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Abstract—Intrusion Detection Systems employ anomaly detec-
tion algorithms to detect malicious or unauthorized activities in
real time. Anomaly detection algorithms that exploit artificial
neural networks (ANN) have recently gained particular interest.
These algorithms are usually evaluated and compared through
effectiveness measures, which aim to quantify how well anomalies
are identified based on detection capabilities. However, to the
best of our knowledge, the performance characterization from
the perspective of computational cost and space, training time,
memory consumption, together with a quantitative analysis of
the trade-offs between algorithm effectiveness and performance,
have not been explored yet.

In this work, we select four recently proposed unsupervised
anomaly detection algorithms based on ANN, namely: REPre-
sentations for a random nEarest Neighbor (REPEN), DevNet,
OmniAnomaly, Multi-Objective Generative Adversarial Active
Learning (MO-GAAL); we perform a variety of experiments to
evaluate the trade-offs between the effectiveness and performance
of the selected algorithms using two reference dataset: NSL-KDD
and CIC-IDS-2017. Our results confirm the importance of this
study, showing that none of the selected algorithms dominate
the others in terms of both, effectiveness and performance.
Furthermore, it shows that approaches based on Recurrent
Neural Networks, which exploit the temporal dependency of the
samples, have a clear advantage over the others in terms of
effectiveness, while exhibiting the worst execution time.

Index Terms—Performance Assessment, Anomaly Detection,
Intrusion Detection

I. INTRODUCTION

In the cyber-security domain, Intrusion Detection Systems
(IDSs) can be categorized as signature-based and anomaly-
based. The signature-based IDSs rely on a database of sig-
natures and perform pattern matching on the input data (e.g.,
network traffic, log traces, and so forth) to identify potential
threats to the protected system. The anomaly-based IDSs
instead employ some anomaly detection algorithm to identify
deviations from the normal, baseline behavior. In particular,
anomaly-based IDSs are recently gaining traction because they
have the potential ability to identify zero-days attacks, that is,
attacks for which signatures have not been released yet.

Anomaly detection algorithms based on Artificial Neu-
ral Networks (ANN) have recently gained particular inter-
est. Indeed, according to [1], in the last decade, ANN-
based approaches and their variants (e.g., auto-encoders,
self-organizing maps, convolutional neural networks) covered
22.22% of the entire space of anomaly detection algorithms.

Usually, validation and comparison of anomaly detection
algorithms are carried out using metrics, such as, precision,
recall, F1-score, AUC-ROC [2]. However, in the field of
intrusion detection, where performing a timely detection is
paramount to avoid further negative consequences to the
system under attack, metrics such as, execution time, CPU
usage, memory usage, disk usage, scalability, also become par-
ticularly important. We refer to the former set as effectiveness
metrics, and to the latter as performance metrics.

However, most of the works on anomaly detection applied to
intrusion detection limit their study to the effectiveness of the
proposed approaches, without carrying out a thorough assess-
ment of their performance (e.g. [3], [4]). As a consequence,
it is impossible to establish which approach provides the best
trade-off between effectiveness and performance.

The main contribution of this paper is the presentation of
what is, to the best of our knowledge, the first joint quantitative
comparison between the effectiveness and performance of
anomaly detection algorithms based on ANN, applied to the
field of intrusion detection. Specifically, we compare the F1-
score, the training time, and the memory usage of four state-
of-the-art algorithms, whose source code has been published
with an open-source license, using two attack datasets.

We found that none of the assessed approaches outperforms
the others in terms of both, effectiveness and performance.
Furthermore, there is evidence that approaches based on
Recurrent Neural Networks (RNN), have a clear advantage in
terms of effectiveness with respect to their counterparts which
are not able to exploit the temporal dependence among data
samples.

All the changes to the original source code of the se-
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lected approaches have been published and are accessible at:
https://github.com/cse-msstate.

The studies more closely related to ours include [3]–[5].
Zoppi et al. [3] present a quantitative comparison of several
anomaly detection algorithms applied on datasets of multiple
attacks. Our work substantially differs from theirs in the
set of selected algorithms, since we focus on ANN-based
anomaly detection, and also on a performance characterization
study. Similarly, Meira et al. [4] present an empirical study
of unsupervised learning algorithms but focus only on their
effectiveness in detecting anomalies. With respect to the study
in [5], which compares the computation time of unsupervised
anomaly detection algorithms, we consider recently proposed
ANN-based algorithms and evaluate a larger number of per-
formance metrics.

