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Abstract—Cloud-native applications increasingly adopt the microservices architecture, which favors elasticity to satisfy the application
performance requirements in face of variable workloads. To simplify the elasticity management, the trend is to create an auto-scaler
instance per microservice, which controls its horizontal scalability by using the classic threshold-based policy. Although easy to
implement, setting manually the scaling thresholds, which are usually statically-defined on a single metric, may lead to poor scaling
decisions when applications are heterogeneous in terms of resource consumption.
In this paper, we study dynamic multi-metric threshold-based scaling policies, that exploit Reinforcement Learning (RL) to
autonomously update the scaling thresholds, one per controlled resource (CPU and memory). The proposed RL approaches (i.e., QL,
MB, and DQL Threshold) use different degrees of knowledge about the system dynamics. To model the thresholds’ adaptation actions,
we consider two RL-based architectures. In the single-agent architecture, one agent drives the updates of both scaling thresholds. To
speed-up the learning, the multi-agent architecture adopts a distinct agent per threshold. Simulation- and prototype-based results show
the benefits of the proposed solutions when compared to the state-of-the-art policies and highlight the advantages of multi-agent MB
Threshold and DQL Threshold approaches, in terms of deployment objectives and execution times.
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1 INTRODUCTION

Cloud computing has encouraged the development of elas-
tic applications, whose deployment can be adapted at run-
time to meet application-level Quality of Service (QoS)
requirements in face of changing operating conditions.
Moreover, many large enterprises (e.g., Amazon, Netflix,
Spotify) have reshaped their applications from monolithic
to microservice architectures, so to improve efficiency and
scalability of applications. The microservice architecture
splits an application into many autonomous, fine-grained,
and loosely coupled services, each providing a specific
and independent functionality. A microservice is typically
deployed using software containers, which bound together
the application code and its dependencies (e.g., libraries),
improving portability. To simplify the deployment and run-
time management of containers, orchestration engines are
adopted (e.g., Kubernetes, Docker Swarm, Amazon ECS).
They allow to create multiple, decentralized auto-scaler
instances, one for each microservice to deploy.

A variety of methodologies can be applied to control
the microservice elasticity, as surveyed in [1], [2]; among
them, threshold-based policies are the most popular solu-
tion thanks to their simplicity. According to this class of
policies, the number of microservice replicas is increased
(or decreased) as soon as a relevant metric is above (or
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below) the scale-out (or scale-in) threshold value. Although
this approach is easy to implement and scales well, it moves
complexity from designing the reconfiguration strategy to
selecting critical values for the thresholds. In addition, most
threshold-based auto-scalers consider a statically-defined
threshold on a single resource metric (e.g., CPU utiliza-
tion). Since today’s applications are heterogeneous in nature
(e.g., [3], [4]), being CPU, memory intensive, or mixed,
the existing policies may result in a poor scaling strategy.
A further challenge arises from the user requirement of
specifying a Service Level Objective (SLO) based on user-
oriented metrics (e.g., response time, throughput, monetary
cost) rather than configuring system-oriented metrics as
common scaling thresholds are.

Differently from the popular static threshold-based ap-
proaches, our aim is to design a flexible solution that can
dynamically adapt the scaling thresholds without the need
of manual tuning. We want to make use of experience to
learn how to efficiently update the application deployment,
also without defining an exact model of the microservice
behavior. To this end, we resort to Reinforcement Learning
(RL), a collection of trial-and-error methods by which an
agent can learn to make good decisions through a se-
quence of interactions between the controlled system and
the environment. RL allows to express what the user aims
to obtain, instead of how it should be obtained (as done
by static threshold-based policies). In [5], we started to
explore RL approaches for driving application elasticity.
The proposed model explicitly controlled the number of
replicas. Although this choice appears to be intuitive, it does
not lend itself to simple implementations on current con-
tainer orchestration frameworks, which have been designed
to control elasticity through threshold-based mechanisms.
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Moreover, with this approach, the RL agent learns a policy
that autonomously performs the scaling, which might not
always result from load peaks, response time violations, or
other changes in the monitored performance metrics.

In this paper, we present dynamic (or self-adaptive)
threshold-based scaling policies that can automatically learn
and update the values of multiple scaling thresholds, one for
each metric of interest. Building on our previous work [6],
where we considered only CPU utilization, we now gen-
eralize our result by proposing different approaches to
control multiple metrics (i.e., CPU and memory utilization)
and to reduce the policy execution time. The proposed
approach moves towards the direction of an explainable
scaling policy, where the RL agent learns a policy that
can be intuitively understood (and constrained, as well) by
means of the thresholds. Such an approach can also pave
the way for the adoption of RL solutions in current systems:
by letting each agent learn the correct threshold by itself,
we can get past today’s threshold handcrafting. First, we
present a single-agent solution, where a single RL agent is
in charge of updating multiple scaling thresholds. To im-
prove RL scalability, we then design a multi-agent solution
where each RL agent oversees a specific resource metric.
In this general framework, we design and evaluate model-
free and model-based RL algorithms; they exploit different
degrees of knowledge about the system dynamics to find
a trade-off between system and user-oriented metrics (i.e.,
resource utilization and target response time). As model-
free policies, we propose QL Threshold and DQL Threshold,
two dynamic threshold-based policies built on Q-learning
and Deep Q-learning, respectively. Deep Q-learning ap-
proximates the system knowledge by using a deep neural
network. Since model-free solutions can suffer from slow
convergence rate, we then provide the learner with basic
knowledge about its environment, so to boost the learning
process. Hence, we propose MB Threshold, an approach
that exploits what is known about the system dynamics to
update the scaling thresholds. We have extensively evalu-
ated the benefits of dynamic multi-threshold policies, via
simulation and prototype evaluation. To this end, we have
implemented all the proposed solutions into Kubernetes.
Through simulations, we evaluate the proposed approaches
under different deployment objectives and workloads, using
real-world traces (i.e., NYC Taxi Ride and Bitbrains). Using
Kubernetes, we evaluate the designed solutions in a real
environment, and show the advantages of the dynamic
threshold-based approach over Kubernetes’ default scaling
policy and two state-of-the-art solutions (i.e., [7], [8]).

The remainder of the paper is organized as follows. We
discuss related works in Section 2. We then present the sys-
tem model and the idea of a dynamic multi-metric threshold
policy based on RL (Section 3). In Section 4, we propose
the single-agent and multi-agent RL architectures, where
the latter aims to simplify the policy design and reduce its
execution time. Section 5 details the model-free and model-
based approaches to update the scaling thresholds. Then,
we evaluate the proposed solutions in Sections 5.3 and 6
and conclude in Section 7.

2 RELATED WORK

We focus on the methodologies proposed in literature for the
elasticity of applications in cloud environments, considering
recent works with respect to existing surveys (e.g., [1], [2]).
The methodology identifies the class of algorithms used
to plan the deployment adaptation so to achieve specific
goals. Existing elasticity solutions rely on a broader set of
methodologies, that we classify in the following categories:
mathematical programming, control theory, queuing theory,
machine learning, and threshold-based solutions.

Mathematical programming approaches exploit tools
from operational research in order to change the microser-
vice parallelism degree. The formulation and resolution of
Integer Programming (IP) problems belongs to this cate-
gory. IP formulations have been mainly used to solve the
placement of application instances (e.g., [9]). However, some
works consider these approaches also to address the appli-
cation elasticity problem (e.g., [10], [11], [12]). For example,
Rahman et al. [11] solve an optimization problem to find the
target CPU utilization values (i.e., thresholds) to automati-
cally scale microservices based on the predicted application
response time. The main drawback of mathematical pro-
gramming approaches is scalability: since the deployment
problem is NP-hard, resolving the exact formulation may
require prohibitive time as the problem size grows.

Few research works rely on control theory to scale ap-
plications. In this case, the policy usually identifies three
main entities: disturbance, decision variables, and system
configuration. Disturbances represent events that cannot be
controlled; nevertheless, their future value can be predicted
(at least in the short term), e.g., incoming data rate, load
distribution, and processing time. The decision variables
identify the replication of each application component.
Shevtsov et al. [13] show that, although research on control-
theoretical software adaptation is still in its early stages, an
ever increasing number of solutions has recently consider
control theory to realize self-adaptive systems (e.g., [14],
[15], [16]). Baresi et al. [14] combine infrastructure and
application-level adaptation using a discrete-time feedback
controller. It considers the application response time as a
function of the assigned CPU cores (decision variables) and
the request rate (disturbance) for horizontally and vertically
scaling applications. The critical point of control-theoretic
approaches is the need of a good system model, which can
sometimes be difficult to formulate, e.g., when the decision
variables inter-play in a complex manner.

Queuing theory is often used to predict the response
time of a microservice with respect to its replication degree.
The key idea is to model the microservice as a queuing
system with inter-arrival and service times having general
statistical distributions. In general, queuing theory is well
suited to determine the replication degree of microservices
or predict performance (e.g., [17], [18], [19]). Nevertheless,
it often requires to approximate the system behavior so
to apply models from the established theory. Therefore,
when the system is very complex, also the queuing theory
becomes complex, discouraging its adoption.

