
Request Redirection Algorithms for
Distributed Web Systems

�

Valeria Cardellini
University of Roma Tor Vergata

Roma, Italy 00133

cardellini@ing.uniroma2.it

Michele Colajanni
University of Modena

Modena, Italy 41100

colajanni@unimo.it

Philip S. Yu
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

psyu@us.ibm.com

Abstract

Replication of information among multiple servers is necessary to support high request rates to pop-
ular Web sites. We consider systems that maintain one interface to the users even if they consist of
multiple nodes with visible IP addresses that are distributed among different networks. In these sys-
tems, the first-level dispatching is achieved through the Domain Name System (DNS) during the address
lookup phase. Distributed Web systems can use some request redirection mechanism as a second-level
dispatching, because the DNS routing scheme has limited control on offered load. Redirection is always
executed by the servers, but there are many alternatives that are worth of investigation. In this paper, we
explore the combination of DNS dispatching with redirection schemes that use centralized or distributed
control, on the basis of global or local state information. In the fully distributed schemes, DNS dispatch-
ing is carried out by simple algorithms because load sharingare taken by some redirection mechanisms,
that each server activates autonomously. On the other hand,in fully centralized schemes redirection is
used as a tool to enforce the decisions taken by the same centralized entity that provides the first-level
dispatching. We also investigate some hybrid strategies. We conclude that the distributed algorithms are
preferable over the centralized counterpart because they provide stable performance, can take content-
aware dispatching decisions, can limit the percentage of redirected requests and, last but not least, their
implementation is much simpler than that required by the centralized schemes.

Index Terms: World Wide Web, Load balancing, Distributed systems, Dispatching algorithms, Perfor-
mance analysis.

1 Introduction

A common approach adopted by popular Web sites to keep up withever increasing request load and provide

scalable Web-based services is to deploy a distributed Web system composed by multiple server nodes. A

scalable Web-server system needs to appear as a single host to the outside world, so that users need not be

concerned about the names or locations of the replicated servers and they can interact with the Web system

as if it were one high performance server machine. This architecture provides scalability and transparency,

but requires some internal mechanism that assigns client requests to the node which in that moment can

provide, possibly, the minimum response time.
�

c
�

2003 IEEE. Published inIEEE Transactions on Parallel and Distributed SystemsVol. 14, No. 4, April 2003, pp. 355-368.

1

We will focus on Web system architectures consisting of multiple nodes that are distributed over different

network locations. Each Web node may consist of one server machine or multiple machines, but each node

makes visible only one IP address. In this system the first assignment decision is typically taken at the

Domain Name System(DNS) level, when theauthoritative name server(A-DNS) of the Web site maps the

hostname to the IP address of one node in the system [1, 8]. DNS-dispatcher based systems can easily scale

from locally to geographically distributed Web-server systems and are also used in other related distributed

architectures, such as Content Delivery Networks. However, dispatching requests through the DNS has

three problems that prevent load balancing among the Web nodes: routing decisions are content-blind, the

different amount of load coming from various Internet regions may easily overload some Web nodes, and

the address caching mechanism in the DNS causes the large majority of client requests to skip the A-DNS

for address resolution, to the extent that the DNS dispatcher of a popular Web site controls only a small

fraction of the requests reaching the Web site. These issueshave been addressed through sophisticated DNS

dispatching policies working on the TTL [8], or multiple tiers of proprietary name servers combined with

very low values (few seconds) for the TTL [15]. This last approach has three main drawbacks. To avoid

a system bottleneck at the A-DNS, the traffic for address resolutions requires a distributed architecture of

name servers that is admissible for third party companies inthe content delivery business, but not for the

provider of one Web site. Moreover, if any client request needs an address resolution by the A-DNS, the

response time perceived by users is likely to increase [21].Finally, the TTL period chosen by the A-DNS

does not work on browser caching, while low TTL values might be overridden by non-cooperative name

servers that impose their minimum TTL when the suggested value is considered too low.

In this paper we follow other two directions for controllingthe load among the nodes of a distributed

Web system. We investigate the combination of sophisticated DNS dispatching algorithms with a redirec-

tion scheme controlled in acentralizedway by the A-DNS. We also examine an alternative solution that

integrates the first-level request dispatching carried outby the A-DNS through a simple stateless algorithm

(e.g., round-robin) with somedistributedredirection mechanism managed directly by the Web nodes.

We also need to recognize that load balancing goals are of keyimportance for the system administrator,

but are worth for the user only if they contribute to reduce the response time. Recent measures suggest

that Web performance perceived by end users is already increasingly dominated by server delays, especially

when contacting busy Web sites [5]. From this point of view, request redirection is a typical trade-off based

mechanism because each redirection consumes resources of the first contacted server and increases the

network time component of the user response time. Hence, these costs must be paid by the gains obtainable

by a sizable reduction of the server component of the response time. The goal of reducing the percentage

of the redirected requests opens a new space of alternativesfor centralized and distributed schemes. To

investigate when it is appropriate to activate redirectionand to propose more efficientcontent-awarecontrol

2

policies for redirection are other key objectives of this work.

In summary, this paper makes four main contributions and identifies some new research issues that

are worth of further investigation. We provide a taxonomy ofthe alternative re-routing schemes including

centralized vs. distributed control algorithms for the activation of the redirection mechanism, for the local-

ization of the destination nodes, and for the selection of the requests to be redirected. These control policies

can be based on local, partial or global state information. We show that a Web architecture that integrates

DNS dispatching with a centralized redirection mechanism provides excellent load control and minimizes

the risks of overloaded servers. Therefore, the TTL-constraint problem that affects DNS dispatching can

be completely addressed. After a thorough and detailed study, of which only a small part can be reported

here, we have discovered centralized and distributed schemes that not only achieve good results, but also

guarantee stable performance. This result is very important, because stability is one of the most difficult

attribute for any dispatching and re-routing algorithm that has to operate in the extremely variable Web en-

vironment. By comparing centralized and distributed control schemes, we have found that although in some

cases a distributed redirection algorithm may also achieveslightly worse performance than some centralized

alternatives, it has three major advantages that make its use preferable: it is easier to implement, imposes

much lower computational and communication overheads, andallows the use of content-aware redirection

policies that are gaining so much importance in the Web.

The rest of this paper is organized as follows. Section 2 describes the Web system architecture. Section 3

proposes a taxonomy for the design space of the redirection schemes based on control and state information.

Sections 4 and 5 present various centralized and distributed algorithms for the activation of the redirection

and the localization of the nodes, respectively. Section 6 addresses main implementation issues behind

centralized and distributed redirection schemes. Section7 focuses on the system, network, and workload

models that are used to compare the performance of the redirection algorithms in Section 8. Section 9

concludes the paper with final remarks.

2 Web System Architecture

In this paper, we consider a distributed Web-server system consisting of a set of nodes that uses one Web

site name to make the distributed nature of the service transparent to the outside world. EachWeb nodemay

consist of one or multiple server machines, as in a multiprocessor or in a Web cluster that houses servers

at the same network location. The common characteristic of the components of this distributed architecture

is that each Web node presents one system image to the outside. This means that, independently of the

number of the servers that are part of a node, each Web node provides just one IP address visible to the

client applications. This is the real IP address in the case of a Web node based on one server, or the virtual

IP address of the Web switch that is in front of the Web cluster, in the case of Web nodes consisting of

3

multiple servers. A complete survey on mechanisms and dispatching algorithms related to Web clusters can

be found in [6].