The paper is organized as follows. In Sections II and III,
the motivations and the procedure for the selection of the
approaches and of the datasets subject of our study are pre-
sented. In Section IV, details on the design of the experiments
are provided; experimental results are discussed in Section V.
Finally, conclusions are drawn and anticipated future works
are described in Section VI.

II. SELECTION OF THE ANOMALY DETECTION
TECHNIQUES

In [6], a taxonomy of ANN-based approaches is proposed,
in which they are primarily classified as: generative, dis-
criminative, or hybrid. However, discriminative algorithms are
based on supervised learning and, according to [7], they cannot
be effectively used for anomaly-based intrusion detection.
Indeed, the data distribution of the time series, which is the
usual type of data analyzed by anomaly detection algorithms,
is likely to change over time in this specific domain, resulting
then in the need for the intrusion detection system to be able
to recognize anomalies that have never appeared before.

For the above reasons, we focus our analysis on generative
and hybrid algorithms based on ANN. The authors of [6]
identify three sub-categories of generative approaches, namely:
Autoencoders (AE), Recurrent Neural Networks (RNN), Boltz-
mann Machines (BM) and one sub-category of the hybrid
approaches, namely, Generative Adversarial Networks (GAN).
This classification drives our research, and we select represen-
tative algorithms from each one of the aforementioned sub-
categories.

The selection process entailed a search of approaches for
which a recent implementation was published online. We
searched on https://paperswithcode.com/ and used a combi-
nation of the keywords: anomaly detection, deep learning,
autoencoder, recurrent neural network, boltzmann machine,
generative adversarial networks, and restricted the results to
works published in or after 2018. Of the resulting works,
we picked those that had been published in highly ranked
conferences or journals, and specifically we selected, for each-
sub-category: REPresentations for a random nEarest Neighbor
(REPEN) [8] and DevNet [9] for AE, OmniAnomaly [10] for
RNN, Multi-Objective Generative Adversarial Active Learning

(MO-GAAL) [11] for GAN. The BM sub-category has been
less investigated with respect to the others. As a consequence,
we were not able to find any published implementation for
it. In the following, we provide a short summary of the main
characteristics of each one of the considered approaches, and
how they relate to each other.

A. REPEN

Pang et al. [8] note that most of the approaches to anomaly
detection based on representation learning are not end-to-
end. That is, data representation is learned without con-
sidering the outlier detection technique that is subsequently
utilized. For this reason, they propose a framework, named
RAMODO, which incorporates the outlier detection method
into the objective function of the underlying representation
learning algorithm. Furthermore, differently from classical
unsupervised approaches, the proposed one can take advantage
of few labeled samples, if present, in order to improve the
detection performance. An implementation of the RAMODO
framework named REPEN is then introduced, making use of
the Sp distance-based outlier detection technique [12], which
has shown state-of-the-art accuracy and scalability. Overall,
the authors state that REPEN has a time complexity that is
linear w.r.t. data dimensionality and size, while an estimate of
the space complexity is not provided. However, performance
data (e.g., execution time, speed-up, etc.) are not reported.

B. DevNet

Instead of focusing on learning the data representation, the
same authors of [8] realized a novel approach that directly
calculates a score for a given input sample [9]. The proposed
framework, named DevNet from Deviation Networks, is com-
posed of three main modules: (i) an anomaly scoring network,
(ii) a reference score generation, and (iii) a deviation loss
calculator. Module (i) is implemented using the encoder part of
an autoencoder, which learns a M -dimensional representation
of D-dimensional data, followed by a single-layer scoring
function, which computes the score of the input sample as
a linear combination of its M -dimensional representation.
Module (ii) is designed to calculate the average score and the
standard deviation of the normal samples, which will in turn
be used as reference values for the comparison with the input
sample that must be classified. Finally, module (iii) optimizes
the scoring network by implementing a loss function based on
the z-score of the input sample. It is noteworthy that DevNet
does not properly handle time series-based data, because it
performs a stratified random sampling of the input data.