In the last years, different research works have exploited
the advances of machine learning approaches to model
functions based on observed data (e.g., resource utilization,



3

application performance) or to dynamically adapt the appli-
cation deployment. Islam et al. [20] utilize a combination of
deep neural networks and linear regression to predict the
future resource demands. To proactively scale containers in
response to workload changes, Imdoukh et al. [21] use deep
neural networks to learn a container elasticity policy that
considers past scaling decisions and workload behavior. Yu
et al. [22] propose Microscaler, a framework that relies on
Bayesian Optimization and a step-by-step heuristic for the
adaptive deployment of microservices-based applications.
Although conceptually easy to design, machine learning
techniques may suffer from two main drawbacks. First, they
require reasonably large training sets. Second, they cannot
easily and rapidly address unforeseen configurations.

Reinforcement Learning is a special method belonging to
the branch of machine learning [23]. RL techniques can learn
an adaptation policy through a trial-and-error process. After
executing an action in a specific system state, the RL agent
observes the cost experienced by the system, so to learn
how good the performed action was. The obtained cost con-
tributes to update the lookup table that stores the estimation
of the long-term cost for each state-action pair. The RL agent
must try a variety of actions and progressively favor those
that appear to be the best ones. Several works have exploited
RL techniques to drive elasticity in cloud computing, as
surveyed in [1]. However, most of them consider model-free
RL algorithms, such as Q-learning and SARSA (e.g., [8], [24],
[25], [26]), which suffer from slow learning rate, as observed
in [27]. To overcome this issue, different model-based RL
approaches have been proposed. They use a model of the
system to drive the action exploration and speed-up the
learning phase. Tesauro et al. [28] combine RL with queuing
network, whereas Arabnejad et al. [24] consider a fuzzy
inference system to model the application performance.
In [5], we propose a model-based approach that boils down
to replacing the model-free equation to update the lookup
table with one step of the value iteration algorithm using
empirical estimates for the unknown parameters. Although
model-based RL approaches can overcome the slow con-
vergence rate of model-free solutions, they can suffer from
poor scalability in systems with large state space, because
the lookup table has to store a separate value for each state-
action pair. An approach to overcome this issue consists in
approximating the system state or the action-value function,
so that the agent can explore a reduced number of system
configurations. Deep Q-learning has recently been used to
approximate the system knowledge; it integrates deep neu-
ral networks into RL [29]. Thereafter, it has been widely ap-
plied in a variety of domains, e.g., container migration [30],
traffic offloading [31], and device placement [32]. However,
to the best of our knowledge, Deep Q-learning has been
little applied in the context of elastic resource provisioning
(e.g., [33], [34]).

Many solutions exploit best-effort threshold-based poli-
cies, based on the definition of static thresholds for scal-
ing in/out microservices at run-time. Most of the research
works (e.g., [35], [36]) and some Cloud service providers
(e.g., Amazon, IBM) use a single threshold value for driving
elasticity. Although it often works sufficiently well, most
existing applications are heterogeneous in nature, implying
that it is not enough considering only one aspect of resource

metrics to scale. Google’s Compute Engine auto-scaling
supports multiple metrics and corresponding scaling rules
and picks the metric that results in the largest number of
virtual machines (VMs) [37]. In the context of microservices,
few works [7], [38] take into account CPU, memory, and
network utilization to adapt at run-time the application
deployment. In particular, HyScale [7] is a threshold-based
auto-scaler that considers CPU and memory utilization.
Although threshold-based scaling is easy to implement, it
is a best-effort approach that provides no guarantees about
the reconfiguration optimality. Furthermore, selecting the
threshold values can be challenging, especially in case of
multiple metrics.

To overcome such a manual setting of thresholds, self-
adaptive (or dynamic) threshold-based policies have been
proposed in different contexts, e.g., performance manage-
ment, VM consolidation (e.g., [8], [39], [40]). To the best of
our knowledge, they have been scarcely applied for scaling
applications (e.g., [6], [8]). Horovitz et al. [8] rely on Q-
learning and a heuristic to automatically learn and adapt
the scaling thresholds. Nevertheless, they consider only ho-
mogeneous microservices and a single scaling metric. In [6],
we propose a two-layered hierarchical solution to control
the elasticity of microservice applications. Having a global
knowledge of the application, a high-level centralized entity
coordinates the microservices’ scaling decisions (global pol-
icy). At low level, decentralized entities locally control the
adaptation of single microservices using RL (local policy).
However, only CPU-bound applications are considered and
an analysis on the local policy scalability is missing. We
believe that microservices heterogeneity and time required
to promptly react to sudden workload changes are critical
factors in a dynamic environment. This paper extends [6]
by focusing on local scaling policies. Differently from all
the above works, we propose a dynamic and multi-metric
threshold-based policy that relies on RL to set the thresholds
values. To improve the RL scalability when the number of
scaling thresholds increases, we investigate two different
solutions: first, we integrate deep neural networks into
RL; then, we evaluate a multi-agent approach. For our
prototype-based experiments, we use HyScale [7], the policy
by Horovitz et al. [8], and the Kubernetes’ threshold-based
policy as baselines to compare against our approach.

3 SELF-ADAPTIVE THRESHOLD-BASED POLICY

In this section, first we present the elasticity problem when
heterogeneous microservices are considered. Then, we for-
mally introduce the basic concepts of RL and illustrate how
to use RL to adapt the scaling thresholds at run-time.

3.1 Problem Definition and System Model

We consider a general microservice model, where a mi-
croservice is a black-box entity that carries out a specific
task (e.g., performs computation, accesses data sets). To
efficiently handle varying workloads and meet QoS re-
quirements, the amount of computing resources granted to
the microservice should be dynamically adjusted. To this
end, we can exploit horizontal elasticity which allows to
increase (scale-out) and decrease (scale-in) the number of
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microservice replicas according to a deployment policy. The
latter should properly drive the microservice elasticity so to
guarantee the desirable performance, while minimizing the
monetary cost. In this work, we consider latency-sensitive
microservices that expose a SLO defined as target response
time that should not be exceeded (i.e., Tmax). By exploit-
ing horizontal elasticity, microservice replicas can process
incoming requests in parallel, thus reducing the per-replica
load and, in turn, the processing latency.

To manage the microservices auto-scaling over time,
we need a deployment controller (or auto-scaler) that pro-
vides self-adaptation mechanisms and can be equipped
with deployment policies. Today’s cloud providers that sup-
port multi-component applications allow to create multiple,
decentralized auto-scaler instances, each carrying out the
adaptation of a single microservice deployment. By period-
ically analyzing the collected data about the microservice
and the execution environment, the auto-scaler determines
whether the microservice deployment should be changed.
To determine the microservice scaling actions, most of the
existing auto-scalers rely on a static threshold-based policy,
where the scaling threshold is usually set on a specific
resource metric (i.e., CPU or memory). Despite its simplicity,
the use of single metric might not be well suited for all the
scenarios, e.g., applying CPU utilization to scale a memory-
bound microservice, since in this case the microservice
performance is expected to be determined by the memory
usage rather than the CPU utilization. To address this issue,
we define one scaling threshold for each relevant metric
and, for the sake of simplicity, consider CPU utilization
and memory usage. We define as u the microservice CPU
utilization and as r the amount of used memory. These
metrics are defined as the ratio between the monitored
resource demand and the amount of assigned resource to
the microservice. A microservice cannot use more resources
than the configured limit. We introduce the CPU and mem-
ory scale-out thresholds, denoted as θu and θr respectively,
and the CPU and memory scale-in thresholds, as θin

u and
θin
r . To simplify the setting of multiple scaling thresholds,

we design a dynamic threshold-based scaling policy that
automatically learns and updates their values using RL.

3.2 Reinforcement Learning-based Policy

RL is a machine learning technique where an agent learns
the optimal policy through direct interaction with the sys-
tem. There are three basic concepts in RL: state, action, and
cost. The state describes a system configuration. The action
is what a RL agent can do in a given state. The cost is
an immediate feedback that a RL agent receives when it
performs an action in a state. Intuitively, the cost allows
the RL agent to discriminate between good and bad system
configurations and actions. A RL agent aims to learn an
optimal adaptation strategy (i.e., state-action mapping), so
to minimize a discounted cost over an infinite horizon.

