
1

Efficient Operator Placement for Distributed
Data Stream Processing Applications

Matteo Nardelli Member, IEEE , Valeria Cardellini, Member, IEEE, Vincenzo Grassi, and Francesco
Lo Presti, Member, IEEE

Abstract—In the last few years, a large number of real-time analytics applications rely on the Data Stream Processing (DSP) so to
extract, in a timely manner, valuable information from distributed sources. Moreover, to efficiently handle the increasing amount of data,
recent trends exploit the emerging presence of edge/Fog computing resources so to decentralize the execution of DSP applications.
Since determining the Optimal DSP Placement (for short, ODP) is an NP-hard problem, we need efficient heuristics that can identify a
good application placement on the computing infrastructure in a feasible amount of time, even for large problem instances.
In this paper, we present several DSP placement heuristics that consider the heterogeneity of computing and network resources; we
divide them in two main groups: model-based and model-free. The former employ different strategies for efficiently solving the ODP
model. The latter implement, for the problem at hand, some of the well-known meta-heuristics, namely greedy first-fit, local search, and
tabu search. By leveraging on ODP, we conduct a thorough experimental evaluation, aimed to assess the heuristics’ efficiency and
efficacy under different configurations of infrastructure size, application topology, and optimization objectives.

Index Terms—Distributed data stream processing, Geo-distributed systems, Heuristics, Operator placement, Quality of Service.

F

1 INTRODUCTION

TODAY we have access to a huge amount of data from
which we would like to extract valuable information in

a timely manner. The identification of customer sentiments
from social network data, the prediction of health risks from
wearable devices, or the optimization of public transports
in response to social events are only some examples of
the potentialities of intelligent analytics services. Exploit-
ing on-the-fly computation, Data Stream Processing (DSP)
applications can process unbounded streams of data in a
near real-time fashion. DSP applications are typically de-
ployed on large-scale and centralized (Cloud) data centers,
which are often distant from data sources. However, in the
emerging scenario, DSP applications expose strict quality
requirements, thus calling for an efficient usage of the un-
derlying processing infrastructure. Indeed, as data increase
in size, pushing them towards centralized data centers could
exacerbate the load on the network infrastructure and also
introduce excessive delays. To improve scalability and re-
duce network delays, a solution lies in taking advantage
of the ever increasing presence of edge/Fog computing
resources [1]. They allow to decentralize the execution of
DSP applications, by moving the computation towards the
network edges (i.e., close to data sources). Nevertheless,
the use of a geographically distributed infrastructure poses
new challenges to deal with. They include network and
system heterogeneity as well as non-negligible network
delays among nodes processing different parts of a DSP
application. This latter aspect could have a strong impact
on DSP applications for latency-sensitive domains.

• V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli
are with University of Rome Tor Vergata, Italy. E-mails:
{cardellini, nardelli}@ing.uniroma2.it, vincenzo.grassi@uniroma2.it,
lopresti@info.uniroma2.it

In such a distributed scenario, a relevant problem con-
sists in determining the computing nodes that should host
and execute each processing element (i.e., operator) of a DSP
application, aiming to optimize some Quality of Service
(QoS) attributes. This problem is known in literature as the
operator placement problem (or scheduling problem) [2]. In a
previous work [3], we proposed a general formulation of
the Optimal DSP Placement (for short, ODP), which takes
into account the heterogeneity of application requirements
and infrastructural resources. Although ODP determines the
optimal placement for a DSP application, we demonstrated
that it solves an NP-hard problem. For this reason, we
need efficient heuristics that can solve the DSP placement
problem within a feasible amount of time, even for large
problem instances. Several heuristics have been already
proposed in literature (e.g., [4], [5], [6], [7], [8], [9]). However,
most of them have been designed for a clustered environ-
ment where network delays are negligible (e.g., [10], [11],
[12]). Therefore, they are not well suited for the edge/Fog
environment we want to consider. Other proposals lack of
flexibility and cannot easily optimize new placement goals
(e.g., [7], [8]). Furthermore, a systematic analysis of the ex-
isting heuristics’ performance, under different deployment
configurations and with respect to the (theoretic) optimal
solution, is almost always missing.

In this paper, we present several heuristics that solve
the operator placement problem while considering the het-
erogeneity of application requirements and computing re-
sources. Then, we assess the heuristics’ quality by using the
optimal DSP placement formulation (i.e., ODP). We develop
the heuristics following three main guidelines: flexibility,
quality of the computed placement solution, and optimal
model exploitation. As regards flexibility, we have observed
that many solutions are specifically crafted for optimizing
specific QoS metrics and cannot be easily customized or

This is the accepted version of the following article: "Efficient Operator Placement for Distributed Data Stream Processing 
Applications", which has been published in final form at https://doi.org/10.1109/TPDS.2019.2896115 
© 2019 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

extended to account for new metrics (e.g., [7], [8], [13], [14]).
Conversely, we aim to provide a general framework that
can be easily tuned to optimize different QoS metrics (e.g.,
response time, availability, network usage, or a combination
thereof). As regards quality, most of the existing heuristics
usually determine best-effort solutions, meaning that they
do not provide guarantees, quantitative, or qualitative in-
formation regarding their ability to compute near-optimal
solutions. For example, many placement approaches rely on
greedy strategies (e.g., [4], [5], [10], [12]) that, by moving
through local improvements, can miss the identification of
globally optimal configurations. Together with the reduced
resolution time, we aim to evaluate the heuristics’ ability to
compute placement solutions that are as close as possible
to the theoretically optimal ones. This is relevant when
applications with stringent requirements run over heteroge-
neous and distributed infrastructures, where the inefficient
utilization of resources can strongly penalize the application
performance. As regards optimal model exploitation, we want
to explore the possibility of efficiently using the ODP model,
aiming to determine high-quality placement solutions (as
also proposed in [15], [16]).

The main contributions of this paper are as follows.

• We design several model-based and model-free
heuristics. The model-based heuristics revolve around
the ODP model. They determine the application
placement by solving ODP on a reduced set of com-
puting resources. The model-free heuristics implement
the greedy first-fit, local search, and tabu search ap-
proaches for the problem at hand. All the proposed
heuristics rely on a special penalty function, which
captures the cost of using any given computing
resource. Such function allows to easily deal with
single and multi-dimensional QoS attributes.

• We run a thorough set of numerical experiments
to evaluate the proposed heuristics under differ-
ent configurations of infrastructure size, application
topology, and optimization objective. To assess the
heuristic performance, we use ODP as benchmark.
We demonstrate that there is not a one-size-fits-all
heuristic; however, we identify the heuristic that, in
general, achieves the best trade-off between resolu-
tion time and quality of the computed placement
solution.

• We integrate the model-based and model-free heuris-
tics in Apache Storm, a well-known open source DSP
framework. Then, using Storm, we show how the
heuristics can be used in a real setting to deploy
DSP applications over geo-distributed computing re-
sources. To this purpose, we use a DSP application
that solves the DEBS 2015 Grand Challenge.

The remainder of the paper is organized as follows. In
Section 2, we discuss related works. In Section 3, we present
the system model and define the operator placement prob-
lem. Then, we describe the optimal placement formulation
(Section 4) and present the model-based and model-free
heuristics (Sections 5 and 6). In Section 7, we discuss a
broad set of numerical and prototype-based experiments to
assess the proposed heuristics. We conclude in Section 8. The
paper is accompanied by a supplemental document which

contains more details about the optimal placement model
and the experimental results.