According to the authors, the computational complexity of
DevNet is O(n epochs×n batches×b×(Dh1+h1h2+· · ·+
h+H)) for the training phase and O(I(Dh1 + h1h2 + · · ·+
hH)) for the testing phase, where n epochs is the number of
training epochs, n batches and b are respectively the number
of training batches and the batch size, hi is the number of
neural units at the i-th hidden layer, D is the dimensionality
of the data, and I is the data size of the test set.

https://github.com/cse-msstate
https://paperswithcode.com/


This assessment is confirmed by experimental results, which
show that DevNet exhibits a linear time complexity with
respect to both data size and number of features, while at the
same time outperforming REPEN by a factor of 10 to 20 on
large datasets, due to a computationally efficient loss function.

C. OmniAnomaly

Su et al. [10] proposed an anomaly detection technique,
named OmniAnomaly, to specifically handle multivariate time
series and the temporal dependence between data instances.
In details, OmniAnomaly is characterized by two phases: an
off-line training and an on-line detection. During the off-line
training, a dataset with normal data is first pre-processed (i.e.,
data is standardized and segmented using sliding windows),
and then used to train a model using: (i) a Gated Recurrent
Unit (GRU) [13], a variant of a general Recurrent Neural
Network (RNN) [14] to capture temporal dependence between
the input observations; (ii) a Bayesian variational autoen-
coder [15] to compress the input space into a latent space of
reduced dimension; (iii) a linear Gaussian state space model to
model the temporal dependence of the variables in the latent
space; and (iv) a chain of planar mapping transformations to
learn a non-Gaussian posterior distribution of the variables
in the latent space. In the on-line detection, each sample is
assigned with an anomaly score, which is subsequently used
in combination with a dynamic threshold to finally classify
input samples as normal or anomalies.

Notably, a study of the complexity of the proposed algo-
rithm has not been conducted. Instead, an empirical evaluation
of the performance including the training time for the three
datasets considered in the experimentation has been reported,
showing that the training time requires almost 90 minutes per
epoch for the largest dataset and on the reference GPU.

D. SO-GAAL and MO-GAAL

Another approach to anomaly detection, which makes use
of the Generative Adversarial Network paradigm, has been
proposed in [11]. First, the authors re-define the concept
of anomaly with respect to the density of samples in the
sample space. Indeed, the assumption is that a sample that
resides in a region with a low density can be considered an
outlier. However, since computing the density function for the
entire space could be computationally prohibitive, the problem
is reformulated as a classification problem, where n data
points are synthetically generated from a uniform reference
distribution and added to the original dataset. This formulation
still suffers from the curse of dimensionality because, in order
for the synthetically generated outliers to be representative of
the sample space, their amount should polynomially grow with
the number of dimensions, leading again to a problem that
is intractable. For this reason, instead of generating sparse
outliers from a uniform distribution, a GAN is used to generate
outliers that occur near the real data. A GAN is composed of
two neural networks, a generator G and a discriminator D,
which engage in a min-max game. Here, the generator is in
charge of generating outlier samples, and the discriminator is

in charge of detecting whether the input data is an outlier
generated by G, or an actual sample representing normal
data extracted from the dataset. One of the issues of this
approach, named Single-Objective General Adversarial Active
Learning (SO-GAAL), is that after a certain number of epochs,
the generator will generate outlier samples that will be more
similar to the real data, making it impossible for the discrim-
inator to effectively distinguish between normal samples and
anomalies. Hence, a stopping criterion should be introduced,
such that the game terminates when the generated outliers
provide enough information to the classifier to effectively
detect anomalies. However, this is not possible because there
is no prior information during the training stage.

For this reason, MO-GAAL is introduced. The latter is
based on k generators G1, . . . , Gk, and a single discriminator
D. Each generator works on a partition Xi(i = 1, . . . , k) of the
dataset, with X =

⋃
i Xi, where the samples within a given

partition are similar to each other. Experiments show that the
execution time of MO-GAAL exhibits a linear increase with
respect to the data size, with a high initial overhead.