To update the scaling thresholds, we consider that the
RL agents interact with the microservices in discrete time
steps. Learning by experience, a RL agent estimates the re-
lationship between application and system-oriented metrics,
and accordingly adapts the scale-out thresholds (i.e., θu and
θr). In this work, we do not dynamically update the scale-in

Fig. 1. High-level overview of the single-agent and multi-agent solution.

thresholds (i.e., θin
u and θin

r ); nevertheless, our approach can
be easily extended to account for them. We denote by S the
set of all the microservice states. We model a microservice
state as a tuple of N relevant features. Unlike most of the
literature where the state considers the number of replicas
(e.g., [5], [24], [28]), we define it in terms of thresholds; this
choice is specifically tailored for existing orchestrators and
thus is better suited for ease of integration with them. For
each state s ∈ S , we have a set of feasible adaptation actions
A(s) ⊆ A, where A is the set of all actions. At each time
step, the agent observes the microservice state s ∈ S and,
according to an action selection policy, performs an action
a ∈ A(s) to update the scaling threshold. One time step
later, the microservice transits in a new state s′ ∈ S , expe-
riencing the payment of an immediate cost c(s, a, s′) ∈ R.
Both the paid cost and the next state transition are stochastic,
because they usually depend on external unknown factors.
In our model, the RL agent wants to minimize the cost so to
jointly satisfy microservice performance and limit resource
wastage. We model the cost function so to include two dif-
ferent contributions: the performance penalty cperf and the
resource monetary cost cres. The performance penalty takes
into account performance degradation while the monetary
cost accounts for resource wastage. Formally, we define the
immediate cost function c(s, a, s′) as a weighted sum of the
normalized costs:

c(s, a, s′) = wperf · cperf(s, a, s
′) + wres · cres(s, a, s

′) (1)

where wperf and wres, wperf + wres = 1, are non-negative
weights that allow us to express the relative importance of
each cost term. By observing the incurred immediate cost,
the agent updates and estimates the so-called Q-function,
thus improving the threshold update policy. The Q-function
consists in Q(s, a) terms, which represent the expected long-
term cost that follows the execution of action a in state s. So,
it drives the scaling threshold updates.

Figure 1 presents a high-level overview of the two dif-
ferent approaches we propose to support multiple scaling
thresholds, with one threshold for each relevant perfor-
mance metric (i.e., CPU and memory). First, we consider
a single-agent architecture, where a single RL agent updates
the scaling thresholds by taking into account the estimated
contribution of multiple metrics to the application perfor-
mance (Section 4.1). Then, we present a multi-agent architec-
ture, which defines multiple RL agents where each oversees
the threshold on a specific resource metric (Section 4.2).
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4 RL-BASED ARCHITECTURES

In this section, we present the single and multi-agent ar-
chitectures, which use different state and action models
for driving the scale-out thresholds updates. For both ap-
proaches, the Q-function is updated using three different RL
methods (Q-learning, Model-based, and Deep Q-learning),
as described in Section 5.

4.1 Single-agent RL
The single-agent (SA) architecture uses a single RL agent
per microservice to control the scale-out thresholds for the
two performance metrics, i.e., CPU and memory utilization.
We believe this is the most intuitive approach, especially
if we consider the RL agent as a black-box entity that will
eventually learn a suitable threshold update strategy.

State. For the monitored microservice, at time i, we
define its state as si = (θu, u, θr, r), where u is the CPU
utilization, r is the memory utilization, and θu and θr
are the corresponding scale-out thresholds. Being the CPU
utilization, u, a real number in [0, 1], we discretize it by
assuming that u ∈ {0, ū, ..., Luū}, where ū is a suitable
quantum and Lu ∈ N such that Luū = 1. Similarly, we
discretize the memory utilization r ∈ {0, r̄, ..., Lrr̄}, where
r̄ is a suitable quantum and Lr ∈ N such that Lrr̄ = 1. We
also assume that θu and θr range in the interval [Θmin,Θmax],
with 0 < Θmin ≤ Θmax < 1.

Action. In a state s, the RL agent identifies the threshold
adaptation action to be performed. We propose an action
model that consists of A = {−δu,−δr, 0, δu, δr}, where δu,
δr ∈ (0, 1) are suitable threshold quanta. In particular, a = 0
is the do nothing decision, whereas ±δu (or ±δr) represents a
threshold adaptation action: +δu (or +δr) to add a CPU (or
memory) threshold quantum and −δu (or −δr) to decrease
by a threshold quantum. We observe that the number of
microservice states |S| depends also on the threshold quanta
values: |S| = (Lu + 1) · (Lr + 1) · (Θmax

δu
+ 1) · (Θmax

δr
+ 1).

Cost. To each triple (s, a, s′) we associate an immediate
cost function c(s, a, s′), which combines the performance
cperf and resource cost cres as in (1). This cost is aimed to
provide a feedback to the RL agent during the learning
stages. In a single-agent setting, the scaling threshold update
depends on multiple system-oriented metrics. For this rea-
son, we distinguish two contributions for the performance
penalty: the former is related to CPU resource, the latter to
memory resource. The CPU performance penalty cperf,u is
paid whenever the microservice response time t approaches
(or exceeds) the SLO response time Tmax, because higher
CPU utilization causes higher response times (e.g., see [41],
[42]). Similarly, the memory performance penalty cperf,r is
paid when the used memory d exceeds the assigned mem-
ory m. In this case, the microservice incurs in an out-of-
memory exception, which causes performance penalties and
possibly data loss in real applications. We have:

cperf,u(s, a, s
′) =

{
eΓ

t′−Tmax
Tmax t′ ≤ Tmax

1 otherwise

cperf,r(s, a, s
′) =

{
eΓ

d′−m′
m′ d′ ≤ m′

1 otherwise

(2)

being Γ a constant that determines the exponential func-
tion steepness, t′, d′, and m′ the microservice response

time, the used memory, and the assigned memory, re-
spectively, in s′. The received cost grows faster as the
monitored metric approaches its target value. Since the
critical resource drives the thresholds update, we compute
cperf = max{cperf,u, cperf,r}. Also for the resource cost, we
distinguish two different contributions, cres,u for CPU uti-
lization and cres,r for memory usage. For each metric, we can
reasonable assume that the resource cost increases when the
scale-out threshold decreases, because the lower the scale-
out threshold, the higher the number of used resources.
Formally, we define cres,u and cres,r as:

cres,u(s, a, s
′) = e

ξ
Θmin−θ′u

Θmin

cres,r(s, a, s
′) = e

ξ
Θmin−θ′r

Θmin

(3)

being ξ a constant that determines the exponential function
steepness, θ′u and θ′r the scale-out thresholds in s′. The
exponential function allows the performance and resource
cost to have the same dynamics, making them more easily
comparable with one another. Note that the resource cost
does not explicitly consider resource usage, which is not
accounted for in our microservice state s; this relates to
the cost definition as known and unknown cost (as will
be presented in Section 5.2). Defining cres as a function
of the threshold, which is explicitly accounted for in the
system state s, allows us to consider it as a known cost,
thus reducing the amount of unknown cost to be estimated
through experience. This approximation improves the learn-
ing process for model-based solutions. At each discrete
time step, we set cres = max{cres,u, cres,r}. By observing the
incurred immediate costs, the Q-function is updated over
time, thus improving the threshold update policy.

4.2 Multi-agent RL

The multi-agent (MA) approach is a solution for improving
the scalability of an agent that needs to control multiple
metrics. It uses simplifying assumptions leading to inde-
pendent RL agents for each monitored metric that exploit a
more compact state space. We use a RL agent for updating
the CPU threshold, referred as u-agent, and a RL agent to
update the memory threshold, referred as r-agent. These
agents operate in parallel to update the scaling thresholds.

State. For the u-agent, we define s = (θu, u), where θu
is the CPU utilization scale-out threshold, and u is the CPU
utilization. In this case, the state space cardinality is |S| =
(Lu + 1) · (Θmax

δu
+ 1). Similarly, for the r-agent, s = (θr, r),

where θr is the memory utilization scale-out threshold and
r is the amount of used memory.

Action. For both the agents, we propose an action model
that consists of A = {−δ, 0, δ}, where δ ∈ (0, 1) is a thresh-
old quantum to add or subtract to the managed threshold.

Cost. The execution of a in s leads to the transition
in a new microservice state s′ and to the payment of an
immediate cost. We define the immediate cost c(s, a, s′) as
a weighted sum of cperf and cres, according to (1). The u-
agent defines cperf as cperf,u of (2) and cres as cres,u of (3).
Similarly, the r-agent defines cperf as cperf, r and cres as cres, r.
The observed immediate cost allows each agent to update
its Q-function over time.
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5 Q-FUNCTION UPDATE STRATEGIES

Existing RL policies range from model-free to model-based
solutions, according to the degree of system knowledge ex-
ploited to approximate the system behavior [23]. A model-
free solution requires no a-priori knowledge of the system
dynamics, which are learnt over time by interaction with
the system. A model-free RL agent must prefer actions that
it found to be effective in the past (exploitation). However,
to discover such actions, it has to explore new actions
(exploration). One of the main challenges of model-free RL
agents is to find a good trade-off between exploration and
exploitation. Differently, a model-based technique enriches
the RL agent with a model of the system, which drives the
exploration actions and speeds up the learning phase. As
a downside, it may limit the agent scalability. We consider
three different RL methods that differ on how they estimate
and update the Q-function. First, we consider the simple
model-free Q-learning algorithm. Then, we present a model-
based approach, which exploits the known (or estimated)
system dynamics to accordingly update the Q-function.
Both these learning solutions explicitly use a |S| × |A| table
(i.e., Q-table) to store the Q-value for each state-action pair.
The Q-table allows to store the real experience without
approximation. However, this approach may suffer from
slow convergence rate when the number of state-action
pairs increases. To tackle this issue, we also present a Deep
Q-learning approach that combines Q-learning with deep
neural networks. The neural network allows to approximate
the Q-function using a non-linear function; in such a way,
the RL agent can explore a reduced number of system
configurations before learning a good adaptation policy.