2 RELATED WORK

The operator placement problem has been widely investi-
gated in literature under different modeling assumptions
and optimization goals, as surveyed in [2], [17]. In this
section, we review the related works organizing them along
three main dimensions, that capture one or more related
facets of the problem: (1) placement goals, i.e., optimization
objectives; (2) methodologies used to define the application
placement; and (3) characteristics of the distributed comput-
ing infrastructure managed by the placement solution.

Objectives. The existing solutions aim at optimizing a
diversity of objectives, such as to minimize the application
response time (e.g., [5], [11], [12], [13]), the inter-node traffic
(e.g., [4], [18], [19], [20], [21]), the network usage (e.g., [7],
[8]), or a generic cost function that can comprise different
QoS metrics (e.g., [15], [22], [23], [24]). Similarly to these
latter works, the goals of our heuristics can be flexibly tuned
so to encompass several QoS metrics, such as application
response time, availability, network usage, or a combination
thereof. The advantage of a multi-objective approach is that
it allows to easily explore different trade-offs among the
placement goals.

Methodologies. The operator placement problem has
been addressed relying on a variety of methodologies. They
include mathematical programming (e.g. [3], [8], [15], [16],
[22]), graph-theoretic approaches (e.g., [9], [14], [25]), greedy
approaches (e.g., [4], [5], [6], [10], [12], [20], [26]), meta-
heuristics (e.g., genetic algorithms [27], local search [16],
[28], tabu search and simulated annealing [16]), as well as
custom heuristics (e.g., [7], [13], [18], [23], [29]).

The most popular open-source DSP frameworks (Storm,
Spark Streaming, Flink, and Heron) usually adopt heuristic
policies for the placement. They range from the simple
round-round to the resource-aware heuristics R-Storm [29]
both in Storm, to a multi-layer heuristic in Heron [30]. The
latter first packs operators in containers using a round-robin
or first-fit policy and then places containers on the com-
puting infrastructure. Flink inherits from Stratosphere [31]
a query optimizer that transforms and allocates the appli-
cation graph, so to minimize a cost function that captures
network traffic and CPU load.

The model-based heuristics we propose rely on ODP and
explore different strategies for selecting a suitable subset
of computing resources, so to speed-up the resolution time
of ODP. With our model-free heuristics, we also consider
strategies based on popular heuristics and meta-heuristics.
The works most closely related to ours have been proposed
in [16], [32]. Stanoi et al. [16] focus on maximizing the input
data rate that the DSP system can support, acting on both
the order of operators and their placement on the resources.
In this respect, we do not consider operator re-ordering.
Together with the (nonlinear) problem formulation, the
authors propose different heuristics, based on local search,
tabu search, and simulated annealing. Gu et al. [32] focus on
minimizing the communication cost for DSP applications
deployed on geo-distributed data centers and formulate a
mixed-integer linear programming problem. To address the



3

computation efficiency issue, they propose a heuristic based
on solving the linear relaxation of the problem.

Differently from all the above mentioned heuristics, we
use the optimal placement formulation as a benchmark
against which we compare the heuristics performances in
terms of resolution time and solution quality. Abrams and
Liu [26] compare greedy placement heuristics with the
optimal in terms of placement cost; nevertheless, they only
consider tree-structured application graphs.

Computing Infrastructure. Most of the existing solu-
tions have been designed for a clustered environment,
where network latencies are almost zero (e.g. [10], [11],
[12]). Although interesting, these approaches might not be
suitable for geo-distributed environments, where the non-
negligible network latencies have a negative impact on the
application performance. Although not explicitly modeling
the network, some other works indirectly consider the
network contribution by minimizing the amount of data
exchanged between computing nodes (e.g., [4], [18], [20],
[22], [25], [33]). For example, Eidenbenz et al. [22] consider
a special type of DSP application topologies (i.e., serial-
parallel decomposable graphs) and propose a heuristic that
minimizes processing and transfer cost, but it works only
on resources with uniform capacity. Fischer et al. [25] use
a graph partitioning technique to optimize the amount
of exchanged data. Relying on a greedy best-fit heuristic,
Aniello et al. [4] and Xu et al. [20] propose centralized
algorithms that minimize the inter-node traffic. Specifically,
the solution in [4] co-locates operators with a higher amount
of pairwise communication within a single node, whereas
the proposal in [20] assigns each operator in descending
order of incoming and outgoing traffic. The decentralized
solution presented by Zhou et al. [21] finds the placement
that minimizes the inter-node traffic while balancing the
load among computing nodes.

Other works, e.g., [5], [7], [8], [13], [32], explicitly take
into account network latencies, thus representing more suit-
able solutions to operate in a geo-distributed DSP system.
Pietzuch et al. [7] and Rizou et al. [8] minimize the network
usage, that is the amount of data that traverses the network
at a given instant. Both these solutions propose a decen-
tralized placement algorithm that exploits a latency space
to find a good placement. To this end, Pietzuch et al. [7]
recur to an equivalent representation of the DSP application
as a system of springs, whereas Rizou et al. [8] exploit
the mathematical properties of the network usage function.
Backman et al. [5] and Chatzistergiou et al. [13] propose
two different approaches to partition and assign group of
operators while minimizing the application latency. Also the
solution by Zhu et al. [9] explicitly takes into account the
computational and communication delays; however, they
assume that a resource node can host at most a single opera-
tor. We consider this hypothesis not realistic in today’s DSP
systems; therefore, our heuristics enable the co-location of
operators on a resource node, according to its computational
capacity. Similarly to this last group of works, we explicitly
model the impact of network heterogeneity, both in terms
of delay and availability. Our heuristics can easily take
into account other QoS metrics of computing and network
resources, such as cost, bandwidth, or energy capacity.

So far, only few works propose solutions specifically

designed for Fog computing environments. SpanEdge [23]
allows to specify which operators should be placed as close
as possible to the data sources, while Arkian et al. [15]
propose an integer non-linear formulation for placing IoT
applications over Fog resources. To reduce resolution time,
they linearize the problem; nevertheless, we show that
also linear formulations suffer from scalability issues. We
provide new heuristics to efficiently solve the placement
problem when dealing with large problem instances.

In our placement characterization, we have not consid-
ered two important issues: the exploitation of performance-
enhancing techniques (e.g., operator replication, transfor-
mations of application graph) and the run-time adapta-
tion of the application placement. Determing the operator
replication degree is often addressed as an independent
and orthogonal decision with respect to the operator place-
ment. Most works exploit operator replication at run-time
to achieve elasticity, e.g., [34], [35]. In [36], we present a
problem formulation that jointly optimizes the replication
and placement of DSP applications, but it is not suitable for
large scale problem instances. In this paper, we assume that
the operator replication degree has been set at application
design time; so, we target the initial operator placement.