In similar Web architectures, the dispatching of the clientrequests among the servers typically occurs

in more than one step. The first choice is for the Web node and itoccurs in the lookup phase, when the

client looks for an IP address corresponding to the Web site name. As we assume that each Web node has

a complete replication of the Web site content and provides the same capacity, the A-DNS for that site can

select any IP address of one of the Web nodes. The A-DNS can usesophisticated or simple stateless policies

for distributing the client requests among the Web nodes. After the choice of a Web node by the A-DNS,

if a Web node consists of more than one server, the second dispatching is left to the Web switch that can

use a large set of algorithms for balancing the load among theservers of a cluster. This has been the goal

of many previous researches [6], and it is not the focus of this paper. Due to the centralized control that

the Web switch has on all the requests reaching a cluster, we can assume that the load inside a Web node is

acceptably balanced.

The challenge that we face in this paper is how to balance the load among the Web nodes because, unlike

the Web switch, the mechanism for choosing a node by the A-DNSis far from really controlling the address

requests. Indeed, only if the local and intermediate name servers do not hold a valid mapping for the site

name, the request reaches the A-DNS of the Web system. The address caching mechanisms and non-uniform

distribution of clients among the DNS domains are the major issues that may defeat any dispatching policy

carried out through the A-DNS alone [8]. In this paper, we investigate alternative solutions that integrate a

DNS-based dispatching algorithm with some redirection mechanism managed in a centralized or distributed

way. SWEB [1], DPR [3], and DC-Apache [19] are examples of Websystem architectures based on double

dispatching, where the A-DNS decision (typically, round-robin) is integrated with some request redirection

mechanism. Our proposal differs because in this paper the focus is on exploring a large set of centralized

and distributed control solutions that are combined with different types of state information.

3 Design Space for the Redirection Algorithms

In this section we analyze the large space of alternatives that exist when we intend to integrate some server

redirection capability in the dispatching mechanisms of a distributed Web-server system. We are interested

to analyze the alternatives that are compatible with existing Web standards and protocols. In particular, the

A-DNS server and the Web nodes of the system are the only entities under the direct control of the Web site

provider that can be modified for the purposes of request redirection. We have identified three main phases

in the redirection process that can be implemented through centralized or distributedcontrol policies: the

redirection activation policythat determines the eligibility of a Web node as a redirector, therequest selec-

tion policy that determines the offered load that is eligible for redirection, and thenode localization policy

4

that determines the appropriate Web node(s) to which the first contacted node may redirect the selected load.

In each of these phases, the decisions can be taken on the basis of local, partial or global state information,

or no informationat all.

Because of the large number of options for each group of factors, it is rather unfruitful and out of the

scope of this paper to study the performance of all feasible combinations. Some qualitative considerations

allow us to restrict the search space. We can anticipate thatthe two major principles that stand behind

redirection are: centralized vs. distributed activation/localization. The request selection policy and the state

information are used as a secondary space of choices to find the “best” policy in the centralized or distributed

class. Hence, we consider briefly the request selection policy and the state information, and focus on the

activation and localization policies in Sections 4 and 5.

3.1 Request Selection

The first group of factors we consider in this taxonomy is theselectionof the offered load that is eligible

for redirection. Some qualitative considerations and someresearch results [14] indicate that the minimum

entity that is convenient to redirect is the request for an entire Web page, that is, the base file and all its

embedded objects. The alternative of redirecting even individual objects consumes more server and network

resources. Once the Web node has activated the redirection process, the selection policy determines which

page requests actually have to be redirected.

Another choice regards the selection of the page requests that must be effectively redirected. The pos-

sibilities go from request-blind policies, that redirect all or a random subset of page requests reaching the

node when the redirection mechanism is activated (namely,redirect-allandredirect-partial, respectively), to

request-aware policies that consider some information about the client request. For example, the centralized

selection at the A-DNS can use just some location information, such as the origin domain of the client re-

quest. A distributed selection mechanism implemented at the Web node can use more detailed information,

such as the HTTP request content. This last alternative introduces the class of content-aware redirection

algorithms. As the content-blind strategies tend to cause alarge percentage of redirections with associated

overheads, we also investigate in Section 8.4 how it is possible to limit the number of redirected requests by

applying a finer redirection granularity.

3.2 State Information

Another important impact on redirection algorithm performance is the type ofstate informationwhich is

available to each decision maker. We have already discussedthe information related to the request selection

process. Here, we consider the information about the state conditions that are related to the redirection

activation and node localization policies.

5

The first choice regards the load index that is representative of the state condition. We consider the

entire range of possibilities, from thestatelesspolicies, to theserver load, and thedomain load ratethat is,

the amount of load coming from a domain connected to the Web site during an observation interval (also

calleddomain popularity) [8]. The second alternative regards the space of dissemination of the state infor-

mation [16]. Specifically, each decision maker can own a complete view of the state information of the Web

system (global), just the information about the node itself (local), or can acquire some information regard-

ing a subset of nodes in the system (partial). The third choice is for theinformation updatestrategy [16],

which can be demand-driven (typically related to partial information) or periodic (typically related to global

information).

3.3 Space of Alternatives and Notation

We consider the activation policy as the main axis of classification for the redirection algorithms. The

activation can be centralized or distributed. We also assume that in thecentralizedcase the decision-maker

component is based on the A-DNS. Specifically, it can be either located inside the A-DNS or even on a

distinct entity that operates jointly with the A-DNS. It seems convenient to take centralized decisions on the

basis ofglobal state information and preliminary experiments confirm thatchoice. Hence, we denote the

centralized activation schemes throughCA/g as they always use global information.

On the other hand, when each Web node takes its own redirection decisions about activation (distributed

schemes), we consider the entire spectrum of alternatives for the information. Therefore, we denote the

distributed activation schemes throughDA/x, where� � �� �� � � �
, depending on their use of local, partial

or global state information, respectively. Here, we exclude the case of an algorithm based of no state

information, because a random activation simply does not work.

Centralized and distributed schemes exist also for the nodelocalization. They are denoted byCL/g and

DL/�, where� stands for�,
�
,
�

(� means no state information). Here, we include the case of no informa-

tion (for example, random or round-robin node localization), and exclude the case of local information as

localization is inherently an external operation.

A fully centralizedscheme that is, a centralized activation and localization scheme, with its global view

on the system conditions aims to load balancing with a limited effort to reduce the number of redirections.

Here, we basically consider an “intelligent” DNS dispatching scheme, where redirection is simply used as

a tool to enforce the A-DNS decisions that without redirection would be bypassed by the address caching

mechanisms. On the contrary, in thefully distributedactivation and localization scheme, DNS dispatching

can be kept as simple as possible, and redirection has the role of “intelligent” dispatching mechanism.

Hybrid schemes exist as well. A centralized activation may be combined with a distributed localization

(DL/�) policy, and a distributed activation may be combined with acentralized localization (CL/g) policy.

6

For example, in this paper a centralized activation algorithm coupled with a distributed localization policy

using no state information will be denoted byCA/g-DL/0.