5.1 Q-learning Threshold (QL Threshold)

In QL Threshold, the RL agent uses the model-free Q-
learning to update the scaling threshold. At time i, the Q-
learning agent selects action ai to perform in state si using
an ϵ-greedy policy on Q(si, ai); the microservice transits in
si+1 and experiences an immediate cost ci. The ϵ-greedy
policy selects the best known action for a particular state
(i.e., ai = argmina∈A(si)Q(si, a)) with probability 1 − ϵ,
whereas it favors the exploration of sub-optimal actions
with low probability, ϵ. At the end of each time slot i,
Q(si, ai) is updated in O(1) using a weighted average:

Q (si, ai)← (1− α)Q (si, ai) + α

[
ci + γ min

a′∈A(si+1)
Q(si+1, a

′)

]
where α ∈ [0, 1] is the learning rate parameter and γ ∈ [0, 1)
is the discount factor.

5.2 Model-Based Threshold (MB Threshold)

MB Threshold builds on a model-based RL agent to update
the scaling threshold. A model-based RL agent exploits a
system model to speed up the learning phase. Differently
from model-free solutions, it does not use an action selection
policy, but it always selects the best action in terms of Q-
value, i.e., at time i, ai = argmina∈A(si)Q(si, a). Moreover,
the model-based RL approach replaces the model-free equa-
tion to update the Q-function with the Bellman equation:

Q(s, a) =
∑
s′∈S

p(s′|s, a)
[
c(s, a, s′) + γ min

a′∈A(s′)
Q(s′, a′)

]
∀s∈S,

∀a∈A(s)

(4)
where we use estimations for the unknown parameters of
the transition probabilities p(s′|s, a) and the cost function
c(s, a, s′), ∀s, s′ ∈ S . Iterating over all states, actions, and
next states, the update is performed in O(|S|2|A|). At time
i, we estimate p(s′|s, a) as the relative number of times
the system transits from state s to s′ given action a in the
time interval {1, . . . , i}. To better explain how to estimate
p(s′|s, a), we consider the u-agent of the multi-agent. We
estimate p(s′|s, a) as the relative number of times the CPU
utilization changes from state u to u′, given a, in the time
interval {1, . . . , i}. Similar arguments apply for the RL
agents that resort on a different system state definition.

For the estimates of the immediate cost c(s, a, s′), we
observe that it can be written as the sum of two terms,
respectively named as the known and the unknown cost:

c(s, a, s′) = ck(s, a) + cu(s
′) (5)

The known cost ck(s, a) depends on the current state
and action; in our case, it accounts for resource costs. The
unknown cost cu(s′) depends on the next state s′; it accounts
for the performance penalty (1). As we assume that the
application model is not known, we have to estimate cu(s

′)
at run-time. Therefore, at time i, the RL agent observes the
immediate cost ci, computes cu,i(s

′) = ci − ck,i(s, a), and
updates the estimate of the unknown cost ĉu,i(s′) as:

ĉu,i(s
′)← (1− β)ĉu,i−1(s

′) + βcu,i(s
′) (6)

where β ∈ [0, 1] is the smoothing factor. ĉu,i(s′) is then used
to compute the cost of applying a in s according to (5).

For the estimates of the unknown cost, given a state s
and the next state s′, we observe that the expected perfor-
mance penalty is not lower when the scale-out threshold
or the resource utilization increases. Vice versa is also true.
Considering the u-agent of the multi-agent solution, to
speed-up the learning phase, we can heuristically enforce
the following properties while updating ĉu,i(s), ∀s ∈ S :

ĉu,i(s) ≤ ĉu,i(s
′) ∀θu ≤ θ′u, u ≤ u′

ĉu,i(s) ≥ ĉu,i(s
′) ∀θu ≥ θ′u, u ≥ u′

Similar arguments apply to the other state definitions.

5.3 Deep Q-learning Threshold (DQL Threshold)
Deep Q-learning (DQL) Threshold is a Q-learning algorithm
that uses a multi-layered neural network to approximate
the Q-function. So, the network is also called Q-network.
For a state space S and an action space A containing |A|
actions, the Q-network is a parametrized function from RN

to R|A|. In a given state s, the Q-network outputs a vector
of action values Q(s, ·, ϕ), where ϕ are the network param-
eters. At each discrete time step i, the RL agent performs
an action a in the state s, so the microservice transits in
s′ and observes the immediate cost c. At this point, the Q-
network is updated by performing a gradient-descent step
on (yi−Q(s, a, ϕi))

2 with respect to the network parameters
ϕi, where yi is the estimated long-term cost, defined as
yi = c + γ · mina′Q(s′, a′, ϕi). When only the current
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experience (i.e., (s, a, c, s′)) is considered, this approach is
too slow for practical real scenarios. Moreover, it is unstable
due to correlations existing in the sequence of observations.
To overcome these issues, Mnih et al. [29] revised the classic
DQL algorithm introducing two major changes: the use of
a replay buffer and a separate target network to compute
yi. At run-time, the DQL agent observes the application
state and selects an adaptation action using the estimates
of Q-values, as Q-learning does. To perform experience
replay, at each time step i, the agent stores its experience
ei = (si, ai, ci, si+1) in a buffer Di with finite capacity. At
the end of the time step i, DQL resorts on samples (or mini-
batches) of the experience (s, a, c, s′) ∼ U(Di) to simulate
the interaction between the service and the environment,
and accordingly update the Q-network. The mini-batch of
experience U(Di) is drawn uniformly at random from the
pool of samples Di to remove correlations in the observation
sequence and to smooth over changes in the data distribu-
tion. In standard DQL, the same Q-network is used both to
select and to evaluate an action. This makes it more likely
to select overestimated values, resulting in overoptimistic
estimates. To prevent this, we decouple the action selection
from its evaluation. In this approach, two networks are used
(online and target network) and two value functions are
learned. This results in two sets of weights, ϕ and ϕ−, where
the first is used to determine the greedy policy and the
second to determine its value. At iteration i, the Q-network
update uses the following loss function:

L(ϕi) =
∑

U(Di)

(c+ γ ·mina′Q(s′, a′, ϕ−
i )−Q(s, a, ϕi))

2 (7)

where γ ∈ (0, 1) is the discount factor, ϕi are the online
Q-network parameters at iteration i, and ϕ−

i are the tar-
get network parameters at iteration i. The ϕ−

i parameters
are updated to the ϕi values only every τ steps and are
held fixed between individual updates. The loss function is
optimized by stochastic gradient descent; its computational
complexity depends on the neural network structure.

Note that DQL is model-free: it solves the RL task
directly using samples, without explicitly estimating the
cost function and the transition probabilities. It is also off-
policy, because it learns a policy that is different from the
policy used for action selection, which ensures adequate
exploration of the state space. We resort to an ϵ-greedy
policy as action selection policy.

We evaluate the proposed solutions using simulation
experiments. We show the flexibility of the RL-based ap-
proaches under different cost function configurations (Sec-
tion 5.5). Then, we compare the multi-agent approach
against the single-agent one (Section 5.6). In Section 5.7,
we generalize the evaluation by considering different work-
loads.