Since changes of different kinds can occur during
the application run (e.g., variability in system conditions,
stream processing workload, location of data sources and
sinks [17]), the placement should be updated at run-time so
to maintain the desired application performance. Depend-
ing on the DSP framework, the new placement can be en-
acted by redeploying from scratch all the application (e.g., in
Storm) or by migrating only a subset of operators, e.g. [37],
[38]. A common approach to deal with placement adap-
tation relies on solving the placement problem at regular
intervals, so to update the operator location, e.g., [20], [39].
Such approach can be realized through efficient heuristics,
as those here proposed, that recompute the placement in
a feasible amount of time. However, run-time adaptation
costs [35], [38], [40], which arise from transferring the DSP
operators state and/or freezing the application processing,
should also be explicitly considered while reconfiguring
the deployment, because they can significantly decrease the
application performance. This would require to deal with
a larger number of issues (e.g., impact of replication, load
distribution, reliability) which does not de facto change the
problem formulation structure (see [40] for the resulting op-
timization problem). The machinery and results presented
in this paper would, with some adjustments, also apply
to the adaptation problem (as discussed in Section 7.6).
We postpone to future work the study of heuristics that
take into account such costs as well as the determination
of the replication degree. To more effectively cope with
the highly changing execution environment of Fog com-
puting (e.g., mobility of data sources and consumers), such
heuristics could also exploit decentralized decision-making
approaches, as in [41], [42], as well as be integrated within
the adaptive selection of the placement strategy [42].

3 SYSTEM MODEL AND PROBLEM STATEMENT

In this section we present the DSP application and resource
model, and define the operator placement problem.



4

1 2
3

4 6

5

(1,2)

(1,2) (1,2) (2,3)
(2,4)

(3,5)
(4,5)

(4,6)

(4,6)

(2,4)
(2,3)

(3,5)

(4,5)

(4,6)

Fig. 1: Placement of the application operators on the com-
puting and network resources.

DSP Model. A DSP application consists of a network
of operators connected by streams. An operator is a self-
contained processing element that carries out a specific
operation (e.g., filtering, aggregation, merging). A stream
is an unbounded sequence of data (e.g., packet, tuple, file
chunk). A DSP application can be represented as a labeled
directed acyclic graph (DAG) Gdsp = (Vdsp, Edsp): the
nodes in Vdsp represent the application operators as well
as the data stream sources and sinks (i.e., nodes with no
incoming and no outgoing link, respectively); the links in
Edsp represent the streams flowing between nodes. Due to
the difficulties in formalizing the non-functional attributes
of an abstract operator, we characterize it with the non-
functional attributes of a reference implementation on a
reference architecture: Ci, the amount of resources required
for its execution; and Ri, the operator latency per unit of
data. We characterize the stream exchanged from operator i
to j, (i, j) 2 Edsp, with its average data rate �(i,j).1

Resource Model. Computing and network resources can
be represented as a labeled, fully connected, and directed
graph Gres = (Vres, Eres): the nodes in Vres represent the
distributed computing resources; the links in Eres represent
the logical connectivity between nodes. Observe that, at this
level, links represent the logical links across the network,
which results by the underlying physical network paths and
routing strategies. Each node u 2 Vres is characterized by:
Cu, the amount of available resources; Su, the processing
speed-up on a reference processor; and Au, its availability,
i.e., the probability that u is up and running. Each link
(u, v) 2 Eres, with u, v 2 Vres is characterized by: d(u,v),
the network delay between node u and v; and A(u,v), the
link availability, i.e., the probability that the link between u

and v is active. This model considers also edges of the type
(u, u); they capture network connectivity between operators
placed in the same node u, so they are considered as perfect
links, i.e., always active with no network delay.

Operator Placement Problem. The DSP placement prob-
lem consists in determining a suitable mapping between the
DSP graph Gdsp and the resource graph Gres so that all con-
straints are fulfilled. Figure 1 represents a simple instance of
the problem. Observe that a DSP operator cannot be usually
placed on every node in Vres, because of physical (i.e., pinned

1. We assume that the amount of resources Ci is sufficient to sustain
the input rate to the operator i, i.e., �i =

P
j:(j,i)2Edsp

�(j,i), on the
reference architecture. Ri is the associated (average) latency.

operator) or other motivations (e.g., security, political). This
observation allows us to consider for each operator i 2 Vdsp

a subset of candidate resources V
i
res ✓ Vres where it can

be deployed. For example, if data stream sources and sinks
(V pinned

dsp ⇢ Vdsp) are external applications, their placement
is fixed, that is 8i 2 V

pinned
dsp , |V i

res| = 1.

4 THE PLACEMENT PROBLEM

In this section we formalize the Optimal DSP Placement
(ODP) problem and provide an overview of the proposed
heuristics. We also define the resource penalty function
which plays a key role in our heuristics.

4.1 Optimal Placement Formulation
The ODP problem can be conveniently formulated as an
Integer Problem (IP), where the operators placement is
modeled by using binary variables xi,u, i 2 Vdsp, u 2 V

i
res:

xi,u = 1 if operator i is deployed on node u and xi,u = 0
otherwise. The ODP formulation takes the general form:

min
x

F (x)

subject to:

X

i2Vdsp

Cixi,u  Cu 8u 2 Vres (1)

X

u2V i
res

xi,u = 1 8i 2 Vdsp (2)

xi,u 2 {0, 1} 8i2Vdsp,

u2V i
res

(3)

where F (x) represents a suitable objective function (to be
minimized) and x the placement vector, i.e., x = hxi,ui,
8i 2 Vdsp, 8u 2 V

i
res. In the formulation, (1) represents

the nodes’ resources constraints, which limit the placement
of operators on a node u 2 Vres according to its avail-
able resources. Equation (2) guarantees that each operator
i 2 Vdsp is placed on one and only one node u 2 V

i
res.

The objective function F (x) defines the placement strategy
goals. Depending on the usage scenario, a DSP placement
strategy could be aimed at optimizing different, possibly
conflicting, QoS attributes. In this paper, without lack of
generality, we consider the application response time R(x),
the application availability A(x), and the network usage
Z(x). This leads to a multi-objective optimization problem,
which can be transformed into a single objective problem
using the Simple Additive Weighting technique [43]. To this
end, we define F (x) as a weighted sum of the normalized
QoS attributes of the application, as follows:

F (x) = wr
R(x)�Rmin

Rmax �Rmin
+ wa

logAmax � logA(x)
logAmax � logAmin

+ wz
Z(x)� Zmin

Zmax � Zmin
(4)

where wr, wa, wz � 0, wr + wa + wz = 1, are weights for
the different QoS attributes. Rmax (Rmin), Amax (Amin), and
Zmax (Zmin) denote respectively the maximum (minimum)
value for the overall expected response time, availability,
and network usage. Actually, we consider the logarithm of
the availability, logA(x), so to obtain a linear expression.
Observe that, after normalization, each metric ranges in the
interval [0, 1], where the value 0 corresponding to the best
and 1 to the worst metric value. As shown in Appendix A,



5

with this choice for the objective function F (x), the ODP
problem takes the form of an Integer Linear Problem (ILP)2

which can be solved via standard techniques.

4.2 Heuristics: Overview
As demonstrated in [3], ODP is NP-hard. For supporting
online operations, we develop several new heuristics for
solving the operator placement problem. We present them as
belonging to two main groups: model-based and model-free
heuristics. All of them aim to solve the ODP problem while
minimizing the objective function F (x), defined in (4). To
this end, the heuristics use a special penalty function, that
defines an order relationship among resources, with respect
to their ability in minimizing the objective function F (x).