4 Redirection Activation

Theredirection activationpolicy determines the eligibility of a Web node as a redirector. In both the central-

ized and distributed instances, the decision is taken on thebasis of state load information that is periodically

evaluated and, when necessary, disseminated. Once the decision on activation has been taken, the redirec-

tion executor is always the Web server when the Web node consists of one machine or it can also be the

Web switch when the Web node is a cluster with multiple servers. A summary of the algorithms that will be

considered for evaluation is in Section 8.1.

4.1 Centralized Activation Algorithms

In the centralized scheme, we assume that the activation decision is periodically taken by a process working

in strict cooperation with the A-DNS. The centralized decision-maker broadcasts its decisions to the Web

nodes that carry out the redirections. There are various choices for the centralized activation algorithms

(CA/g). The first idea is to coordinate the DNS-dispatching action with the localization process executed

by the Web nodes, namely aCA/g-CL/g scheme. In this way, the limited control of A-DNS dispatching

is enforced through a redirection mechanism that puts all decisions on the A-DNS and considers the Web

nodes as executors. Hence, centralized localization can beprovided by a CA/g-CL/g policy that uses the

so calledDomain Assignment Table(DAT) for A-DNS dispatching and redirection. This mapping table

specifies, for each domain that is a source of requests to the Web site, the Web node/s that has/ve to serve it.

The basic information to build DAT is the domain popularity as defined in Section 3.2. We have also tried to

use server load information to build DAT, but all experimental results were quite unsatisfactory. The reason

is that server load information becomes obsolete quickly ina DNS-based distributed Web system subject

to heavy-tailed workload, because of address caching effects on past assignments and high variability of

client loads. This aspect makes the problem considered in this paper different from most literature on load

balancing in distributed systems, where an up-to-date server load index usually provides a good indication

of the future load condition [18].

Assigning each domain to one Web node does not work because the Web nodes receiving the most

popular domains tend to be overloaded and this causes a largepercentage of redirections. (As an example,

in Section 8 we present the results for the DNS-DAT1 policy that basically works as the classical off-line

Longest Processing Time algorithm, which is used to minimize the capacity of a fixed number of bins). A

much better alternative is to assign a domain to multiple nodes. This algorithm builds DAT by associating

a bin to each Web node. The bin capacity is by default set to themaximum capacity that the Web node

7

can sustain without experiencing performance degradation. This capacity is a staticthroughputinformation

that can be measured in terms of served requests or transferred bytes per second. At every update of DAT,

the A-DNS estimates the load offered by each connected domain and calculates the total offered load. If

the total node capacity is greater than the total offered load, the capacity of each bin is set to the default

value, otherwise it is increased so to (virtually) handle all the offered load. As a third step, the domains are

sorted in a decreasing order according to their popularity.Then, for each ordered domain (starting from the

most popular), the A-DNS selects the node with the maximum residual capacity. If the chosen node has a

sufficient residual capacity, the domain is entirely assigned to it, and the node capacity is decremented by

a quantity equal to the domain load. Otherwise, the domain isassigned to the chosen node and its residual

capacity is saturated, while the residual domain load is assigned to another node and so on until the domain

load has been entirely assigned.

This algorithm also defines an additional table (called theWeight Table), in which for each domain the

A-DNS specifies the percentage of load that is assigned to thenodes over which the domain is split up. It is

worth to observe that the assignment of a domain to multiple nodes is really effective only in combination

with some redirection mechanisms that can overcome addresscaching mechanisms. The algorithm chosen

as the first example of the CA/g-CL/g schemes uses the DAT for activation, selection, and localization

decisions. The A-DNS periodically broadcasts the Weight Table and DAT to the Web nodes. If a domain in

DAT is split up over multiple nodes, the Web node determines randomly the destination to which it redirects

the request by using the weights specified in the Weight Table.

We further consider a node load-based centralized activation scheme that can be combined with a cen-

tralized or a distributed localization algorithm. A representative example is the following. The server load is

gathered periodically by the A-DNS that estimates the average load, and identifies as redirectors the nodes

whose load level is in a certain range above the average. Then, the A-DNS broadcasts the result of its deci-

sion to the nodes in a list, marking the nodes that need to activate the redirection process for the next interval.

The node localization decision can be centralized at the A-DNS, as in theCA/g-CL/g(load) algorithm, or

delegated to the Web nodes, as in theCA/g-DL/�(load) algorithm. We will further discuss these policies in

Section 5.

4.2 Distributed Activation Algorithms

The centralized algorithms that use plain DAT information for redirection decisions cause large percentage

of redirections. Any new DAT is built by the A-DNS without taking into account the previous assignment.

The lack of assignment persistence in DAT can cause many redirections, especially if the most popular

domains are assigned to different Web nodes at each update interval. The issue of generating assignments

that are consistent from one phase to the next has been addressed in [15]. We investigate here an alternative

8

approach that aims to activate redirections only when necessary that is, only on the nodes that are highly

loaded. We can expect that avoiding the long service time at an overloaded node would compensate the

redirection overheads.

In the distributed activation scheme (DA/�), we consider that each Web node decides by its own when

the redirection needs to be activated through athreshold-basedmechanism. Threshold-based load balancing

policies are popular in distributed computer systems [10, 22]. They have been shown to be useful especially

when jobs are independent and consist of single threads of control, which is a common feature for Web

requests. In the considered schemes, any Web node periodically checks its own current load. When the load

exceeds the selected threshold, the node enters in a redirection state that ends when the load returns below

the threshold.

We consider two distributed activation algorithms that usedifferent state information. InDA/g, the

activation decision is based on load information of all nodes. This global information may be acquired by

the nodes through an all-to-all exchange or by using a gather/broadcast mechanism at one node or at the

A-DNS. Each Web node, more frequently than the update interval of the global information, evaluates its

own load and activates redirection when its load level is in acertain range above the average load. The

DA/l algorithm considered here is simple but effective, as demonstrated by the experimental results. Each

Web node activates redirection only when the load on its server/s exceeds a given threshold, without any

comparison with the load on other nodes.

5 Node Localization

The second factor of classification refers to thelocalizationof appropriate Web node(s) to which the first

contacted node may redirect the selected client request. The node localization decision process can be

centralized(CL/g) ordistributed(DL/�). A summary of the algorithms that will be considered for evaluation

is in Section 8.1.

5.1 Centralized Localization Algorithms

A centralized node locator can identify one destination node for redirection or a set of nodes from which

the redirecting node can select the destination. The state information is always global. The first algorithm

chosen as example of the CL/g schemes uses for localization decisions the DAT and the Weight Table, which

are periodically broadcasted by the A-DNS to the Web nodes. It has been described in Section 4.1.

Another example is theCL/g(load) algorithm, in which the A-DNS decides about node localization by

sending to the Web nodes a list of available nodes to whom redirecting requests, where the list is built on

the basis of the node load information already used for the activation decision. Specifically, only nodes that

do not need to activate the redirection process are marked asavailable. Then, each redirecting node selects

9

the target server in a round-robin way on the list.

5.2 Distributed Localization Algorithms

In the distributed localization scheme, each Web node decides on the basis of global, partial or no state

information to which node it is convenient to redirect the selected request. We consider three policies that

are representative examples of the diverse types of state information available to the decision maker: the first

policy is stateless (DL/0), the second uses a load information on a subset of the Web nodes (DL/p), while

the third uses a global load information (DL/g).