5.4 Experimental Setup

We consider a reference microservice application modeled
as an M/M/ki queue, where ki is the number of microser-
vice replicas at time step i. Each microservice replica has
a service rate µ of 120 requests/s; the SLO requires the
application response time to be at most Tmax = 12 ms.
The scale-in threshold is set to 20% of CPU and memory
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Fig. 2. Workload based on NYC Taxi Ride traces.

utilization, whereas the scale-out threshold can range be-
tween Θmin = 50% and Θmax = 90%. The RL algorithms
use the following parameters: α = 0.1 (QL Threshold),
β = 0.1 (MB Threshold), and discount factor γ = 0.99.
The discount factor γ, being close to 1, allows the RL agent
to act with foresight, while the smoothing factors α and β
enable to adapt the learned policies to (possibly) varying
system dynamics. We discretize the application state with
ū = r̄ = 0.1, and we set the threshold adaptation quantum
to δ = 5%. The cost function parameters are Γ = 10 and
ξ = Γ

Θmax
; they result from preliminary evaluations, where

we wanted the two cost contributions to range in the same
interval. To update the threshold, QL and DQL Threshold
use an ϵ-greedy action selection policy, with ϵ = 0.1. DQL
uses a replay memory with capacity of 50 observations and
a batch size of 30; the target Q-network update frequency
is τ = 5 time units. Configuring correctly the Q-network is
an empirical task, which required some effort and several
preliminary evaluations [29]. We implement the neural net-
work using Deeplearning4j [43]. In particular, we use the
rectified linear function as neuron activation function: due
to its non-linear behavior, it is one of the most commonly
used functions. To initialize the Q-network weights, we use
the Xavier method [44]. To avoid weights to diminish or
explode during network propagation, this method scales
the weight distribution on a layer-by-layer basis. As regard
the Q-network architecture, we select two distinct configu-
rations for the single-agent and the multi-agent. The single-
agent DQL Threshold uses a Q-network architecture that is
fully-connected with 5 layers with {4, 12, 12, 15, 3} neurons.
The multi-agent uses a neural network with 4 layers with
{4, 12, 12, 3} neurons.

5.5 Optimization Objectives

This first set of experiments aims to show the flexibility
of RL-based solutions to dynamically adapt the scaling
thresholds. As shown in [6], a static threshold-based pol-
icy suffers from lack of flexibility and SLO unawareness,
because it is not easy to satisfy a user-oriented SLO by
setting thresholds on a system-oriented metric. This task is
even more challenging when we consider multiple scaling
metrics. Conversely, in the proposed approach, dynamic
thresholds can be trained to optimize different deployment
objectives, i.e., minimize Tmax violations, the average num-
ber of replicas, or their combination. We consider that the
application receives an incoming request rate that varies
over time (see Fig. 2). It is a surrogate workload based on
NYC Taxi Ride traces [45], where CPU and memory demand
have a similar trend, so both can trigger scaling decisions.
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TABLE 1
Application performance using different dynamic and multi-metric threshold-based scaling policies. Single-agent (SA) and Multi-agent (MA)

architectures are considered, with different model-based and model-free RL solutions for updating the scaling thresholds.

Architecture Policy Configuration Average CPU Average CPU Average Memory Average Memory Median response Tmax violations Memory violations Average number
⟨wperf , wres⟩ threshold (%) utilization (%) threshold (%) utilization (%) time (ms) (%) (%) of replicas

SA MB Threshold ⟨1, 0⟩ 50.52 33.56 50.18 32.02 8.35 5.42 0 6.85
⟨0.5, 0.5⟩ 68.60 40.07 68.71 38.25 8.43 6.60 0 5.68
⟨0, 1⟩ 89.99 50.32 89.98 48.02 9.00 14.07 0.07 4.48

QL Threshold ⟨1, 0⟩ 63.75 34.85 67.43 33.27 8.36 6.22 0 6.63
⟨0.5, 0.5⟩ 70.71 36.59 71.70 34.93 8.37 6.15 0 6.25
⟨0, 1⟩ 75.63 38.81 78.58 37.05 8.42 6.65 0 5.84

DQL Threshold ⟨1, 0⟩ 64.50 35.09 52.94 33.47 8.35 6.17 0.02 6.62
⟨0.5, 0.5⟩ 86.36 41.49 86.30 39.59 8.41 10.70 0.05 5.64
⟨0, 1⟩ 85.98 48.14 87.15 45.95 8.73 12.90 0.05 4.71

DQL Threshold ⟨1, 0⟩ 64.04 33.71 51.08 32.17 8.35 5.50 0 6.83
(pre-trained) ⟨0.5, 0.5⟩ 87.99 42.69 86.67 40.76 8.50 9.65 0.05 5.49

⟨0, 1⟩ 88.71 49.75 87.45 47.47 9.00 13.32 0.07 4.55
MA MB Threshold ⟨1, 0⟩ 50.10 33.58 50.01 32.04 8.35 5.67 0 6.85

⟨0.5, 0.5⟩ 67.23 42.43 73.90 40.50 8.54 7.22 0 5.31
⟨0, 1⟩ 89.99 50.32 89.99 48.02 9.00 14.07 0.07 4.48

QL Threshold ⟨1, 0⟩ 70.38 35.43 68.52 33.82 8.36 6.05 0 6.50
⟨0.5, 0.5⟩ 75.56 40.76 82.84 38.92 8.46 7.42 0 5.58
⟨0, 1⟩ 86.82 48.03 87.48 45.85 8.81 10.72 0 4.70

DQL Threshold ⟨1, 0⟩ 52.50 33.68 52.64 32.14 8.35 5.45 0 6.82
⟨0.5, 0.5⟩ 67.24 39.18 66.56 37.39 8.42 6.70 0 5.80
⟨0, 1⟩ 73.71 41.62 71.26 39.72 8.51 7.75 0 5.49

DQL Threshold ⟨1, 0⟩ 52.20 33.67 52.62 32.12 8.35 5.55 0 6.83
(pre-trained) ⟨0.5, 0.5⟩ 65.07 38.00 80.03 36.29 8.41 6.95 0 6.01

⟨0, 1⟩ 81.92 43.52 78.42 41.55 8.53 10.05 0.02 5.34
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Fig. 3. Application performance using Multi-agent MB Threshold under different configurations of the immediate cost function.

We consider the SA and MA approaches, each with
QL Threshold, MB Threshold, and DQL Threshold. Table 1
summarizes the experimental results. First, we discuss the
results obtained with the MA approach. Overall, we can
see that the RL-based approaches are flexible and can be
tuned to optimize different deployment objectives, as fol-
lows from (1). Using an estimated model of the system
dynamic, MB Threshold can successfully learn a different
scaling threshold update strategy according to the different
weight configurations. The effect of the different weights
clearly appears by comparing the application performance
in Fig. 3. When the cost function penalizes response time
violations (i.e., with wperf = 1), the average threshold values
are rather close to 50%, which implies more frequent scale-
up adaptations and thus a relative high number of replicas
with an average number of 6.85 (see Fig. 3a). Since the
application is readily scaled, the resulting response time
is below Tmax most of the time. When we aim to save
resources (i.e., wres = 1), the microservice Tmax violations
grow to 14.07% and the microservice response time registers
different response time peaks when the CPU utilization is
approaching 75% (see Fig. 3c). In this case, we obtain an
average threshold value close to 90%, less frequent scale-
ups and the resulting average number of replicas decreases
to 4.48, corresponding to a 35% reduction of resources
consumption. By varying the weights we obtain a wide
set of adaption strategies. With equal weights, that is,

wperf = wres = 0.5, we obtain an average CPU and memory
threshold value of 67% and 74%, respectively. From Fig. 3b,
we can observe that such behavior is needed to meet Tmax

requirements and avoid resource wastage.

We now compare MB Threshold against the model-free
RL solutions, which obtain, in general, a worse application
performance. From Table 1, we can see that QL Threshold
frequently updates the scaling thresholds and only slightly
differentiates the average threshold value for the various
cost configurations. Differently from MB Threshold, it learns
a less accurate application model, which results in sub-
optimal thresholds for the cost function weights wperf = 1.
This behavior is also partially present in DQL Threshold;
nevertheless, thanks to the replay buffer and the target
network, the latter can more quickly converge to a stable
solution. DQL Threshold learns good scaling thresholds
for wperf = 1 and wperf = wres = 0.5, resulting in Tmax

violations and average resource utilization close to those
obtained by MB Threshold. When wres = 1, DQL Threshold
slowly learns the threshold update policy. This depends
on the Q-function approximation by DQL; in the first half
of the experiment, DQL Threshold progressively updates
the threshold up to a value ranging between 80% and
90%. This setting results in a slightly higher microservice
replication degree and reduced resource utilization with
respect to MB Threshold. Although we could pre-train the
Q-network to further improve DQL Threshold (mitigating
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(a) Scale-out threshold values and Q-value update execution
time when the SA architecture computes the CPU and memory
scaling thresholds.
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(b) Scale-out threshold values and Q-value update execution
time under the MA architecture, where the u-agent and r-agent
compute the scaling threshold on CPU and memory utilization,
respectively.

Fig. 4. Threshold updates and execution time analysis of the different
RL solutions, when the cost functions weights are wres = wperf = 0.5.

also the initial exploration phase), the obtained results are
already remarkable, considering its model-free nature.

