VI. As a consequence, if a model
of the system can be built to plan with VI, then a simulator of
the system for use with Q-Learning and Deep Q-Learning can
also be built, and the agent can run either of them to reach an
asymptotically optimal q-value function. The obtained result
can then be used to plan optimal defense policies, in the same
way it is done with VI.

In this section, we discuss two types of experiments aimed
at testing both, the effectiveness and the performance of VI
in comparison to Q-Learning and Deep Q-Learning. All the
experiments have been executed on a Dell PowerEdge c8220
with 40 cores running at 2.20Ghz and 256 GB of RAM. The
realized prototype leverages the BURLAP library [2] for the
design of the domain, and for the implementation of VI and Q-
Learning; our implementation of Deep Q-Learning is instead
based on DL4J [4].

A. Effectiveness and Performance Evaluation

The experimental validation of the effectiveness has been
performed as follows: system models with an increasing num-
ber of components, from 4 to 7 (corresponding to a number



TABLE I
ACTIONS CHARACTERIZATION

Action Name Pre-Condition Post-Condition T C
StartComponent(i,j) Act(i,j) = false P = 1 → Acti,j = true 200 20
RestartComponent(i,j) Act(i,j) = true ∧ Corr(i,j) = true P = 1 → Corri,j = false 300 50
StartF irewall(i) FwActi = False P = 1 → FwAct(i) = true 100 5
UpdateComponent(i,j) Act(i,j) = true ∧Nva(i,j) = true ∧ Upd(i,j) = false P = 1 → Nva(i,j) = false, Upd(i,j) = true 1000 150
HealComponent(i,j) Act(i,j) = true ∧ Corr(i,j) = true P = 1 → Corr(i,j) = false 1200 200
FixV ulnerability(i,j) Act(i,j) = true ∧ V ul(i,j) = true P = 1 → V ul(i,j) = false 700 100
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Fig. 3. Effectiveness comparison with 4 microservices (20 attributes). Log-
scale is used on the x-axis.

of attributes that ranges from 20 to 35) have been generated,
according to the microservices architecture described in Sec-
tion II-C. VI, Q-Learning, and Deep Q-Learning have been
executed on the generated models. For all the experiments,
we used γ = 0.9; Q-Learning and Deep Q-Learning have
been executed with the learning parameter α = 0.9. For
Deep Q-Learning, we rely on two neural networks: a current
network and a stale network, as described in [19]. Both of
them have 3 hidden layers with size equal to the input layer,
and corresponding to the amount of attributes in the system.
Finally, the size of the output layer corresponds to |A|, that
is, the amount of executable actions.

Figures 3-4 show a comparison of the cumulative reward
obtained by the three algorithms, according to the number of
learning episodes. VI provides the optimal reference value,
and the reference optimal range is given by the optimal value
subtracted by 10%. The rationale is that, since we use a static
ε-greedy policy for the learning algorithms, with ε = 0.9,
the minimum average cumulative reward that is possible to
obtain after convergence is 90% of the optimal reward. It is
possible to see that, although in every experiment both Q-
Learning and Deep Q-Learning eventually converge to the
optimal solution (the small gap with the optimal solution is due
to the ε-greedy policy), Deep Q-Learning reaches the optimal
region in a number of learning episodes from 1 to 3 order of
magnitude smaller than Q-Learning, depending on the size of
the system. In general, Deep Q-Learning is able to reach a
near-optimal solution after only 100 learning episodes.
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Furthermore, it is worth noting that, while the number of
steps needed for Q-Learning to converge grows exponentially
with the amount of system attributes, it exhibits a constant
behavior with Deep Q-Learning, as shown in Figure 5.

Another aspect that must be considered is the memory
utilization, which grows exponentially for VI and Q-Learning,
and linearly for Deep Q-Learning. For this reason, we could
not run any experiment with a system larger than 35 attributes
with VI, which used almost 100GB of memory. The same
amount of RAM was used by Q-Learning for a system with
45 attributes, due to the partial exploration of the state space.
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In Figure 6, a comparison is shown between the planning
time of VI and the time-to-convergence of Q-Learning and
Deep Q-Learning. VI and Q-Learning exhibit the expected
exponential behavior; Deep Q-Learning, instead, has a con-
stant behavior at the beginning, followed by an exponential
behavior as the size of the problem grows. This is due to
the inherent scalability of the algorithm, which is capable
of using all the available CPUs of the machine used for the
experiments. Hence, at the beginning of the experiment, the
number of used CPUs grows according to the size of the
problem, until it reaches the amount of available CPUs, thus
amortizing the exponential execution time. Afterwards, when
all the CPUs are used, the convergence time exhibits the usual
exponential behavior. However, given the extremely limited
amount of learning episodes needed to reach convergence,
Deep Q-Learning provides an advantage of several orders of
magnitude over VI and Q-Learning.

IV. CONCLUSION AND FUTURE WORKS

The problem of automatically controlling a system to
achieve self-protection exhibits an exponential complexity in
time, if addressed with a stateful approach. This is one of
the main limitations in the development of efficient and effec-
tive intrusion response systems. In this paper, we compared
the performance and the effectiveness of standard planning
and learning techniques with an approach based on deep
reinforcement learning, in terms of execution time, learning
episodes, and cumulative reward. We have shown that, using a
single compute node with 40 cores, it is possible to efficiently
compute defense policies for systems characterized by up to
750 attributes. In [7], we proposed a change of paradigm,
according to which the computational complexity does not
depend anymore on the size of the system, but on the scope
of the attack. These two results, combined together, allow us
to state that the proposed approach can be used to protect
large-scale systems against large-scale attacks.

As a future work, we intend to explore the usage of Deep
Reinforcement Learning on General Purpose Graphical Pro-

cessing Units (GPGPUs), and on clusters of standard compute
nodes, with the objective of further increasing the processing
speed. Furthermore, we intend to extend the application of
this approach to multi-agent systems, where multiple defenders
compete against multiple attackers.
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