The model-based heuristics are named Hierarchical ODP,
ODP-PS, and RES-ODP. They try to restrict the set of candi-
date computing resources, before solving the ODP problem.
Hierarchical ODP represents the computing infrastructure as
organized in a hierarchy of virtual data centers (VDCs).
Then, starting from the hierarchy root, this strategy recur-
sively explores subsets of VDCs, until identifying the com-
puting resources that will execute the application operators.
Instead of aggregating resources in VDCs, ODP on a Pruned
Space (ODP-PS) works directly with computing nodes. First,
it identifies a reduced set of computing nodes, i.e., the best
candidates for hosting the DSP operators. Then, it solves
ODP by considering only this set of candidate computing
resources. Relax, Expand and Solve ODP (RES-ODP) exploits
the linear relaxation of ODP so to identify a first set of
candidates resources, which is then augmented by including
some neighbor nodes of the candidates. Ultimately, RES-
ODP solves the placement problem by considering only the
set of candidate computing nodes. Sections from 5.1 to 5.3
present in detail the model-based heuristics.

The model-free heuristics implement some of the well-
known meta-heuristics to solve the ODP problem. Greedy
First-fit is one of the most popular approaches used to
solve the bin-packing problem; it is also widely applied for
solving the operator placement problem (e.g. [4], [20]). Our
implementation considers the DSP operators as elements to
be (greedily) allocated in bins of finite capacity, which rep-
resent the computing resources. Local Search is an algorithm
that, starting from an initial placement, greedily moves
through the configurations that reduce the objective func-
tion F (x), until a stopping criterion is met (e.g., no further
improvement can be achieved). Since it only accepts local
improvements, it can get stuck in local optima, missing the
identification of a global optimum solution. Tabu Search uses
a simple strategy to escape from local optima and further
explore the solution space, thus improving the probability
of finding a globally optimal solution. Starting from an
initial placement, through a set of iterations, it finds a local
optimum; then, it explores the search space by selecting the
best non-improving placement configuration, which can be
found in the neighborhood of the local optimum. To avoid
cycles back to an already visited configuration, the proce-
dure uses a limited tabu list of previous moves that cannot
be further explored. In [16], Stanoi et al. use local search

2. This requires the introduction of auxiliary variables which model
the assignment of streams to links and the application response time.

and tabu search to efficiently solve the operator placement
problem; nevertheless, their work does not provide details
on key design choices. Differently from existing approaches
(e.g., [4], [16]), our model-free heuristics rely on the resource
penalty function � so to improve the quality of the computed
placement solutions. Sections from 6.1 to 6.3 present in detail
the model-free heuristics.

The optimal placement depends on the location of data
sources and sinks; all these heuristics assume that their
placement is fixed a priori. If their location is not defined,
we can conveniently pin them before solving the heuristics.

4.3 Resource Penalty Function
The heuristics involve, at different stages, the selection of
suitable nodes and/or links to guide the placement deci-
sions. To this end, we need a metric that enables a com-
parison among different alternatives; it should capture the
cost (in terms of objective function F (x)) of using any given
node/link resources for the application deployment.

The resource selection problem would be trivial in an
ideal setting where we could have access to a node with
infinite capacity, infinite computing speed, and 100% avail-
ability, to which also the data sources and data sinks could
be pinned. In such a case, we would just place all the
operators on this single node. However, in real use cases,
because of the limited capacity of a single node and the data
sources and sinks distribution, we need to possibly deploy
the application operators on several computing nodes. This
placement introduces network delays and network traffic,
and can also suffer from non-ideal node/link availability.
Therefore, it becomes natural to associate to any resource a
penalty which captures the relative measure of degradation
with respect to an ideal resource. The latter is characterized
by infinity capacity, infinite computing speed, and no net-
work delay. The lower the penalty, the better the resource.

We introduce a link penalty function �(u, v) 2 [0, 1],
which assigns a penalty to the network link (u, v) 2 Eres as
a measure of degradation with respect to the ideal perfor-
mance. Formally, we define the link penalty function �(u, v)
as the weighted combination of the QoS attributes of the link
(u, v) and the associated upstream and downstream nodes
u, v 2 Vres, respectively. We have:

�(u, v) = wr�R(u, v) + wa�A(u, v) + wz�Z(u, v)

where wr, wa, wz 2 [0, 1] are the same weights used in
F (x). The terms �R(u, v), �A(u, v), and �Z(u, v) model
the penalty with respect to the single QoS metrics, i.e.,
application response time, availability, and network usage,
respectively. These terms are defined as follows:

�R(u, v) =
R̃(u, v)� R̃min

R̃max � R̃min

�Z(u, v) =
Z̃(u, v)� Z̃min

Z̃max � Z̃min

�A(u, v) =
log Ãmax � log Ã(u, v)

log Ãmax � log Ãmin

where R̃(u, v), log Ã(u, v), and Z̃(u, v) capture the ef-
fects of using the link (u, v) on the application placement,
in terms of the specific QoS metric. We compute these terms
by considering the placement of two reference operators on



6

u and v, respectively. The reference operators allow to ne-
glect the application-specific contributions. The maximum
and minimum values of R̃(u, v), Ã(u, v), and Z̃(u, v) are
respectively M̃max and M̃min, with M̃ = R̃|Ã|Z̃ .

The response time R̃(u, v) on the link (u, v) depends on
the network delay d(u,v) and on the execution time of the
reference operators on u and v, respectively. We have:

R̃(u, v) = d(u,v) +
R1

Su
+

R1

Sv

where R1 is the (unitary) execution time of the reference
operators and Su and Sv are the processing speed-up of u
and v, respectively. The term log Ã(u, v) gauges the proba-
bility that the link (u, v) and the nodes u and v are up and
running; it is computed as:

log Ã(u, v) =

(
logA(u,v) + logAu + logAv if u 6= v

logAu if u = v

where A(u,v), Au, and Av are the availability of (u, v),
u, and v, respectively. The network usage Z̃(u, v) models
the amount of data that traverses the network at a given
time. Given the unitary data rate �1 exchanged between the
reference operators, we define Z̃(u, v) as follows:

Z̃(u, v) = �1d(u,v)

5 MODEL-BASED HEURISTICS

In this section, we present in detail the model-based heuris-
tics, namely Hierarchical ODP, ODP-PS, and RES-ODP.

5.1 Hierarchical ODP
Hierarchical ODP represents the underlying infrastructure
as organized in a limited number of entities, named virtual
data centers3 (VDCs). A VDC abstracts a group of computing
nodes and related network links, which are exposed as an
aggregated and more powerful computing element. If the
computing infrastructure contains a very large number of
resources, grouping them in VDCs may still result in a
large number of VDCs. To further reduce their number, the
heuristic can further aggregate the VDCs in a higher level of
VDCs. This process results in a hierarchical representation of
the computing infrastructure, where the number of entities
(i.e., resources or VDCs) decreases from bottom up. Hier-
archical ODP exploits this structural property to iteratively
solve ODP and filter out groups of resources not suitable for
running the DSP operators. In its last step, Hierarchical ODP
computes the placement on a limited number of resources.

Specifically, Hierarchical ODP determines the applica-
tion placement as presented in Algorithm 1 (see the HIER-
ARCHICALODP function). First, it represents the computing
infrastructure as a hierarchy of VDCs (line 5). The hierarchy
is stored in a tree of height L, referred as Hres, where
the tree nodes are VDCs and the leaves are the computing
resources (stored at level L). A VDC of level l 2 [0, L � 1]
represents a group of VDCs/resources of level l + 1. More-
over, the VDCs of the l-th level, Hres[l], are interconnected

3. We use the term virtual data center without any correlation with the
concept of physical data centers managed by service providers.