When a request is found eligible for redirection,DL/0 selects the destination in a round-robin way. This

policy does not require any information exchange among the nodes.

DL/p exploits the use of a partial load information. The redirecting server selects randomly a set of�
nodes (where� � � � � � � �� � �) and determines the node with the lightest load in this set. The redirecting

server forwards the request only if the selected node has a load lower than its own. Previous works have

shown that even the case of� � � permits to achieve an acceptable load sharing [10]. Our not reported

experiments confirm this result. We consider a distributed periodic dissemination mechanism where each

Web node measures its load and periodically broadcasts it tothe other nodes. We acknowledge that there

could exist other mechanisms for information exchange, butthe evaluation of the alternatives is outside the

scope of this paper.

DL/g requires a periodic all-to-all load information exchange.The global information is used by the

redirecting node to select the Web nodes that have a load lower than its own. The target node is then picked

randomly from this set. To avoid the herd effect that makes the system really unstable [9], we do not consider

the strategy of sending each selected request to the node with the apparent lowest load.

6 Implementation Issues

We find useful to describe the implementation issues relatedto a Web-server system that applies the cen-

tralized and distributed redirection schemes. For the compatibility with the existing Web standards and

protocols, any proposed modification entails only the A-DNSand the Web nodes which are under the con-

trol of the content provider.

Many redirection algorithms use some state information on Web nodes and/or client domains. The server

load can be measured by using different indexes, such as the number of active connections on the server(s),

or the utilization of the server(s) resources. In this paper, for each Web server comprising a Web node, we

consider the maximum of the utilization between its CPU and disk. We use only the last reported node

information, while interesting strategies to interpret stale load information can be found in [9].

10

For most centralized algorithms, the A-DNS needs to estimate the domain popularity in terms of load

rate coming from each domain. This evaluation requires somecooperation of the A-DNS with the Web nodes

that can track and collect the load offered to the distributed Web system through the server access logfiles.

We found that the most accurate (and least expensive) way to assess the domain load rate is at the hit level.

Another interesting problem related to domain popularity estimation is that the A-DNS and the Web nodes

see different information related to a domain. Hence, it is necessary to group into domains the client IP

addresses seen by the Web nodes, and to match the local DNS server with the corresponding domain. The

issue ofclient clustering[17] has recently gained popularity due to the spread of Content Delivery Networks

based on DNS dispatching (e.g., heuristics based on addressmasks, Autonomous System numbers, domain

names [21], or more accurate and expensive techniques basedon routing information [17]). Although the

method based on the address mask does not provide an accurateclustering of clients into domains [17], it

can be applied to A-DNS algorithms because their main concern is to identify the most popular domains and

some inaccuracy is well tolerated.

We conclude this section with some brief comments about the implementation. In Figures 1 and 2 we

outline the main software components needed to implement the proposed distributed Web systems when

the activation and localization decisions are fully centralized at the A-DNS or fully distributed at the Web

nodes, respectively. For simplicity of representation, these figures assume that a Web node consists of one

server machine.

Dispatcher

Web server 1

Web server NAuthoritative DNS server

daemon
HTTP

monitor
Domain load Server load

monitor

collector
Node load

DNS base function
IP address request

<IP address, TTL>

Domain load
collector

HTTP request

Object(s) / Redirection
Logfile

Redirection

Figure 1:Architecture of the Web-server system in the
case of fully centralized algorithms.

Dispatcher

Authoritative DNS server

Web server 1

Web server N

HTTP
daemon

Server load
monitor

DNS base function
IP address request

<IP address, TTL>

HTTP request

Object(s) / Redirection

Redirection

Figure 2:Architecture of the Web-server system in the
case of fully distributed algorithms.

In the centralized scheme, the A-DNS software includes a dispatcher, a node load collector, and a do-

main load collector. The dispatcher assigns each address request to one of the Web nodes based on some

algorithm. It also includes the activation and localization decision functions to perform the centralized al-

gorithms. The node load collector tracks the load of the Web nodes, while the domain load collector gathers

the domain load information from each Web node and estimatesthe domain popularity. Also shown is the

set of components in the Web node. Besides the HTTP daemon server, the centralized algorithms may re-

quire a redirection component, a server load monitor, and a domain load monitor. The server load monitor

11

tracks the server load and sends this information to the nodeload collector located on the A-DNS. The do-

main load monitor estimates the load received by the server from each domain and periodically provides the

information to the domain load collector in the A-DNS. Finally, the redirection component determines if a

request has to be redirected and to which node, using the information received by the A-DNS dispatcher.

In the fully distributed approach shown in Figure 2, the A-DNS performs only the first-level dispatching

among the Web nodes, without communicating with the software components located on the Web nodes that

manage the redirection process autonomously. Similarly tothe centralized scheme, the A-DNS dispatcher

assigns requests to the Web nodes through the address mapping mechanism. In the Web node, the distributed

algorithms require a server load monitor and a redirection component. The monitor tracks the utilization

of the server resources and sends this information to the redirection component of its server and, when

necessary, to that of another Web node. The redirection component implements the request selection and

the node localization policies.

There are several mechanisms to re-route a request, such as the triangulation at the TCP/IP layer [3],

HTTP redirectionand URL rewriting at the application layer. The redirection mechanism provided by

the HTTP protocol allows a Web server to respond to a client request with a 301 or 302 status code in

the response header. These codes instruct the client to resubmit its request to another node [11]. URL

rewriting integrated with a multiple-level DNS routing technique is also used by some Content Delivery

Networks [15, 19]. There is not a mechanism that is clearly better than the others, as shown by the trade-

off analysis in [6]. In this paper we refer to HTTP redirection, but this choice does not affect our main

conclusions. There are two methods to avoid ping-pong effects that may occur when an already re-routed

request is further selected for redirection. When a requestis redirected for the first time, the redirecting

server can set a cookie or insert a notification of the occurred redirection into the location field of the

response header.

7 Simulation Model

In this section, we describe the simulation model that we useto compare the performance of the redi-

rection algorithms. We first detail the system and workload model that include all characteristics of Web

client/server interaction; then, we describe a simplified network model.

We consider� main geographical regions that are located in different world areas. The Web nodes and

the A-DNS are located in the same region, while variousclient domainsare spread among all the regions.

Each Web node may consist of one or multiple servers, but eachnode provides the same capacity. We model

all resources of a server machine, such as CPU, main memory, hard disk, and network interface. The HTTP

server is modeled as the Apache 1.3.

We consider an open system model, where each new client generates an address request to the DNS that

12

consists of a hierarchy of local, intermediate, and authoritative name servers. The DNS model considers all

mechanisms related to address caching and TTL. Once received an IP address for the Web site, the client

establishes a TCP connection with the indicated Web node, which can correspond to a Web server or to the

Web switch of a cluster of servers. In this latter instance, the Web switch selects a server and forwards the

client request to it. The time to serve a request includes allthe delays at the Web server, such as parsing

time, service time for the base HTML file and all embedded objects, or redirection time if the page request

must be redirected. These times have been validated with a real distributed Web system, where request

dispatching is based on A-DNS and HTTP redirection.

The workload model used to drive the simulator incorporatesrecent results on Web characterization [2,

4]. The high variability and self-similar nature of Web access load is modeled through heavy-tailed distri-

butions. Table 1 summarizes the probability mass function (PMF) and the parameter values we used in our

workload model. More details can be found in [7].