5.6 Comparing Single- and Multi-agent Architectures

The SA and MA architectures use a different model of
the system state as well as of the available actions. The
SA uses a system model with higher cardinality than MA,
with 9801 state configurations and 5 actions instead of 99
and 3, respectively. Also in this case, QL Threshold is the
approach that behaves worse than the others, because it
needs a lot of samples before learning a good threshold
adaptation strategy. During the experiment, it continuously
explores the state-action pairs, learning a rather inaccurate
system model. Differently from MA, in this case a larger
number of configurations should be explored. When the SA
uses DQL Threshold or MB Threshold, it learns different
threshold update strategies according to the cost function
weights, as in the previous section. So we need to delve
into the key differences of the two approaches. In Fig. 4,
we show the CPU and memory scaling threshold updates
for MB Threshold and DQL Threshold as well as the time
needed to run the RL agent and update the Q-function
(referred to as execution time). We only show the more
challenging case having wperf = wres = 0.5. Figure 4a shows
that SA DQL Threshold learns scaling thresholds that tend
to save resources instead of finding a trade-off with the
application requirement satisfaction. This mainly depends
on the problem space cardinality, which requires the Q-
network to see a larger number of samples before correctly
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Fig. 5. Workload based on Bitbrains Rnd traces.

approximating the Q-function. DQL Threshold has a very
limited execution time, which is always below 30 ms. Con-
versely, MB Threshold computes a better threshold update
policy for both CPU and memory utilization. Nevertheless,
the complexity of this approach clearly appears by looking
at its execution time in Fig. 4a.

With the MA architecture, each RL agent can more easily
learn a good adaptation policy, since it has to explore a
reduced number of state-action pairs. As shown in Fig. 4b,
DQL Threshold and MB Threshold set the threshold at
around the 50% of the scale-out threshold range, identify-
ing a good trade-off between Tmax violations and average
resource utilization. MB Threshold uses a more accurate
system model, so it changes less often the thresholds (see
Table 1). Figure 4b shows how the MA architecture drasti-
cally drops the execution time of MB Threshold, which is
now even lower than the execution time by DQL Threshold.

5.7 Microservices with Different Critical Resource
The proposed scaling policies adapt the deployment of
microservices having different type of critical resource.

5.7.1 Bitbrains Workload
In this experiment, we benchmark the proposed dynamic
threshold policies using the Rnd dataset from the GWA-T-12
Bitbrains workload trace [46]. Bitbrains is a service provider
specialized in managed hosting and business computation
for enterprises. The Rnd dataset consists of the resource
usages of virtual machines used by the application services
hosted within the Bitbrains data center. We accordingly
amplified the dataset to further stress our microservices, ob-
taining the workload in Fig. 5. Differently from the previous
experiments, in this case the application is mostly memory-
demanding. Fig. 6 shows the threshold update during the
experiment for the SA and MA architectures for the cost
configuration wres = wperf = 0.5. Also in this case, MA
performs better than SA, allowing the RL agent to more
quickly learn the threshold update policy. We observe that
MA leads to a lower scaling threshold on memory usage,
because it learns that memory is the bottleneck resource.
By setting the memory threshold on average on 68% and
67% respectively, MB and DQL Threshold lead to similar
application performance, resulting in 5 microservice replicas
and a 0.02% of Tmax and memory demand violations.

5.7.2 CPU and Memory Intensive Workloads
We now consider two types of synthetic workload, each
with a different dominant resource request (see Fig. 7). Ta-
ble 2 summarizes the experimental results. Also in this case,
MA performs better that SA, and the MA with MB Thresh-
old performs slightly better than DQL Threshold, allowing
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TABLE 2
Application performance for the synthetic CPU-intensive and memory-intensive workloads, using MA with different scaling policies.

Workload Policy Configuration Average CPU Average CPU Average Memory Average Memory Median response Tmax violations Memory violations Average number
⟨wperf , wres⟩ threshold (%) utilization (%) threshold (%) utilization (%) time (ms) (%) (%) of replicas

CPU-intensive MB Threshold ⟨1, 0⟩ 50.01 36.20 50.10 8.69 8.43 1.42 0 5.71
⟨0.5, 0.5⟩ 67.94 42.46 89.99 10.19 8.74 2.12 0 4.93
⟨0, 1⟩ 89.99 56.26 89.99 13.50 10.75 35.17 0 3.75

DQL Threshold ⟨1, 0⟩ 52.32 36.20 52.59 8.69 8.43 1.42 0 5.71
⟨0.5, 0.5⟩ 64.66 39.23 66.12 9.41 8.47 2.87 0 5.42
⟨0, 1⟩ 73.41 45.77 74.14 10.98 8.74 12.60 0 4.64

Mem-intensive MB Threshold ⟨1, 0⟩ 50.01 9.03 50.01 32.50 8.33 0 0 5.04
⟨0.5, 0.5⟩ 87.55 11.18 86.56 40.24 8.34 0 0 4.03
⟨0, 1⟩ 89.99 15.17 89.99 54.61 8.36 0.07 0.17 3.26

DQL Threshold ⟨1, 0⟩ 52.54 9.03 52.66 32.50 8.33 0 0 5.04
⟨0.5, 0.5⟩ 64.35 10.43 67.24 37.56 8.33 0 0 4.34
⟨0, 1⟩ 71.82 11.23 73.65 40.43 8.34 0 0 4.03

u-agent
MB Threshold ⟨1, 0⟩ 50.01 25.95 - 93.43 9.29 10.07 46.01 1.81
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(a) Threshold values when the SA solution computes the CPU
and memory scaling thresholds.
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(b) Threshold values with the MA solution.

Fig. 6. Threshold updates for the Bitbrains Rnd workload, when the cost
function weights are wres = wperf = 0.5.
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(a) CPU-intensive workload.
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(b) Memory-intensive workload.

Fig. 7. Synthetic workloads with different pattern of resource request.

the RL agent to more quickly learn a suitable threshold
adaptation policy. We first discuss the CPU intensive work-
load considering the most challenging cost configuration,
i.e., wres = wperf = 0.5 (Fig. 7a). MB Threshold quickly
identifies the CPU as the critical resource, so it sets a lower
scaling threshold for CPU than for memory (respectively

67.94% and 89.99%, on average). The memory is not the bot-
tleneck resource and, although it would encourage scale-in
actions, the CPU utilization actually drives the microservice
adaptation. We observe a similar performance also for DQL
Threshold. On average, DQL Threshold results in a slightly
higher number of microservice replicas than MB Threshold,
due to the different memory threshold average value. More-
over, it also changes the thresholds more frequently.

When we consider the memory intensive workload
(Fig. 7b), we expect that a scaling policy that only takes
into account CPU resources would be unable to successfully
adapt the application deployment. As an example, we run
the MA with MB Threshold by disabling the r-agent (i.e.,
with only the u-agent that considers CPU) and by setting
wperf = 1 in the cost function. Although the agent uses a
scale-out threshold on 50% of CPU utilization, scaling ac-
tions are rarely triggered, resulting in 46% memory demand
violations. Conversely, the proposed multi-metric solutions
(i.e., MB and DQL Threshold) can correctly react to CPU
and memory demand changes. When wperf = 1, both MB
and DQL Threshold result in no memory violations using,
on average, 5.04 microservice replicas. Also for this work-
load, the MB approach succeeds in improving the threshold
update strategy, especially when the cost function requires
to save resources (i.e., wres = 1).

5.8 Discussion
We extensively evaluated the proposed RL-based threshold
update strategies using two different architectures: SA and
MA. First, we showed the flexibility provided by a RL-based
solution for updating the scaling thresholds. By correctly
defining the relative importance of the deployment objec-
tives through the cost function weights in (1), the RL-agent
can accordingly learn a suitable threshold update strategy.
Second, we showed that a model-based RL approach takes
advantage of the system model to estimate the effect of
performing an action in a given state. Although this allows
to boost the learning phase, defining the model is not a
trivial task and, when multiple metrics are considered, it
can penalize the execution time. To overcome this issue,
we proposed the MA architecture, which shows good per-
formance at a reduced Q-function update execution time
(due to the smaller state-action pairs cardinality). Our ex-
periments showed that MA with MB Threshold is the best
strategy for controlling dynamic multi-metric thresholds.
Since determining the system model can be challenging,
we also explored a DQL-based approach. Although we do
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not need to define the system model, DQL introduces the
effort of defining the Q-network architecture, which is an
empirical process and may require a large number of trial-
and-error repetitions. Note that we adopted two different
network architectures for SA and MA. We showed that DQL
Threshold outperforms QL Threshold and achieves perfor-
mance close to MB Threshold, especially when we pre-train
the Q-network. To conclude, we showed that the proposed
approaches correctly perform under different application
workloads (i.e., CPU-intensive, memory-intensive, mixed).

6 PROTOTYPE-BASED EXPERIMENTS

We evaluate the proposed scaling policies in a real environ-
ment. First, we present the basic concepts of Kubernetes and
of the custom scaling policies integration into it. Second, we
present three state-of-the-art scaling policies against which
we compare our own. Then, we evaluate our policies with
CPU- and memory-intensive microservices.

6.1 Integration into Kubernetes
Kubernetes is an open-source orchestration platform that
simplifies the deployment, management, and execution of
containerized applications. A pod is the smallest deploy-
ment unit in Kubernetes. It consists of one or more tightly
coupled containers that are co-located and scaled as an
atomic entity. Each application microservice is deployed
using a pod. Kubernetes allows to configure each pod with
specific resource requests and limits. A resource request
is the minimum amount of (CPU and memory) resources
needed by the pod. A resource limit is the maximum
amount of resources that can be assigned to the pod.