Algorithm 1 Hierarchical ODP
1: function HIERARCHICALODP(Gdsp, Gres, g)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: Input: g, grouping factor
5: Hres  CREATEHIERARCHY(Gres , g)
6: L height of the hierarchy Hres

7: for l in [0, . . . , L] do

8: S  solve ODP (Gdsp, Hres[l])
9: If l = L return S end if

10: H
S
res[l] VDCs used in the placement solution S

11: Tres  extract from H
S
res[l] resources of level l + 1

12: keep in Hres[l + 1] only the resources in Tres

13: end for

14: end function

15: function CREATEHIERARCHY(Gres, g)
16: l blogg(|Gres|)e � 1
17: Hres[l] Gres . Hres is an array of graphs
18: while l � 0 do

19: k  g
l

20: C  createClustersUsingKMeans(k, Hres[l])
21: l l � 1
22: Hres[l] createVDCfromClusters(C);
23: end while

24: return Hres

25: end function

by logical links which result by the physical network links
of level L. Then, the heuristic exploits the infrastructure
representation by navigating the hierarchy from the root
down to the leaves. At level l, it determines the application
placement on the available VDCs in Hres[l] using ODP
(line 8). The computed placement solution allows to identify
the only VDCs/resources of level l + 1 that will be used in
the next resolution round (line 12). When l = L, the heuristic
runs ODP on the resource graph and returns the application
placement on the computing nodes (line 9).

Observe that the hierarchical representation of the com-
puting infrastructure makes the exploration of the solution
space faster, thus improving the heuristic scalability. Indeed,
although ODP is solved multiple times, each problem in-
stance includes a limited number of computing resources.

On Resource Aggregation. CREATEHIERARCHY creates
the hierarchical representation of the infrastructure (see
Algorithm 1). First of all, it identifies the number of hierar-
chical levels l to be created: it considers the number of com-
puting resources |Gres| and a groupingFactor g. The latter
is a parameter that allows to trade-off the hierarchy height
and the number of entities within each VDC: see line 16; bae
indicates the rounding of a 2 R to the closest integer in N.
Afterwards, the heuristic creates the hierarchical structure
by proceeding in a bottom-up manner (lines 18–23). At
level l, it uses a clustering algorithm (e.g., k-Means [44])
to determine k = g

l groups of nodes, so as to minimize the
average link penalty �(u, v) between every pair of nodes u

and v within the same group. Using the penalty function
allows to identify computing nodes as well as network links
with limited cost in term of F (x). Each group of resources
is then used to create a new VDC of the l-th level of the
hierarchy (line 22).

The non-functional attributes of a new VDC are com-
puted as follows. Let C↵ be the set of entities of level
l + 1 grouped around the same centroid ↵ identified by



7

Algorithm 2 ODP-PS
1: function ODP-PS(Gdsp, Gres)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: Hres  create tree-like structure of subsets of resources
5: P  resources hosting the pinned operators of Gdsp

6: Tres  smallest set in Hres that strictly contains P

7: do

8: S  solve ODP (Gdsp, Tres)
9: if placement S not found and Tres equals Gres then

10: return NOT_FEASIBLE

11: end if

12: Tres  smallest set in Hres that strictly contains Tres

13: while (placement S not found)
14: return S

15: end function

the clustering algorithm (e.g., k-Means), and let U be the
VDC of level l to created. The availability of U , AU , and the
processing speed-up of U , SU , are defined as the average
availability and speed-up of the computing resources in C↵,
respectively. The amount of available resources, ResU , is the
overall number of resources available in C↵. We have:

AU =

P
u2C↵

Au

|C↵|
, SU =

P
u2C↵

Su

|C↵|
, ResU =

X

u2C↵

Resu

At level l, the VDCs are interconnected by logical links
that result from the connectivity between the computing
resources at level (l+1) of the hierarchy. We define C↵ ./ C�
as the set of links that connect an element in C↵ to an
element in C� , where C↵ and C� are two groups identified by
k-Means: C↵ ./ C�

.
= {(u, v)|u 2 C↵, v 2 C�}. Let U and V

be the VDCs created by C↵ and C� , respectively. The logical
link (U ,V) has availability A(U,V) and network delay d(U,V)

defined as the average availability and the average network
delay of the links in C↵ ./ C� , respectively. We have:

A(U,V) =

P
(u,v)2C↵./C�

A(u,v)

|C↵ ./ C� |
, d(U,V) =

P
(u,v)2C↵./C�

d(u,v)

|C↵ ./ C� |

5.2 ODP-PS: ODP on a Pruned Space
ODP on a Pruned Space (ODP-PS) computes the operator
placement as presented in Algorithm 2. First, it selects a
subset of computing resources that can possibly host the
application operators (line 4). Then, it executes ODP only on
the candidate resources so to determine the operators place-
ment (line 8). If there is no feasible solution, the heuristic
tries to expand this set before solving again ODP (line 12).

To identify a set of resources that can be quickly ex-
panded as needed (line 4), the heuristic logically groups
resources in a hierarchy of sets (see Figure 2). The smallest
sets contain pairs of resources that minimize the penalty
function �(u, v). These sets are pairwise combined in larger
sets, so that the summation of the penalty function over
every pair of resources within the same set is minimized.
According to this representation, referred as Hres, a set
contains all the computing resources of its inner subsets.

To define the application placement (line 8), ODP-PS first
solves ODP on the smallest set of resources Tres that host the

Algorithm 3 RES-ODP
1: function RES-ODP(Gdsp, Gres, k)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: Input: k, number of new neighbors to include
5: S  solve ODP (Gdsp, Gres), no integrality constraints
6: Gres  candidate resources used in S

7: Gres  add k neighbor for each resource in Gres

8: S  solve ODP (Gdsp, Gres), with integrality constraints
9: return S

10: end function

pinned operators (i.e., data sources and sinks). If the place-
ment is not found, the heuristic considers the smallest set
in Hres that strictly contains Tres (line 12) and solves again
ODP (line 8). The heuristic terminates when the placement
is found or when the infrastructure does not contain enough
computing resources (line 9). Differently from Hierarchical-
ODP, ODP-PS computes the application placement on sets
of computing resources, whose cardinality can increase, in
the worst case, up to the whole infrastructure size.

5.3 RES-ODP: Relax, Expand, and Solve ODP
To identify a limited set of candidate resources for ODP,
Relax, Expand, and Solve ODP (for short, RES-ODP) uses the
linear relaxation of the ILP formulation of ODP. Linear relax-
ation is a consolidate technique in operational research [45].