Category Distribution PMF Parameters

Session inter-arrival time [12] Exponential ����� � � � ���
Page requests per session [2]Inverse Gaussian

	
�
��� � ��������� � � � � ���, � � � ���

Objects per page [2, 4] Pareto �������� � � �� ��, � � �
HTTP request size Lognormal ��!
�"

�
� �#$�����%� � � � �� � & ' � � �� �

HTML object size [2, 4] Lognormal ��!
�"
�
� �#$�����%� � � (���, ' � ���� �

Pareto �������� � � �, � � �� ��
Embedded object size [2, 4] Lognormal ��!
�"

�
� �#$�����%� � � � � ��, ' � ����

User think time [4] Pareto �������� � � ���, � � �
Table 1:Workload model.

In the simulation experiments, each client is assigned to one domain through a pure Zipf distribution,

corresponding to a highly skewed function [8]. The client domains, ordered from the most to the least

popular, are statically assigned to the Internet regions ina round-robin way. The A-DNS uses a TTL value

set to 300 seconds. The distributed Web system consists of 8 Web nodes with homogeneous capacity. The

local load information is checked every 8 seconds, while theupdate interval of global load information is set

to 30 seconds. The sensitivity analysis in Section 8.5 showsthat the main conclusions of this paper are not

affected by the choice of system parameters such as TTL, client distribution among domains, load intensity,

and number of Web nodes.

The network model aims at providing a controllable testbed where the transmission of data between a

Web node and a client has some cost. This choice is motivated by the goal of the simulation model that does

not aim to predict the actual response times, but to compare the impact of algorithms and redirection on

the performance through a testbed that is the fairest possible for all algorithms. For this reason, we do not

consider real Internet topologies, network hierarchies, and narrow network bandwidth in the last mile [12]

13

that could have an impact on performance stronger than that related to the redirection algorithms.

In the model of client-server interaction, we refer to the HTTP/1.1 protocol that uses persistent connec-

tions and pipelining. The client, after having retrieved the base HTML file, makes multiple requests for

embedded objects on the same connection without waiting fora response between each request. From [13],

we have that the time to transmit� objects belonging to the same page between region
�

and� is given by
� �� �� � �	

�� � ��� � ������ ����� � ����� ���� � � where	

�� and���� are theround-trip timeand theavail-

able bandwidthbetween region
�

and� , respectively, and����� and����� are the size of the client request

and server response for each object
�
, respectively. If the first contacted node in region� redirects the page

request, the terms�	

�� � ���� � ����� � ����� ����� must be added to include the network overhead caused

by HTTP redirection.

We briefly analyze the parameters in the above equation, while a detailed description of the network

model can be found in [7]. The message sizes follow the distributions shown in Table 1, while the round-

trip time value is chosen randomly in the interval corresponding to the two end-point regions as shown in

Table 2. The available bandwidth���� models the communication delays between two Internet regions. We

assume that these delays are due to a static factor (basic bandwidth) and a dynamic factor (traffic). The basic

bandwidth between two regions is assumed to be deterministic and the corresponding values are shown in

Table 2. (We also carried out some sensitivity analysis as a function of the basic bandwidth and observed

that the main conclusions of this paper are not affected.) The traffic is modeled as a random parameter that

reduces the basic bandwidth. Since the traffic depends on thenumber of clients in the regions traversed by

a connection, we assume that the fraction of bandwidth available to a connection starting from a region and

ending in another one is related to the popularity of the two end-point regions [7]. Finally, we do not model

the network delay due to the address resolution that occurs at the beginning of each client session, because

it has the same impact on the performance of all redirection algorithms.

Basic bandwidth Round-trip time

Region 1-1 1.35 Mbps [30, 70] msec
Region 1-2 1.2 Mbps [60, 100] msec
Region 1-3 0.9 Mbps [120, 180] msec
Region 1-4 0.7 Mbps [240, 300] msec

Table 2:Parameters of the network model.

8 Experimental Results

The goal of the experiments is twofold: to measure how effectively the redirection mechanisms can solve

the A-DNS problems related to limited control on request dispatching and to compare the performance of

fully centralized, fully distributed, and hybrid control schemes and their relation with the different types of

14

system state information. The crucial performance metric is the response time, as it directly correlates with

the user perception of the quality of service. The page response time corresponds to the interval between

the submission of a client request and the arrival at the client of all objects related to the page request. It

includes the TCP connection time, all delays at the Web server, the network transmission time, and possible

redirection overheads. We use as the main measures thecumulative distributionand the90-percentileof

the page response time, because average values are not meaningful in Web systems subject to large and

unpredictable traffic spikes. Another important performance metric is thepercentage of redirected requests

as a further goal of this study is to propose redirection algorithms that minimize this value. The simulator,

based on the method of independent replication, has been implemented using the CSIM package [20]. The

experiments involved a minimum of 200,000 client arrivals and each reported value is the result of ten or

more simulation runs with different seeds for each random number generator.

8.1 Motivation for Redirection Algorithms

To motivate the need for redirection, we first focus on systems based on DNS dispatching only. Figure 3

compares the cumulative page response time of two real algorithms (DNS-RR and DNS-DAT1) with that of

two ideal solutions (LNS-RR and DNS-RR(TTL=0)).DNS-RR is a basic implementation of the round-robin

scheme where the A-DNS returns the IP address of one Web node at each address request in a cyclic way.

In DNS-DAT 1, A-DNS dispatching decisions are based on a DAT where each client domain is assigned to

one Web node. As described in Section 4.1, mapping to multiple nodes does not work when the A-DNS is

the only dispatching entity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Page Response Time [sec.]

LNS-RR, DNS-RR(TTL=0)
DNS-RR

DNS-DAT_1

Figure 3:Cumulative page response time for DNS dispatching algorithms.

LNS-RR applies round-robin cycling at the local name servers. The difference between DNS-RR and

LNS-RR should be clear. With DNS-RR, the A-DNS replies with one record that varies from request to

15

request, while with LNS-RR, the A-DNS returns multiple records containing the IP addresses of all Web

nodes, and each name server performs round-robin on the list. LNS-RR represents an ideal policy because

not all local name servers may implement it, e.g., if they have been configured to return the list in the same

order or are not up-to-date. We also considerDNS-RR(TTL=0), the DNS-RR algorithm in which the effects

of address caching are avoided by setting the TTL value to 0 seconds. As pointed out in Section 1, this is

another ideal solution. It is interesting to see that two different ideal solutions achieve an identical response

time, that we consider as an upper bound for the proposed dispatching algorithms. The need for a redirection

mechanism is clearly motivated by the performance gap existing between the real DNS-based dispatching

algorithms and the ideal policies in Figure 3. Let us summarize the alternatives we consider for performance

evaluation.

� Forcentralized activation: CA/g-CL/g uses the DAT and Weight Table for activation and localization.

CA/g-CL/g(load) uses a global information about server load for both activation and localization.

CA/g-DL/x(load) uses the same activation algorithm of the previous policy, while different types of

information may be used for distributed localization.