To integrate new deployment policies in Kubernetes, we
provide a custom auto-scaler that follows a MAPE control
loop [47]. At each loop iteration, our auto-scaler monitors
the environment and the controlled microservice; then, it
analyzes application-level and system-level metrics; accord-
ingly, it plans the scaling actions which are then executed
using the Kubernetes APIs. The different scaling policies
implement the planning phase of the MAPE control loop.
Updating the thresholds does not restart containers. Then,
the auto-scaler adds or removes containers based on CPU
and memory usage by the service. Scaling-out operations
do not affect the microservice’s instances currently running.

6.2 Benchmark Policies
Horizontal Pod Autoscaler. Kubernetes includes the Hor-
izontal Pod Autoscaler (HPA), which relies on CPU uti-
lization to horizontally scale a single microservice deploy-
ment [48]. HPA monitors the CPU utilization of the mi-
croservice pods. It scales the number of pods according to
the ratio between the observed value and the target value of
CPU utilization. Recently, Kubernetes provides a beta API
to autoscale deployment on multiple observed metrics (e.g.,
CPU and memory utilization). After evaluating each metric
individually, HPA uses the most critical one to take scaling
decisions. HPA relies only on static thresholds.

HyScale. HyScale [7] combines horizontal and vertical
scaling to adapt the microservice deployment. It adjusts
the CPU and memory limit of each pod, aiming to make

resource utilization as close as possible to the target one.
HyScale gives priority to vertical scaling and performs
horizontal scaling only if the required amount of resources
cannot be acquired otherwise. HyScale plans scaling actions
by using target utilization values (similarly to HPA).

Horovitz et al. Horovitz et al. [8] propose a model-free
Q-learning approach to dynamically adapt the CPU scaling
thresholds. It uses the number of microservice replicas as
state and the threshold update as action. An additional
data structure is required for mapping each state to the last
exploited threshold value. Differently from our approach,
the proposed solution also uses an additional heuristic to
determine whether to update and activate the RL agent.

6.3 Experimental Setup
We run the experiments on a cluster of 5 virtual machines
of the Google Cloud Platform; each virtual machine has 2
vCPUs and 4 GB of RAM (type: e2-medium).

To evaluate our dynamic threshold scaling policies, we
consider two microservices: Pi and Word-count. They are
RESTful web services, implemented in Python using Flask.
Pi is a CPU-intensive service: upon request, a Monte Carlo
algorithm approximates π after placing 1000 random points
in a unit square. Word-count is a memory-intensive mi-
croservice: for each sentence received as request, the service
extracts its words and returns the updated word count. The
counter keeps track of the word occurrences received in the
last κ seconds. Each word-count pair is kept in memory. We
deploy each service instance using a pod with 500 millicore
(i.e., 0.5 vCPU) and 256 MB of RAM.

We parametrize the RL-based policies as in Section 5.4.
The Pi service requires its response time to be below
Tmax = 150 ms and sets the scale-in threshold to 20% of CPU
and memory utilization. Word-count requires Tmax = 100
ms and we use a count window of κ = 120 s. For Word-
count, we set the scale-in thresholds of CPU and memory
utilization to 20% and 35%, respectively. The latter thresh-
old accounts for the service’s baseline memory footprint.
We compute the application response time as the average
request completion time over a tumbling window of 10 s.

6.4 Scaling Policies Evaluation
In this section, we show the benefits of multiple scaling
thresholds when heterogeneous microservices are deployed
using Kubernetes. We do not present QL Threshold due to
space limits; however, it does not improve its performance
over the other solutions (see Section 5.3). For the RL-based
solutions, we consider the most challenging set of weights
wperf = wres = 0.5. In HyScale, the CPU and memory limit
ranges in the interval [0.25, 1] vCPU and [100, 1024] MB,
respectively. Table 3 summarizes the experimental results.

CPU-intensive Microservice: Pi. The microservice re-
ceives a workload that follows the NYC Taxi Ride trace [45],
accordingly amplified and accelerated so to further stress
the service resource requirements, as shown in Fig. 8. When
the SA architecture is considered, MB Threshold deploys on
average 2.26 instances, setting the CPU scaling threshold to
75.96%. Being Pi a CPU-intensive microservice, we register
a memory utilization that is, on average, below the scale-in
threshold. As a consequence, the CPU utilization actually
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TABLE 3
Prototype-based experiments: Application performance with different threshold-based scaling policies and applications.

Application Architecture Policy Average CPU Average CPU Average Memory Average Memory Average Share Median response Tmax violations Memory violations Average number
threshold (%) utilization (%) threshold (%) utilization (%) CPU/Mem (MB) time (ms) (%) (%) of replicas

Pi SA MB Threshold 75.96 43.35 76.00 15.59 90.38 6.92 0 2.26
DQL Threshold 83.05 48.93 67.92 18.43 75.24 8.81 0 1.70
DQL Threshold 89.09 49.30 88.80 15.69 85.14 9.43 0 1.74

(pre-trained)
MA MB Threshold 79.27 47.66 89.94 15.25 73.66 8.99 0 1.98

DQL Threshold 52.58 34.30 52.75 14.77 66.81 1.12 0 2.79
DQL Threshold 72.78 42.29 82.61 15.09 76.47 5.56 0 2.12

(pre-trained)
- HPA 80/80 80.00 49.94 80.00 15.48 82.12 9.59 0 1.56

HPA 70/70 70.00 47.75 70.00 17.53 72.57 6.03 0 1.61
HPA 60/60 60.00 43.37 60.00 14.87 70.05 5.46 0 1.70

- HyScale 80/80 80.00 63.09 80.00 37.27 0.388/100 115.28 47.56 0 1.00
HyScale 70/70 70.00 58.46 70.00 35.81 0.440/100 82.86 35.00 0 1.02
HyScale 60/60 60.00 53.49 60.00 36.15 0.511/100 72.42 26.76 0 1.11

- Horovitz et al. 57.20 34.21 - 15.99 12.19 1.51 0 2.68
Word-count SA MB Threshold 78.83 26.64 78.71 52.93 6.56 5.65 0 2.69

DQL Threshold 76.35 33.88 84.29 50.83 8.02 14.18 0.71 2.52
DQL Threshold 88.25 42.13 88.59 59.20 17.11 21.25 0.63 1.64

(pre-trained)
MA MB Threshold 78.06 27.96 73.41 53.51 6.35 8.24 0 2.56

DQL Threshold 52.38 21.94 52.86 44.54 6.29 4.76 0 3.40
DQL Threshold 68.68 31.08 71.67 53.13 7.68 11.49 0 2.31

(pre-trained)
- HPA 80/80 80.00 47.01 80.00 53.03 30.47 30.29 0 1.20
- HPA 70/70 70.00 28.04 70.00 55.58 6.81 4.29 0 2.23
- HPA 60/60 60.00 25.33 60.00 47.14 5.91 1.42 0 2.61
- HyScale 80/80 80.00 51.51 80.00 40.97 0.303/200 35.95 29.07 0 1.00

HyScale 70/70 70.00 49.96 70.00 39.59 0.352/201 32.88 25.00 0 1.00
HyScale 60/60 60.00 46.16 60.00 37.03 0.314/200 42.26 32.56 0 1.00

- Horovitz et al. 58.68 34.34 - 59.17 8.67 9.37 1.56 1.72
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Fig. 8. Workload used for the Pi service.
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(a) Scale-out threshold values with a single-agent solution.

45

60

75

90

          

C
P

U
T

h
re

s
h

o
ld

(p
e

rc
e

n
ta

g
e

)

45

60

75

90

0 10 20 30 40 50 60 70 80 90

M
e

m
o

ry
T

h
re

s
h

o
ld

(p
e

rc
e

n
ta

g
e

)

Time (minutes)

MB DQL DQL Pre-trained

(b) Scale-out threshold values with the multi-agent solution.

Fig. 9. Threshold updates for the Pi service, when the cost function
weights are wperf = wres = 0.50.

drives the microservice adaptation although the memory
encourages scale-in actions. When DQL Threshold is con-
sidered, we observe a slightly worse performance. DQL
Threshold learns an adaptation policy that prefers to save
resources instead of finding a trade-off between application
performance and resource utilization. It uses on average
1.70 replicas, registering 8.81% of Tmax violations. To miti-
gates the initial exploration of the tabula rasa approaches (as

by MB and DQL Threshold solutions), we could pre-train
the Q-network of DQL. However, we do not observe sig-
nificant performance improvement. This happens because
of the complexity of the SA architecture combined with
the model-free nature of DQL. We now consider the MA
architecture. As shown in Fig. 9, the MB approach succeeds
identifying the CPU as the bottleneck resource. So, it sets
a lower scaling threshold for CPU than for memory. MB
Threshold identifies an adaptation policy that runs the mi-
croservice using, on average, 1.98 instances with an average
CPU utilization of 47.66%. Conversely, DQL Threshold is
not able to find a suitable trade-off between performance
degradation and resource wastage at run-time. Setting on
average the thresholds to 53%, DQL Threshold deploys a
higher number of deployed replicas with a low 34.30%
of CPU utilization. We need to pre-train the Q-network to
improve the performance of DQL Threshold (see Table 3).