III. ATTACKS DATASETS

The Intrusion Detection domain has historically suffered
from the lack of publicly available datasets, due to privacy
concerns [16]. For this reason, most of the anomaly-based in-
trusion detection techniques proposed in the last two decades,
including several recent ones (e.g., [17]–[19]), have been
validated using few, outdated datasets, such as, DARPA’98
and DARPA’99 [20], KDDCUP’99 [21], and NSL-KDD [22].
However, this trend is slowly changing, and new datasets
are being made publicly available. Indeed, according to a
recently published survey [23], 36 datasets have been released
in the past two decades, with an increasing release rate in
the last years. Each dataset is specialized on specific aspects
or characteristics of the network traffic. For example, some
of them are provided in raw packet capture format, while
others are provided as a list of network flows. Some are
built using real network traffic, others rely on some synthetic
data generator or on traffic generated in a closed, emulated
environment. For an extensive description of the datasets and
a detailed classification, the interested reader can refer to [23].

In terms of performance, a proper evaluation of the scala-
bility of the algorithms described in Section II requires using
datasets of different sizes. For this reason, we select two
datasets with sizes that range between 150K samples to 2.8M
samples, namely: NSL-KDD and CIC-IDS-2017 [24].

A. NSL-KDD

NSL-KDD has been selected because, despite being old
(it was created in 1999), and potentially not representative
of current network patterns, it is the one that has been
most frequently used in the past decade. Therefore, results
obtained using this dataset can potentially be compared to
other approaches published in the literature, at least from the
effectiveness perspective. Its size is relatively small, counting
roughly 150K samples. The number of features of NSL-KDD



is 41, and its contamination rate is 46.5%, meaning that 46.5%
of its samples are anomaly points.

B. CIC-IDS-2017

Similarly to NSL-KDD, CIC-IDS-2017 was created in an
emulated environment. Two types of traffic were generated:
background and malicious. The former is the result of the
simulated activities of 25 users, working with standard proto-
cols, such as, HTTP, FTP, and SSH. The latter contains various
types of attacks, which range from Denial of Service (DoS), to
Cross-Site Scripting (XSS), and brute force attacks to FTP and
SSH servers. Different attack types are executed at different
times, with no overlap on the dataset. The latter is divided
into multiple segments, each one referring to a specific day,
or time of the day, and contains a total of 2.8M records, each
one representing a bi-directional network flow. Each record
is characterized by 79 features, including the label, and the
contamination rate is roughly 19.7%.

IV. EXPERIMENT DESIGN

The primary focus of the evaluation conducted in this
work is to assess the performance of the selected ANN-based
anomaly detection algorithms. However, it is not possible
to consider performance metrics without taking into account
the effectiveness of the algorithms. Indeed, performance and
effectiveness of ANN-based anomaly detection algorithms are
highly intertwined, due to the existence of hyperparameters
that affect both of them. Although it is out of the scope of this
work to carry out an extensive analysis of the configuration of
the hyperparameters, it is worth noting that all the algorithms
that we have selected use a Stochastic Gradient Descent
(SGD) approach to find the minimum of a loss function.
SGD is an iterative algorithm, and the number of iterations
employed during the training phase has an impact on both,
the effectiveness and the performance of the approaches that
use it. Ideally, the highest effectiveness is obtained when the
loss function reaches a global minimum. However, the problem
of finding a global minimum using SGD is undecidable when
the loss function is not convex.

For this reason, the stopping criterion for the training phase
is based on training time, rather than on the achievement
of a given effectiveness objective. Specifically, we set an
experiment time limit of 12 hours, for every algorithm and
every dataset instance, as described in Section IV-A. This
threshold has been chosen in order to balance the number
of epochs that will be completed by each algorithm with the
computational power needed to run all the experiments.

A. Data Preparation

For each dataset of 100% samples, we created data subsets
by randomly extracting 20%, 40%, 60%, and 80% of the
samples. This extraction is needed in order to analyze, for
each algorithm and each dataset, the effectiveness and the
performance with respect to the length of the data.