� For distributed activation: DA/g-CL/g uses a threshold-based algorithm that considers global infor-

mation about server load for activation, and the DAT and Weight Table for localization.DA/g-DL/x

uses the same activation algorithm as the previous policy, but different types of information may be

used for distributed localization.DA/l-CL/g uses a threshold-based algorithm that considers just the

local server load for activation and the same localization algorithm as the DA/g-CL/g policy.DA/l-

DL/x uses the same activation algorithm of the previous policy, but different types of information may

be used for distributed localization.

8.2 Performance of Redirection Algorithms with Centralized Activation

Let us first consider the three algorithms with centralized activation: CA/g-CL/g, CA/g-CL/g(load), and

CA/g-DL/x(load). Figure 4 shows that the performance of thefully centralized algorithm CA/g-CL/g is

close to the curve of the ideal LNS-RR. This means that DNS-dispatching integrated with the DAT-based

redirection mechanism is quite able to solve the TTL-constraint problem. Another important result is that

the CA/g-CL/g performance is insensitive to the update frequency of the DAT table. This stability is of

primary importance in reality, because larger update intervals cause lower computation and communication

overheads, and reduce the number of redirected requests because of the higher persistence of the DAT

assignments. In our experiments, an increment of the updating interval from 30 to 300 seconds reduces the

percentage of redirections by 35% at the expense of the response time by a small increase of less than 10%.

It is important to observe that the DAT of this CA/g-CL/g scheme is built by using just domain load

information, while in not reported results we found that building the DAT on the basis of server load in-

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Page Response Time [sec.]

LNS-RR (ideal)
DNS-RR

CA/g-CL/g
CA/g-CL/g(load)
CA/g-DL/x(load)

Figure 4:Response time of the algorithms with central-
ized activation.

0

5

10

15

20

25

30

35

CA/g-CL/g CA/g-CL/g(load) CA/g-DL/x(load)

R
ed

ire
ct

io
n

P
er

ce
nt

ag
e

Figure 5:Redirection percentage of the algorithms with
centralized activation.

formation yields to poor performance, even worse than that of DNS-RR. The unsatisfactory results of the

CA/g-CL/g(load) and CA/g-DL/x(load) policies based on server load provide an indirect confirmation that

it is insufficient to perform centralized activation just using server information. The reason is that server

load is subject to high fluctuations, whereas A-DNS takes periodic decisions based upon information that

tends to become stale soon: it may happen that a node must continue to redirect (receive) requests even if it

becomes underutilized (overloaded) before the next A-DNS decision. Moreover, we found that the perfor-

mance of the load-based activation algorithms degrades rapidly when the state information updating interval

increases.

We cannot report all performance results about the node localization, but we outline main conclusions

of our studies. The typical effect we observed is that a burstof redirected requests improves performance of

redirecting nodes, but it tends to overload the receiving nodes, especially when this last set is limited. The

consequence is that the redirection process is activated onthe receiving nodes, and the Web system remains

unstable for long periods, with noticeable impact on the user response time. Thus it is preferable to spread

the load among the widest set of Web nodes rather than concentrating redirected load on a limited set of

nodes. The type of state information for taking localization decisions is much less important. For example,

a round-robin localization policy as in CA/g-DL/0 performsbetter than other DL/x schemes.

From the performance results shown in Figures 4 and 5, we can conclude that a centralized activation

works better with a centralized localization, where both control algorithms use global information about

domain load rather than server load. In the following, only this CA/g-CL/g scheme will be considered for

comparison with distributed activation schemes.

17

8.3 Performance of Redirection Algorithms with Distributed Activation

When we consider schemes with distributed activation of theredirection process, we have several alterna-

tives to explore: coupling of distributed activation with centralized and distributed localization policies, and

also the use of various types of state information.

The initially unexpected result shown by Figures 6 and 7 is that hybrid and pure schemes have similar

performance independently of the use of local or global information for distributed activation: the curves of

DA/l-CL/g and DA/g-CL/g, and those of DA/l-DL/x and DA/g-DL/x overlap. The reason is that the value

of the load threshold evaluated dynamically on the basis of global information does not differ notably from

the value of the load threshold set statically on each node. All four algorithms achieve performance close to

LNS-RR, although the hybrid schemes are able to limit the redirection percentage to less than 14%, while

the fully distributed schemes have a double amount of redirections. We will address this issue in Section 8.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Page Response Time [sec.]

LNS-RR (ideal)
DNS-RR

DA/l-CL/g, DA/g-CL/g
DA/l-DL/x, DA/g-DL/x

Figure 6: Response time of the algorithms with dis-
tributed activation.

0

5

10

15

20

25

30

35

DA/g-CL/g DA/g-DL/x DA/l-CL/g DA/l-DL/x

R
ed

ire
ct

io
n

P
er

ce
nt

ag
e

Figure 7:Redirection percentage of the algorithms with
distributed activation.

As regards the node localization policy, the conclusion is similar to that observed for the centralized

schemes: the state information is less important, and henceit seems convenient to use a stateless round-

robin algorithm (DL/0) that does not require costly exchanges of state information.

8.4 Performance of Request Selection Policies

In the previous section we have observed that the performance of the fully distributed algorithms is penalized

by a high percentage of redirected requests with respect to their hybrid counterparts. On the other hand, an

algorithm with distributed selection has the potential advantage of using more detailed information than that

available at a centralized entity, and using that information to limit redirection to the heaviest requests. We

now exploit this potential by exploring selection policiesthat apply a redirection granularity finer than that

18

of the typical redirect-all, here denoted asSelect-all. A content-blind alternative to reduce the percentage of

redirections can select a random subset of requests that aregoing to be redirected. This strategy corresponds

to the redirect-partial selection and is referred to asSelect-part
�

, where
�

denotes the percentage of

requests to be redirected (that is, part50 redirects 50% of the received requests). It selects the page to be

redirected in a content-blind way, without taking into account the load that the requests impose on the node.

We also consider two content-aware selection policies thatlimit redirection to the requests imposing

a larger load on the node. The first motivation is that Web workload is characterized by high variability

and skewness [2, 4]. Hence, a very small fraction of the largest files determines a large fraction of the

load on the Web node. Furthermore, users will be less bothered by redirects on a request that will be very

long anyway. In particular, we proposeSelect-size redirecting only requests for Web pages larger than a

certain size, andSelect-num redirecting only those pages containing a large number of embedded objects.

We use the average size of the base file and its embedded objects as the default size threshold to decide

about redirection for Select-size, and the average number of embedded objects in a Web page as the default

threshold for Select-num.

In the following experiments we focus on distributed activation algorithms based on local information

(DA/l), however similar results have also been observed forDA/g policies. Figures 8 and 9 compare the

cumulative distribution of the page response time and the redirection percentages for three content-blind

(Select-all, Select-part25 and Select-part50) and two content-aware (Select-num and Select-size) selection

policies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Page Response Time [sec.]

LNS-RR (ideal)
DNS-RR
Select-all

Select-part25
Select-part50, Select-num, Select-size

Figure 8: Response time of DA/l-DL/0 for various re-
quest selection policies.

0

5

10

15

20

25

30

35

Select-all Select-part50Select-part25 Select-num Select-size

R
ed

ire
ct

io
n

P
er

ce
nt

ag
e

DL/0
DL/p
DL/g

Figure 9:Redirection percentage of DA/l-DL/x for var-
ious request selection policies.