As summarized in Algorithm 3, RES-ODP proceeds in
three steps. First, it solves ODP by relaxing the integrality
constraint for the placement variables x (line 5). Then, it
uses the computed placement solution to identify an initial
set of candidates nodes (referred as Gres in line 6). It may
happen that the relaxed placement assigns an operator to
multiple computing resources, i.e., for i 2 Vdsp, 9u, v 2
Vres, u 6= v such that xi,u, xi,v > 0. In such a case, RES-
ODP selects one of them as candidate node with a uniform
probability. Afterwards, RES-ODP expands the set of can-
didates by adding k neighbors for each candidate (line 7).
The best neighbors are identified using the link penalty
function and, to increase diversification, they are selected
in a probabilistic manner: the lower the link penalty, the
higher the probability of being selected. We extend the
set of candidate resources, because the linear relaxation of
ODP can use a reduced number of resources: indeed, by
neglecting the integrality constraints, it can assign fractions
of operators to resources, thus reducing resource wastage
and fragmentation. Nevertheless, in our setting, a placement
solution cannot fragment the operators. Finally, RES-ODP
determines the application placement by solving ODP (with
integrality constraints) on the extended set of candidate
resources (line 8).

computing resources

Fig. 2: ODP-PS groups the computing resources in subsets,
so that the penalty function within each set is minimized.



8

Algorithm 4 Local Search
1: function LOCALSEARCH(Gdsp, Gres)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: P  resources hosting the pinned operators of Gdsp

5: L resources of Gres, sorted by the cumulative
6: link penalty with respect to nodes in P

7: S  solve GREEDYFIRST-FIT(Gdsp, L)
8: do . local search
9: F  value of the objective function for S

10: S  improve S by co-locating operators
11: S  improve S by swapping resources
12: S  improve S by relocating a single operator
13: F

0  value of the objective function for S
14: while F

0
< F . placement solution is improved

15: return S

16: end function

6 MODEL-FREE HEURISTICS

In this section, we present in detail the model-free heuristics,
namely Greedy First-fit, Local Search, and Tabu Search.

6.1 Greedy First-fit
The Greedy First-fit heuristic determines the placement solu-
tion using a greedy approach [45]. For each DSP operator,
this heuristic selects the computing resource from a sorted
list L in a first-fit manner. Specifically, let P be the set of
computing nodes that host the pinned operators (e.g., data
sources, sinks). The heuristic adds to a list L the available
resources u 2 Vres, and sorts them in ascending order
of overall link penalty; the latter is the summation of the
link penalty between the node u in L and every resource
in P , i.e.,

P
v2P �(u, v). Then, by navigating Gdsp in a

breadth-first manner, the heuristic defines the placement of
every DSP operator on the computing resources, which are
selected from L in a first-fit manner.

6.2 Local Search
Local Search explores the solution space by moving from
a placement configuration to the next one using a greedy
approach. We summarize its behavior in Algorithm 4.

As first step, the heuristic creates L, a list of computing
resources sorted in ascending order of cumulative penalty
with respect to nodes hosting the pinned operators (see
Section 6.1). Then, the heuristic computes the initial appli-
cation placement using Greedy First-fit (line 7) and starts
the local search. Specifically, it iterates to discover new
placement configurations with lower value of the objective
function F , until no further improvement can be achieved
(lines 8–14). At each iteration, neighbor configurations of the
current placement are explored, and the best one is chosen
as current configuration. Three exploration strategies are
used, namely co-locate operators (line 10), swap resources
(line 11), and move single operator (line 12).

Co-locate operators tries to assign two communicating
operators on the same computing resource. Considering the
initial configuration where i 2 Vdsp runs on u 2 Vres and
j 2 Vdsp on v 2 Vres, this strategy tries to co-locate i and j

either on u or on v. Swap resources replaces an active comput-
ing resource u with a new one v from L; as a consequence,

Algorithm 5 Tabu Search
1: function TABUSEARCH(Gdsp, Gres)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: S

⇤  NOT_DEFINED . best placement
5: F

⇤  1
6: S

0  LOCALSEARCH(Gdsp, Gres) . local optimum
7: F

0  objective function value for S0

8: S  S
0

9: tl create new tabu list and append S

10: do

11: improvement false
12: S  local search from S, excluding solutions in tl

13: F  objective function value for S
14: if F = F

⇤
and S /2 tl then tl.append(S) end if

15: if F < F
⇤

and S /2 tl then

16: S
⇤  S; F ⇤  F

17: tl.append(S)
18: improvement true
19: end if

20: limit tl to the latest tlmax placement configurations
21: while (improvement)
22: if F

0
< F

⇤
then S

⇤  S
0

end if

23: return S
⇤

24: end function

all the operators hosted on u are relocated on v. Move single
operator relocates a single operator i from its location u to
a new computing resource v, selected from L. Differently
from the previous strategy, all other operators in u are not
relocated. Observe that we run the local search until no
further improvement can be found (line 14); however, a
more stringent stopping condition can be used so as to limit
the resolution time.

6.3 Tabu Search
The drawback of methods with local improvements (i.e.,
Greedy First-fit, Local Search) is that they might only find
local optima, which nevertheless depend on the initial con-
figuration, and miss the identification of global optima. Tabu
Search increases the chances of finding a global optimum
by moving, if needed, through non-improving placement
configurations.

Algorithm 5 describes Tabu Search. It starts from an
initial placement configuration, which is determined using
Greedy First-fit. Then, it computes the neighbor configu-
rations using the exploration strategies presented in Sec-
tion 6.2 (i.e., co-locate operators, swap resources, and move
single operator) and accepts the best improving placement
(line 6). As soon as a local optimum is found, the heuristic
continues to explore the search space by selecting the best
non-improving configuration found in the neighborhood
of the local optimum (line 12). This process increases the
possibility of escaping from the local optimum and finding
a new configuration that further decreases the objective
function F (lines 15 and 22). To improve exploration and
avoid cycles, the heuristic uses a tabu list (referred as
tl), which contains the latest tlmax visited solutions which
cannot be further explored. The heuristic terminates when
no further improvement can be achieved (line 21). When
the tabu search ends, the heuristic returns the overall best
solution (line 22). Similarly to Local Search, although we run



9

TABLE 1: Parameters of the experimental setup.

Infrastructure Application

|Vres| {36, 49, 64, 81, 100} |Vdsp| 20
Au U(97%, 99.99999%) Ci 1
Cu 2 Ri 3 ms
Su 1.0 �(i,j) 100 tuples/s

A(u,v) 100%
avg d(u,v) 17 ms

BRITE’s parameters used to generate the infrastructure network
Resource Random Graph Latency Space

AS Waxman (↵: 0.15; � 0.20) HS: 1000; LS: 100
Routers in AS Waxman (↵: 0.15; � 0.20) HS: 10000; LS: 1000

Normalization factors for the ODP objective function
Diamond Application

Amin Amax Rmin Rmax Zmin Zmax

58.8 % 97.2 % 74 ms 410 ms 132.2 KB 1409.2 KB
Sequential Application

Amin Amax Rmin Rmax Zmin Zmax

58.8 % 97.2 % 114 ms 3098 ms 8.4 KB 303.8 KB
Replicated Application

Amin Amax Rmin Rmax Zmin Zmax

58.8 % 97.2 % 49 ms 247 ms 52.0 KB 446.4 KB

(a) Smallest network, |Vres| = 36 (b) Largest network, |Vres| = 100

Fig. 3: BRITE-generated reference networks. The size of
nodes and links is proportional to their connectivity degree
and network delay, respectively.

the heuristic until no further improvement can be found, a
more stringent stopping condition can be used.