For all the experiments, with the exception of those regard-
ing OmniAnomaly, we use 4-fold cross validation. Traditional

K-fold cross validation cannot be used with OmniAnomaly,
because it would break the temporal dependency of the sam-
ples. Therefore, for that specific algorithm, we used the time
series cross-validator implemented in scikit-learn [25].
This cross-validator divides the dataset in K > 2 splits and
then, ∀n.n = 1, 2, . . . ,K − 1, it uses samples from splits in
the interval [1, n] for training and samples from split n+1 for
testing. In our case, we set K = 4.

In order to replicate with the highest possible degree of
fidelity the same environment described by the authors of
the selected algorithms, we applied the minimum possible
amount of pre-processing to the generated dataset instances.
Specifically, the only pre-processing step that we always
executed, and that was not always described in the considered
works, is one-hot encoding. This step was needed in order to
convert categorical data to numerical data, which is required
by neural network-based algorithms. Furthermore, as indicated
by the referenced papers or implemented in their correspond-
ing source code, we performed the following pre-processing
activities:

• REPEN - Data was normalized using min-max scaling,
as reported in [8], [26].

• DevNet - No additional pre-processing steps were per-
formed.

• OmniAnomaly - In [10], the authors mention a data
standardization process, without providing any additional
details. However, we found in the utils.py source file
(line 78), that a min-max normalization was applied.

• SO-GAAL and MO-GAAL - Labels of the input dataset
were flipped, in order to match the expected input.

B. CPU Affinity and Monitoring System

All the experiments have been conducted on CloudLab
c220g5 machines. These are nodes characterized by a Non-
Uniform Memory Access (NUMA) architecture. Each node
has 2 physical CPUs with 10 cores each, for a total of 40
cores when hyperthreading is enabled. The amount of RAM is
192GB. Since the machines have a password protected BIOS,
hyperthreading could not be disabled. Therefore, we used the
Linux taskset command to set the affinity of the experiment
processes so that no more than one sibling was used for a
given physical core1. Furthermore, in order to avoid most of
the performance measurements issues due to the existence of
multiple NUMA nodes, we set the affinity of the experiment
processes to only use cores from a single physical CPU.
Indeed, from preliminary experimental results we found that,
when threads are distributed across multiple NUMA nodes,
there is a non-negligible performance degradation due to the
possibility that a thread may need to access memory that is
non-local, thus increasing the memory access time.

1With hyperthreading enabled, each physical core is split into two
virtual siblings; the map of the siblings can be obtained reading the
/proc/cpuinfo file.



V. EXPERIMENTAL RESULTS

In this section we illustrate, for each of the selected algo-
rithms and datasets: (i) the trend of the learning curves, with
respect to both, number of epochs and training time; (ii) the
usage of memory over time; (iii) the usage of memory with
subsets of different size; (iv) the training time with subsets of
different size.
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Figures 1 and 2 show the learning curves when the selected
algorithms are fed with the 80% subset of the NSL-KDD
dataset. The reason why we selected the 80% subset for this
experiment, instead of the full dataset, is to carry out a fair
comparison: on one hand, one of the algorithms that we are
comparing, namely OmniAnomaly, uses a time-series cross
validator which, with K = 4, allows a training process with
up to 80% of the entire data. On the other hand, the largest
size of CIC-IDS-2017 that MO-GAAL was able to handle was
80%. It is worth noting that the time reported in Figure 2 is
training time, which is only one of the components of the
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total experimentation time. For this reason, the plotted traces
in most cases have curves that do not reach a time of 12 hours.

Figure 1 shows how the F1-Score varies according to the
number of epochs, and Figure 2 shows how the same score
varies according to the training time. The dotted vertical bars
correspond respectively to the epoch and to the time at which
the maximum score has been obtained, for each algorithm.
The highest score has been achieved by OmniAnomaly. Such
a high score is due to its RNN-based architecture, which
proves to be particularly indicated in the intrusion detection
domain, where data samples are indeed temporally correlated.
However, the drawback of this approach is an increased
computational complexity, which leads to the highest training
time among the chosen algorithms.