It is interesting to observe that redirecting only a subset of requests improves the performance over

the Select-all strategy. This is even more appreciable whenwe consider the 90-percentile as performance

metric: the response time decreases from� �� to � �� seconds for Select-all and Select-num, respectively. The

19

reason of the response time improvement is the substantial reduction of the redirection percentages achieved

by the content-aware selection policies. We can see in Figure 9 that Select-all redirects more than 30% of

the requests reaching the Web site, while the analogous result is close to about 10% for Select-num and

Select-size. The content-aware policies are the best choice because they guarantee the best combination

between response time and redirection percentage. Indeed,Select-part25 is affected by poor performance,

while Select-part50 by high percentage of redirected requests. As the network model proposed here does

not fully capture the complexity of the real Internet, the reduction of redirections achieved by Select-num

and Select-size selection policies may reduce network latency time even more than that shown in Figure 8.

This observation is also confirmed by the results reported inFigure 13.

8.5 Sensitivity Analysis

The previous sections were useful to explore the design space of the redirection algorithms and to find the

fully centralized, fully distributed, and hybrid algorithms that are able to provide response times close to

the ideal policy. We now test their performance for various system scenarios as a function of some critical

system parameters. Specifically, we consider CA/g-CL/g forfully centralized algorithms, DA/g-DL/0, DA/l-

DL/0, and DA/l-DL/0-Select (with the selection policy corresponding to Select-num) for fully distributed

algorithms, and DA/g-CL/g for hybrid ones.

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

90
-p

er
ce

nt
ile

 o
f P

ag
e

R
es

po
ns

e
T

im
e

[s
ec

.]

Client Distribution among Domains

LNS-RR (ideal)
DNS-RR

CA/g-CL/g
DA/g-DL/0
DA/l-CL/g
DA/l-DL/0

DA/l-DL/0-Select

Figure 10:Sensitivity of response time to client distri-
bution among the domains (Zipf parameter).

0

5

10

15

20

25

30

35

60 120 180 240 300 360 420

R
ed

ire
ct

io
n

P
er

ce
nt

ag
e

Time To Live [sec.]

CA/g-CL/g
DA/g-DL/0
DA/l-CL/g
DA/l-DL/0

DA/l-DL/0-Select

Figure 11: Sensitivity of redirection percentage to the
TTL value for caching IP addresses.

Figure 10 compares the performance of the redirection algorithms in a system where the distribution

of the clients among the domains varies from the pure Zipf (� � �) to the uniform distribution (� �
�). The fully centralized algorithm always achieves better performance than the distributed and hybrid

schemes, even if the results of DA/l-DL/0-Select are quite close. The robustness with respect to the client

distribution is important because in the real Web environment the client scenarios tend to change frequently.

20

As expected, this figure also shows that the performance of DNS-RR improves as the client distribution

among the domains tends to the uniform one.

Another interesting aspect is the sensitivity of the redirection algorithms to the TTL value returned by the

A-DNS, because the TTL-constraint was one of the problems weaimed to solve. Although the dispatching

control of the A-DNS decreases very rapidly as the TTL increases because address resolutions are cached for

longer periods, Figure 11 shows that all redirection algorithms are surprisingly robust in terms of redirection

percentages. We observed the same stability when we considered the page response time as the performance

metric. This result demonstrates that any of these centralized, distributed, and hybrid redirection schemes is

able to address the limited dispatching control of the A-DNS.

In Figure 12 we examine the sensitivity to the number of Web nodes in the system, when it changes

from � to
��

(the default value corresponding to
�
). For a fair comparison, the load offered to the Web

system is kept proportional to the number of nodes that is, when the number of nodes doubles, the client

inter-arrival rate doubles as well. We find that changing thenumber of nodes does not affect the performance

ordering among the algorithms when we consider the responsetime as a performance metric. Hence, we

focus on redirection percentages. These percentages for fully centralized and hybrid algorithms increase

continuously as the number of Web nodes increases until 25-30, and then tend to stabilize. On the other

hand, DA/l-DL/0-Select is almost insensitive to the numberof Web nodes, always providing the lowest

amount of load redirection.

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32 36 40 44 48 52 56

R
ed

ire
ct

io
n

P
er

ce
nt

ag
e

Number of Web Nodes

CA/g-CL/g
DA/g-DL/0
DA/l-CL/g
DA/l-DL/0

DA/l-DL/0-Select

Figure 12: Sensitivity of redirection percentage to the
number of Web nodes.

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

90
-p

er
ce

nt
ile

 o
f P

ag
e

R
es

po
ns

e
T

im
e

[s
ec

.]

Mean Additional Redirection Overhead [sec.]

LNS-RR (ideal)
CA/g-CL/g
DA/g-DL/0
DA/l-CL/g
DA/l-DL/0

DA/l-DL/0-Select

Figure 13: Sensitivity of response time to the redirec-
tion overhead.

As the network model cannot realistically represent Internet, the redirection cost may have an impact on

response time higher than that shown by previous results. Hence, it is important to investigate performance

of redirection schemes for higher costs of redirection, in addition to the already modeled double network

round-trip time and server management cost of redirection (the default corresponding to� sec.) Figure 13

21

shows that the response time of the fully distributed algorithms DA/l-DL/0 and DA/g-DL/0 increases rapidly

for higher redirection overheads due to their higher percentage of redirected requests. Although its increment

is smoother, even the fully centralized scheme does not perform well when the cost of redirection increases.

A more sophisticated request selection policy, such as DA/l-DL/0-Select, is able to limit the performance

degradation, thus confirming the intuition that in the real Internet the reduction of redirections obtained by

content-aware selection policies has a noticeable positive impact on performance. A similar observation is

in order when we consider the hybrid DA/l-CL/g because it limits the number of redirections.

In the last set of experiments we evaluate the impact of different load scenarios on performance. Two

different workloads are obtained by adding requests for dynamic objects, and by augmenting the probability

of finding objects in the server disk cache that reduces the stress on disks. To model the generation of

dynamic content, in each Web node we add a second tier of application and/or database servers. A dynamic

request includes the overheads due to back-end server computation to generate the dynamic objects and is

characterized by a Lognormal service time on back-end nodeswith mean equal to 0.5 seconds. Figure 14

shows the performance of the redirection schemes for highernumbers of pages containing dynamic objects.

We can conclude that the relative performance of the redirection algorithms does not change.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

90
-p

er
ce

nt
ile

 o
f P

ag
e

R
es

po
ns

e
T

im
e

[s
ec

.]

Dynamic Pages Percentage

LNS-RR (ideal)
CA/g-CL/g
DA/g-DL/0
DA/l-CL/g
DA/l-DL/0

Figure 14:Sensitivity of response time to the percent-
age of dynamic requests.

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ed

ire
ct

io
n

P
er

ce
nt

ag
e

Caching Probability

CA/l-CL/g
DA/g-DL/0
DA/l-CL/g
DA/l-DL/0

DA/l-DL/0-Select

Figure 15: Sensitivity of redirection percentage to
caching probability in disk cache.

We then vary the probability that the requested Web object isfound in the server disk cache. A lower

caching probability corresponds to a higher load on the diskresource, which represents the server bottle-

neck. As expected, a higher stress on the server disk degrades the performance in terms of response time.

If we consider the redirection percentage shown in Figure 15, we can observe an interesting phenomenon.