7 EXPERIMENTAL RESULTS

Relying on ODP as benchmark, we evaluate the efficacy
and efficiency of the proposed heuristics under different uti-
lization scenarios. We describe the numerical experimental
setup in Section 7.1. In Section 7.2, we analyze the heuristics
performance for different application topologies and com-
puting infrastructures (a more detailed analysis is in Ap-
pendix C.1). In Section 7.3, we briefly discuss the impact of
different objective functions on the heuristics performance
(further details in Appendix C.2). In Section 7.4, we sum-
marize the results and identify the heuristic that achieves,
on average, a good trade-off between resolution time and
quality of the placement solution. Finally, in Section 7.5, we
evaluate the heuristics using a Storm-based prototype.

7.1 Experimental Setup
We run the experiments on a virtual machine with 4 vCPU
and 8 GB RAM; CPLEX c� (version 12.6.3), the state-of-the-
art solver for ILP problems, is used to resolve ODP.

sinkoperatorsource

2l

l

Fig. 4: Sequential, replicated, and diamond applications.

We consider several geographically distributed infras-
tructures, where computing nodes are interconnected with
non-negligible network delays. We use BRITE [46] to gen-
erate infrastructures with n

2 = {36, 49, 64, 81, 100} com-
puting nodes, where the latter are interconnected in a two-
layered top-down network: in the top-level, n autonomous
systems (AS) communicate with high-speed links, whereas,
within each AS, routers use slower links4. Each level is
generated as a Waxman random graph. The QoS attributes
of computing and network resources, together with the
random graph generation parameters, are summarized in
Table 1. Figure 3 proposes a graphical representation of
the smallest and the largest computing infrastructure. The
size of nodes is proportional to their connectivity degree,
whereas the size of (physical) links is proportional to their
network delay. As presented in Section 3, a logical link
(u, v) 2 Eres between any u, v 2 Vres always exists.

We consider three alternatives of layered topology, repre-
senting sequential, replicated, and diamond DSP applications,
where each layer has one or more operators. The first and
last layer contain the sources and sinks of the application,
respectively. The DAGs of sequential, replicated, and dia-
mond applications are shown in Figure 4. The replicated
application has one operator in the first and in the last layer,
2l operators in the second layer, and l in the third one. All
the topologies contain the same number of operators. We
assume that source and sink are pinned on the same node.

The baseline scenario involves applications, computing
and network resources with homogeneous characteristics.
This represents the worst-case scenario for the CPLEX solver
that, using a branch-and-cut resolution strategy, has to ex-
plore the whole solution space in order to find and certificate
the optimum. Applications and resources are parametrized
as reported in Table 1. The latter also reports the normaliza-
tion factors used by ODP, which have been computed using
ODP with different optimization objectives5.

Together with the model-based and model-free heuris-
tics presented in Sections 5 and 6, we consider two addi-
tional baseline approaches: ODP+T and Greedy First-fit (no
�). ODP+T limits the time interval granted to CPLEX for
solving ODP through a timeout, that we set to 300 s: if the

4. In BRITE, HS and LS specify the dimensions of the plane that will
contain the generated topology. The plane is a square with side HS and
it is internally subdivided into smaller squares with side LS.

5. Different normalization factors should be used for each combina-
tion of application and network topologies. However, in our experi-
mental setting, the different network topologies have a limited impact
on the value of normalization factors; therefore, we only consider
different normalization factors for the different application topologies.



10

TABLE 2: Heuristics comparison when the application re-
sponse time is minimized. For each heuristic, we report the
resolution time speed-up (sp) and the performance degrada-
tion (pd), for diamond (DA), sequential (SA), and replicated
(RA) applications. Each column reports the average value of
performance metrics obtained by considering the different
size of computing infrastructure. The last column reports the
metrics obtained by considering all the evaluated scenarios.

Policy DA SA RA Overall

ODP rt 36 (s) 0.1 41.4 915.2 Average

rt 100 (s) 0.8 2174.8 32193.9 Value

Hierarchical sp 4.40 448.39 602.77 266.30
ODP pd 17% 3% 11% 10%

ODP-PS sp 3.45 127.17 104.71 121.17
pd 7% 0% 2% 2%

RES-ODP sp 2.93 6.77 73.80 11.10
pd 0% 0% 0% 0%

Local Search sp 0.68 150.54 353.07 215.81
pd 0% 1% 4% 1%

Tabu Search sp 0.31 65.91 64.93 83.53
pd 0% 1% 4% 1%

ODP+T sp 1.88 2.32 40.75 38.08
pd 0% 0% 49% 6%

Greedy First-fit sp 454.40 56 · 104 12 · 106 11 · 106
pd 0% 7% 5% 11%

Greedy First-fit sp 454.40 56 · 104 12 · 106 11 · 106
(no �) pd 34% 7% 24% 19%

optimal solution has not been identified within this time
interval, ODP+T returns the best solution it has computed.
Greedy First-fit (no �) determines the placement by assigning
DSP operators to the computing resources using a first-fit
approach; differently from Greedy First-fit, this heuristic
does not rely on the penalty function � to sort resources in
L (as other solutions in literature usually do, e.g., [4], [20]).

We parametrize the different heuristics after preliminary
experiments, aimed to minimize the quality degradation of
the computed placement solutions: Hierarchical ODP uses
a grouping factor g = 2; RES-ODP includes at most k = 5
neighbors for each candidate node; and Tabu Search limits
the tabu list to tlmax = 1000 configurations. Furthermore,
every heuristic uses a timeout on the resolution time equal
to 24 hours (value defined for practical reasons).

We compare the proposed heuristics against ODP in
terms of resolution time and performance degradation. The
resolution time (rt) represents the time needed to compute
the placement solution. We define the speed-up (sp) as the
ratio between the resolution time of ODP and that of the
heuristic h, i.e., sph = rtODP/rth. To quantify how far
is the placement solution by the heuristic h to the op-
timal placement, we define the performance degradation as
pdh = (Fh � FODP)/(1 � FODP), where Fh is the objective
function value by h and FODP is the optimal value by ODP.
By definition, Fh ranges between the best value FODP and
the worst value 1; in turn, pdh ranges between the best
value 0 and the worst value 1. Table 2 summarizes the
experimental results that we will discuss in this section. We
have evaluated 540 different configurations, each of which
has been executed 5 times.

7.2 Application Topologies and Network Size
In this experiment, we compare the performance of the
heuristics against ODP, when the optimization objective is

the minimization of the application response time R. This
corresponds to set the weights wr = 1, wa = wz = 0
to the objective function F (Equation 4). We evaluate the
heuristics for different application topologies and different
size of the computing infrastructure. Figure 5 reports the
heuristic resolution time as the number of computing re-
sources increases, and, as a horizontal red line, the timeout
(set at 24 h). For sake of clarity, we do not represent ODP+T,
whose resolution time is like the one by ODP limited to
300 s, and the Greedy First-fit approaches, whose resolution
time is at most 1 ms. By aggregating performance over
the different configurations of infrastructure size, Figure 6
shows the average speed-up on resolution time and the
average performance degradation of the heuristics for the
different application topologies. Due to space limitations,
we here discuss only the main outcomes of these experi-
ments and postpone their detailed analysis to Appendix C.1.

In these experiments, the heuristics achieved different
trade-offs between speed-up and performance degradation.
ODP+T turned out not to be a good resolution approach:
in case of replicated application, it obtained a performance
degradation higher than Greedy First-fit (no �). In most
of the cases, Local Search and Tabu Search improved the
placement solution with respect to Greedy First-fit. ODP-PS
and RES-ODP behaved similarly to Local Search and Tabu
Search, determining placement solutions with a limited
performance degradation. The fastest model-based heuristic
is Hierarchical ODP, which obtained, in the worst case, a
rather high 17% of performance degradation (which is still
lower than the one by Greedy First-fit (no �)).