We now compare our results against the policies de-
scribed in Section 6.2. HPA and HyScale are application-
unaware and require to manually set the thresholds on CPU
and memory utilization. In HPA, changing the CPU scaling
threshold affects the microservice performance: the number
of Tmax violations decreases from 9.59% to 5.46% when
setting the threshold from 80% to 60%; the average number
of microservices replicas increases from 1.56 to 1.70. Differ-
ently from the previous policies, HPA does not immediately
react to load variations, but allows a limited time interval
before performing the scaling. HPA uses a simple strategy,
which however moves the complexity on the threshold
definition. It can obtain valid scaling strategies, but we need
to manually tuning its parameters, and explore the effect of
the different thresholds (see Table 3). HyScale extends HPA
preferring vertical to horizontal scaling. HyScale sets the
memory share to 100 MB, the minimum value for memory
limit, which is reasonable being Pi CPU-intensive. When the
CPU scaling threshold is increased from 60% to 80%, the
average CPU utilization increases from 53.49% to 63.09%,
which is obtained by decreasing the average CPU share of
pods from 510 to 388 millicore. The other policies can only
assign multiple of 500 millicore. Although improving uti-
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Fig. 10. Workload used for the Word-count service.
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Fig. 11. Word-count: Service performance using Kubernetes HPA and
setting to 80% the memory and CPU scaling thresholds.

lization is desirable, HyScale results in a very high number
of Tmax violations (even with 60% as CPU threshold). This
is also due to the high number of vertical scaling operations
performed (63% of the time). To implement vertical scaling,
Kubernetes gradually creates pods with the new configura-
tion and deletes the old ones; in this stage, the application
availability decreases. Differently from HPA and HyScale,
our policies can automatically learn how to set and update
the scaling thresholds, according to the desirable deploy-
ment goals. Dynamic thresholds have been proposed also
by Horovitz et al.; their solution uses Q-leaning to update
the CPU scaling threshold and avoid Tmax violations. Table 3
shows that this policy meets the target response time at the
cost of a very low average CPU utilization (on average,
34.21%) and a high number of pods (on average, 2.68).
This policy computes a very low CPU scaling threshold
(57.20, on average), which mainly results from the update
heuristic that activated the RL agent only 7.58% of the time
during the experiment. Conversely, our policy can be tuned,
as in this experiment, so to limit response time violations
while avoiding resource under-utilization. Importantly, we
do not define custom update rules, but we rely on pure
learning approaches, where the agent itself learns how to
configure the thresholds by exploiting experience and an
approximated system model.

Memory-intensive Microservice: Word-count. The
workload’s request pattern for the Word-count microservice
is shown in Fig. 10. From Table 3, we observe that higher val-
ues of memory utilization emphasize the memory-intensive
nature of this service. Note also that, although the threshold
values are, on average, quite similar, the monitored CPU
utilization is, on average, significantly lower than the thresh-
old. Hence, for Word-count it is the memory utilization that
drives the deployment adaptation by triggering scale-out
actions. When the SA architecture is adopted, MB Threshold
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(a) Threshold value with a single-agent solution.
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(b) Threshold value with the multi-agent solution.

Fig. 12. Threshold updates for the Word-count service when the cost
function weights are wperf = wres = 0.50.

identifies an adaptation policy that runs the microservice
using, on average, 2.36 replicas and achieves an average
CPU and memory utilization of 30.40% and 53.94%, respec-
tively. Fig. 12a shows that DQL Threshold cannot efficiently
update the scale-out thresholds, whose values range from
50% to 90%. Pre-training the Q-Network does not lead to
a significant improvement, due to the challenging learning
task required by the SA architecture. Conversely, the MA
architecture simplifies the learning task, resorting to two RL
agents (i.e., u-agent and r-agent) that operate on a reduced
size space. This leads to an overall performance improve-
ment. Differently from Pi, Word-count requires to carefully
monitor both CPU and memory (compare Fig. 12 against
Fig. 9): each request is served by a service thread leading
to both memory and CPU usage increment as the number
of requests increases as well. As shown in Table 3, also in
this case, MB Threshold learns a better adaptation strategy.
On average, it sets the memory and CPU scaling thresholds
to 77.15% and 78.02%, respectively. DQL Threshold slowly
learns how to adapt the scaling threshold, resulting on an
average threshold value of 53% for both CPU and memory.
This results in a higher number of service replicas (on
average, 3.40 pods are deployed instead of 2.56). In this
case, pre-training the Q-network clearly improves the DQL
Threshold behavior, which can quickly identify the memory
as the bottleneck resource (see Fig. 12b). Determining static
thresholds for Word-count using HPA is more challenging
than for Pi. Table 3 shows that small changes on the scale-out
thresholds lead to very different application performance.
When HPA uses the CPU and memory scale-out thresholds
set to 80%, it deploys 1.20 replicas on average and registers a
CPU and memory utilization of 47% and 53%, respectively.
However, as shown in Fig. 11, the memory is often over-
utilized and, as a consequence, the service is continuously
restarted due to out-of-memory exceptions. By setting the
thresholds to 70% or 60%, the application achieves better
performance; nonetheless, we might still perform a finer
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thresholds’ tuning to find an application deployment that
better satisfies our goals. HyScale achieves performance
results worse than the other policies. For all the threshold
values, it results in a very high number of Tmax violations
(about 30%), with an average CPU and memory utilization
of about 50% and 40%, respectively. Also in this case,
HyScale aggressively changes the microservice deployment
most of the time through vertical scalings. The policy by
Horovitz et al. does not consider memory utilization; as
expected, since Word-count is memory-intensive, scaling it
using only CPU utilization as metric leads to the highest
value of memory demand violations. As for Pi, this heuristic
updates the Q-table less than 13% of the time.

6.5 Discussion

The prototype-based experiments show the benefits of dy-
namic thresholds as well as of the MA architecture. Dif-
ferently from HPA and HyScale, the proposed dynamic
threshold-based policies avoid the process of manually tun-
ing the scaling threshold, which may require a detailed
profiling of the microservices to deploy. Moreover, the RL-
based solutions allow to specify what to obtain instead of
how to obtain it. Specifically, they allow to specify deploy-
ment goals in terms of user-oriented application metrics
(e.g., response time), instead of system-oriented metrics.
Exploiting an approximate system model, our RL solutions
do not require additional rules or heuristics to boost learn-
ing (as Horovitz et al. do). The experiments confirm the
positive impact of a MA architecture on RL agent scalability,
thus reducing the execution time. Indeed, the average exe-
cution time of MB Threshold, on all the prototype-based
experiments, dropped from 864 ms (SA architecture) to
1 ms (MA architecture). As regards the comparison between
MB Threshold and DQL Threshold, the same conclusion
of Section 5.3 holds: MB Threshold is more promising,
because it benefits from the system model. However, also
DQL Threshold achieves satisfactory results, especially if we
resort on pre-training. This approach could be successfully
adopted in contexts where modeling the system is hard.

7 CONCLUSION

Today’s cloud providers support the elasticity of
microservice-based applications by creating multiple, de-
centralized auto-scaler instances, each one in charge of
adapting a single microservice. Threshold-based policies are
the most popular strategy to efficiently scale microservices
at run-time. Most cloud-native applications are heteroge-
neous in nature, so considering only a single metric to scale
microservices turns out to be ineffective. Defining multiple
thresholds manually to address different application needs
is an error-prone and cumbersome task. Therefore, we pro-
posed self-adaptive and multi-metric threshold-based poli-
cies to efficiently control the elasticity of microservices with
different resource demands. We relied on RL to dynamically
update the scaling thresholds for each relevant metric and,
in particular, we designed different model-free and model-
based approaches: QL Threshold, DQL Threshold, and MB
Threshold. To reduce the control policy execution time when
multiple metrics are considered, we also presented a MA

architecture, that defines a RL agent for each controlled
metric, and compared it against the more intuitive SA ar-
chitecture. We conducted a thoroughly evaluation, showing
the benefits of self-adaptive multi-metric thresholds and of
the proposed RL-based approaches. MB Threshold exploits
the estimated system dynamics to speed up the learning
phase, leading to better application performance; however,
modeling the system can be challenging. Therefore, we
also explored a DQL-based approach, where a deep neural
network learns to estimate the system dynamics.

As future work, we plan to consider additional re-
source metrics (e.g., network and I/O usage) and to devise
global policies to seamlessly coordinate the scaling of multi-
component applications.
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