A similar observation can be made for the results shown
in Figures 3 and 4. The latter show how the F1-Score varies
according respectively to the number of epochs and to the
training time, when the 80% subset of CIC-IDS-2017 was
used as the input to the selected algorithms. OmniAnomaly



clearly outperforms the other algorithms, achieving a nearly
perfect F1-score. It is worth noting that, with the exception of
DevNet, the vertical bars in Figure 3 are not visible because
the highest score has been obtained either at epoch 1, in the
case of REPEN, or at epoch 0, in the case of OmniAnomaly
and MO-GAAL.
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Figures 5 and 6 show the memory traces of the processes
running the experiments. Both the virtual size VIRT and the
resident size RES of the processes were reported, for each
algorithm. For the same reasons as above, the plotted memory
traces are those related to the execution of the algorithms
with the 80% subset of the datasets. The plots show that,
despite being based on ANN, with the exception of MO-
GAAL, the selected approaches have a memory usage that is
directly proportional to the number of epochs used for training.
Indeed, REPEN and DevNet, which are the fastest algorithms
in terms of per-epoch execution time, manage to complete
more epochs than their counterparts in the fixed 12-hours
experiment time, as shown in Figures 1 and 3. Executing more

epochs leads them to have the greatest increase in memory
usage, both with NSL-KDD and CIC-IDS-2017. Furthermore,
it is possible to observe how, despite OmniAnomaly only
completes a relatively small number of epochs, its memory
increase is not negligible. Finally, while the memory usage of
MO-GAAL appears to be mostly constant, this is due to the
fact that it is the one with the highest per-epoch execution time,
with a single epoch completed when run against 80% of CIC-
IDS-2017. This correspondence between memory usage and
number of epochs is also evident from the plot of Figure 7. The
latter shows how the memory usage varies according to the
size of the selected subset of CIC-IDS-2017. Interestingly, the
memory used by OmniAnomaly decreases with an increasing
size of the input data. This is due to the fact that an increase in
the input data size corresponds to a lower number of completed
epochs, when the experiment has a fixed duration. Having a
high per-epoch memory requirement leads then to a decrease
in the memory usage when fewer epochs are completed.
Similar conclusions can be drawn when NSL-KDD is used
as the input dataset. For space reasons, we do not include its
plot.
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Finally, Figure 8 reports the training times according to
the size of the selected subset of CIC-IDS-2017. Ideally, we
would consider the training time as the minimum time needed
to achieve the maximum F1-Score in the duration of the
experiment. However, as shown in Figures 3 and 4, the F1-
Score has non negligible fluctuations throughout the training
phase. For this reason, we define the training time as the
minimum time to reach a F1-Score that is at least 5% lower
than the maximum reachable F1-Score. It is possible to see
that REPEN has a linear time increase with respect to the
size. MO-GAAL and OmniAnomaly instead appear to have a
trend that is quadratic. Finally, the training time of DevNet
does not exhibit a clear trend, due to the fact that its F1-Score
has a fluctuation during the training that is higher than the 5%
threshold we set on the F1-Score.
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VI. CONCLUSION AND FUTURE WORKS

Deciding which anomaly detection approach to use for
intrusion detection is a complex task, where a trade-off
between effectiveness and performance must usually be ac-
cepted. In this work we carried out a joint assessment of the
performance and of the effectiveness of four state-of-the-art
ANN-based anomaly detection algorithms (REPEN, DevNet,
OmniAnomaly, MO-GAAL) applied to two reference intrusion
detection datasets (NSL-KDD and CIC-IDS-2017). Experi-
mental results showed that none of the algorithms dominates
the others in terms of both, effectiveness and performance. In
details, OmniAnomaly, which is based on RNN, outperforms
all the others in terms of effectiveness, by achieving the highest
F1-Score. However, it also exhibits the highest training time
and per-epoch memory usage. In contrast, REPEN appears
to be one of the fastest algorithms in terms of training time.
However, its maximum F1-Score is the lowest in the CIC-IDS-
2017 case, and the second lowest in the NSL-KDD case.

As future work, we will extend the proposed analysis to as-
sess the impact of the number of features and of the availability
of multiple CPUs on both, effectiveness and performance.
Furthermore, we anticipate a study on the energy consumption
of anomaly detection algorithms. This study can also provide
insights on how to select an anomaly detection algorithm
for edge computing scenarios, which are usually based on
decentralized, low-powered computational resources.
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