The fully centralized CA/g-CL/g algorithm is quite insensitive to the caching probability because the state

information used by the A-DNS for the activation decision does not include the node load. On the other

hand, for the algorithms with distributed activation basedon local information (DA/l schemes), the redirec-

22

tion percentage diminishes as the caching probability increases. Indeed, when the node is less loaded, the

redirection needs to be activated less frequently. On the contrary, when the distributed activation depends on

a global information (curve DA/g-DL/0), the redirection percentage decreases with the caching probability.

Indeed, when the caching probability is low causing the global load to be high, it happens less frequently that

the local node load exceeds the global load threshold. It is worth to observe that in practice redirection does

not hurt much disk cache replacement; indeed, as the object popularity is not uniformly distributed [2, 4],

all servers tend to have the most popular objects in their disk caches.

Our analysis indicates some results common to centralized and distributed algorithms. The centralized

activation achieves best results when coupled with a centralized localization, and the same is true for dis-

tributed activation and localization. Distributed activation and centralized localization is the only hybrid

scheme that shows comparable performance to fully centralized and fully distributed schemes. For a fair

comparison of centralized with distributed redirection schemes, we have to consider not only performance

metrics but also implementation complexity and managementoverheads. Focusing on the response time

only would let us conclude that the fully centralized algorithm is the most convenient choice because for

any considered scenario it provides (slightly) lower response times than the fully distributed policy. The

problems with centralized schemes are that they are not ableto limit the percentage of redirected requests,

their implementation may be hard because of the communication mechanisms and estimation of the do-

main popularity, and their execution is more expensive fromthe computation and communication point of

view than any distributed scheme counterpart. The simulation model could not take into account all these

complex factors, hence the results about response times aremore favorable than reality to the centralized

schemes. Hence, we can conclude that the fully distributed solutions are preferable, because they provide

similar response times with a lower percentage of redirected requests, less overheads, and much lower sys-

tem complexity.

9 Conclusions

We provide a taxonomy of the redirection schemes in distributed Web systems including centralized vs.

distributed control algorithms for the activation of the mechanism, for the localization of the destination

nodes, and for the selection of the requests to be redirected. These control policies can be based on local,

partial or global state information. A thorough investigation has led to the proposal of centralized and

distributed schemes that not only achieve good results, butalso guarantee stable performance. The stability

of performance under different system scenarios is crucialwhen considering real systems that operate in

the extremely variable Web environment. Even the DNS round-robin dispatching that performs very poorly

under skewed request load, when combined with a distributedredirection mechanism carried out by the

Web nodes, can achieve good and stable performance with percentages of redirections lower than 15%.

23

By comparing fully centralized, fully distributed and hybrid control schemes, we have found that in some

cases a distributed redirection algorithm may achieve slightly worse performance than the best centralized

alternatives, but it has three major advantages that make its use preferable: it is easier to implement, imposes

much lower computational and communication overheads, andallows the use ofcontent-awareredirection

policies that are gaining so much importance in the Web.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which were helpful

in preparing the final version of the paper. The first two authors acknowledge the support of MIUR-Cofin

2001 in the framework of the project “High-quality Web systems”.

References

[1] D. Andresen, T. Yang, and O.H. Ibarra, “Toward a ScalableDistributed WWW Server on Workstation Clusters,”
J. Parallel and Distributed Computing, vol. 42, no. 2, pp. 91–100, Apr. 1997.

[2] M.F. Arlitt and T. Jin, “A Workload Characterization Study of the 1998 World Cup Web Site”,IEEE Network,
vol. 14, no. 3, pp. 30–37, May/June 2000.

[3] L. Aversa and A. Bestavros, “Load Balancing a Cluster of Web Servers using Distributed Packet Rewriting,”
Proc. 19th IEEE Int’l Performance, Computing, and Communications Conf. (IPCCC), pp. 24–29, Feb. 2000.

[4] P. Barford and M.E. Crovella, “A Performance Evaluationof Hyper Text Transfer Protocols,”Proc. ACM Sig-
metrics 1999, pp. 188–197, May 1999.

[5] P. Barford and M.E. Crovella, “Critical Path Analysis ofTCP Transactions,”IEEE/ACM Trans. Networking, vol.
9, no. 3, pp. 238–248, June 2001.

[6] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Yu, “The State of the Art in Locally Distributed Web-Server
Systems,”ACM Computing Surveys, vol. 34, no. 2, pp. 263–311, June 2002.

[7] V. Cardellini, M. Colajanni, and P.S. Yu, “Geographic Load Balancing for Scalable Distributed Web Systems,”
Proc. 8th IEEE Int’l Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 20–27, Aug. 2000.

[8] M. Colajanni and P.S. Yu, “A Performance Study of Robust Load Sharing Strategies for Distributed Hetero-
geneous Web Server Systems,”IEEE Trans. Knowledge and Data Engineering, vol. 14, no. 2, pp. 398–414,
Mar./Apr. 2002.

[9] M. Dahlin, “Interpreting Stale Load Information,”IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 10,
pp. 1033–1047, Oct. 2000.

[10] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing in Homogeneous Distributed Systems,”
IEEE Trans. Software Engineering, vol. 12, no. 5, pp. 662–675, May 1986.

[11] R.T. Fielding, J. Gettys, J.C. Mogul, H.F. Frystyk, L. Masinter, P.J. Leach, and T. Berners-Lee, “Hypertext
Transfer Protocol – HTTP/1.1,” RFC 2616, June 1999.

[12] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,”IEEE/ACM Trans. Networking, vol. 9, no. 4,
pp. 392–403, Aug. 2001.

24

[13] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the Performance of HTTP over Several Transport Proto-
cols,” IEEE/ACM Trans. Networking, vol. 5, no. 5, pp. 616–630, Oct. 1997.

[14] J. Kangasharju, K.W. Ross, and J.W. Roberts, “Performance Evaluation of Redirection Schemes in Content
Distribution Networks,”Computer Commun., vol. 24, no. 1-2, pp. 207–214, Feb. 2001.

[15] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and Y.
Yerushalmi, “Web Caching with Consistent Hashing,”Computer Networks, vol. 31, no. 11-16, pp. 1203–1213,
Feb. 1999.

[16] O. Kremier and J. Kramer, “Methodical Analysis of Adaptive Load Sharing Algorithms,”IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 6, pp. 747–760, Nov. 1992.

[17] B. Krishnamurthy and J. Wang, “On Network-Aware Clustering of Web Clients,”Proc. ACM Sigcomm 2000, pp.
97–110, Aug. 2000.

[18] T. Kunz, “The Influence of Different Workload Descriptions on a Heuristic Load Balancing Scheme,”IEEE
Trans. Software Engineering, vol. 17, no. 7, pp. 725–730, July 1991.

[19] Q. Li and B. Moon, “Distributed Cooperative Apache Web Server,”Proc. 10th Int’l World Wide Web Conf., pp.
555–564, May 2001.

[20] Mesquite Software, “CSIM18 User Guide,” http://www.mesquite.com/.

[21] A. Shaikh, R. Tewari, and M. Agrawal, “On the Effectiveness of DNS-Based Server Selection,”Proc. IEEE
Infocom 2001, pp. 1801–1810, Apr. 2001.

[22] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing for Locally Distributed Systems,”IEEE Com-
puter, vol. 25, no. 12, pp. 33–44, Dec. 1992.

25