We summarize the outcomes of these experiments as fol-
lows. First, the application topology strongly influences the
complexity of computing the optimal placement: a diamond
application is less demanding than a sequential one, which,
in turn, is less demanding than a replicated application (see
Figure 5). Solving the ODP model is feasible for diamond
applications (it takes at most 0.8 s); nevertheless, this does
not hold true for sequential and replicated applications,
which lead to an increment of resolution time up to 9 hours.
Second, the infrastructure size increases the resolution time
of ODP; nevertheless, working on a subset of resources, the
heuristics are less prone to increase their resolution time.
In these experiments, when the infrastructure size increased
from 36 to 100 resources, the resolution time of ODP has
grown up to 35 times, whereas the resolution time of the
model-based heuristics at most up to 20 times and of the
other heuristics at most up to 6 times. Third, the penalty
function �, presented in Section 4.3, helps to improve the
quality of placement solutions (see Figure 6). Greedy First-
fit is the fastest heuristic and, independently from the
application topology, determines a placement solution in
1 ms. When the penalty function � is used, Greedy First-
fit has strongly reduced the performance degradation of the
computed solutions.

7.3 Optimization Objectives
In this set of experiments, we investigate the impact of dif-
ferent optimization functions on the heuristics performance.
Due to space limitations, we here discuss only the main
outcomes of these experiments and postpone their detailed
analysis to Appendix C.2.



11

10-2

100

102

104

106

 30  40  50  60  70  80  90  100

R
e
so

lu
tio

n
 T

im
e
 (

s)

Computing Nodes

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

(a) Diamond application

10-2

100

102

104

106

 30  40  50  60  70  80  90  100

R
e
so

lu
tio

n
 T

im
e
 (

s)

Computing Nodes

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

(b) Sequential application

10-2

100

102

104

106

 30  40  50  60  70  80  90  100

R
e
so

lu
tio

n
 T

im
e
 (

s)

Computing Nodes

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

(c) Replicated application

Fig. 5: Computational cost of different approaches in defining the application placement with minimum response time R,
when several application topologies and size of the computing infrastructure are considered.

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

(a) Diamond application

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

(b) Sequential application

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

(c) Replicated application

Fig. 6: Heuristics performance to compute the application placement that minimizes the response time R, when different
application topologies are considered. Each point reports the average performance on the different infrastructure settings.

This set of experiments extends the results of Section 7.2.
Specifically, we can see that, together with the application
topology and infrastructure size, also the optimization goal
impacts on the heuristics performance. In general, we have
empirically observed that some single-objective functions
can be more easily optimized (e.g., availability) than others
(e.g., network usage). In the worst case, i.e., minimize the
network usage for a replicated application, the resolution
time of ODP grows from 169 s to 24 h, whereas the
resolution time of Hierarchical ODP, the fastest heuristics
excluding Greedy First-fit, grows from 3.2 s to 13 min.
Interestingly, when we are interested in maximizing the
application availability, the well-know meta-heuristics, i.e.,
Local Search and Tabu Search, are rather slow. Conversely,
Greedy First-fit is tremendously fast but computes low
quality solutions (up to 29% of performance degradation).

Determining an application placement that optimizes the
multi-objective function (i.e., when wa = wr = wz = 0.33 in
F ) represents the hardest case. Here, although Hierarchical
ODP performs well in terms of speed-up and performance
degradation (at most, 14%), Local Search shows even better
performances (resolution time in the order of minutes and
at most 3% of performance degradation).

All these experiments clearly show that it is not easy
to identify the best heuristic: in the different scenarios, the
heuristics achieve a different trade-off between speed-up
and performance degradation. Nevertheless, these exper-
iments provide us enough data to discuss which are the
heuristics that, on average, show a good behavior.

7.4 Heuristics Overall Performance
In this section, we analyze the heuristics performance ob-
tained during the whole experimental evaluation, aiming
to identify their average behavior. To this end, in Table 2,
we report the average values of speed-up and performance
degradation obtained for each combination of infrastructure
size, application topology, and optimization objective. Fig-
ure 7 also reports the distribution of these two performance
indexes (i.e., speed-up and performance degradation): each
boxplot reports the minimum value, the 5th percentile, the
median, the 95th percentile, and the maximum value. We
summarize the experimental results as follows.

The diamond application presents a topology whose
complexity can be efficiently handled by ODP and the
model-based heuristics. Interestingly, in this case, Tabu
Search and Local Search perform poorly. With different ap-
plication topologies, we need to use heuristics to efficiently
deploy the application. This is especially true when com-
plex objective functions should be optimized (e.g., multi-
objective functions).

The Greedy First-fit heuristic is the fastest one, although
it obtains the solution with the lowest quality (19% of av-
erage performance degradation). However, when equipped
with our penalty function �, the quality of this heuristic
increases: it decreases the quality degradation of the com-
puted placement solution from 19% to 11%, on average.
These results empirically show the benefits of our penalty
function �, which is adopted also by the other heuristics.

In several configurations, ODP has a prohibitively high



12

 0%
10%
20%
30%
40%
50%

           

P
e
rf

o
rm

a
n
ce

D
e
g
ra

d
a
tio

n

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

10-2
100
102
104
106

           

R
e
so

lu
tio

n
 T

im
e

(s
)

Placement Policies

Fig. 7: Performance distribution of ODP and of the heuris-
tics, considering their speed-up and performance degrada-
tion obtained throughout the whole experimental session.

resolution time. We have shown that the idea of applying
a stringent timeout to the CPLEX solver (as ODP+T does)
does not always work fine. We have shown that, in some
cases, ODP+T computes low quality solutions, obtaining a
performance degradation higher than Greedy First-fit (no �).
Figure 7 shows that the 95th percentile and the maximum
value of performance degradation by ODP+T are the highest
achieved in our experiments.

The heuristic ODP-PS, RES-ODP, Local Search, and Tabu
Search have a very good trade-off between speed-up and
performance degradation. The latter is always below 10%,
whereas the resolution time of these heuristics is distributed
on a wide range. We observe that RES-ODP shows an in-
teresting behavior, indeed it always computes near-optimal
solutions (with at most 2% of performance degradation), by
reducing the resolution time of ODP by 11 times on aver-
age. Nevertheless, in the worst case, it takes several hours
to compute the placement solution. As regards the other
heuristics (i.e., ODP-PS, Local Search, and Tabu Search),
there is not a net supremacy of one on the others. However,
we consider Local Search to be the one having the best
performance trade-off: it shows an average speed-up of
216 times and performance degradation of 1% with respect
to ODP. In the worst case, Local Search took 269.8 s to
compute the placement solution. Furthermore, this heuristic
can easily be extended to further limit the resolution time
by using time-based stopping criteria, e.g., by setting a
timeout on the exploration phase or by limiting the number
of neighbor configurations to evaluate (see Section 6.2).

We also observe that Hierarchical ODP is very fast (aver-
age speed-up of 266 and 1.2 s as median value of resolution
time) and shows an average performance degradation of
10%. On average, it determines higher quality solutions
with respect to those achieved by Greedy First-fit heuristics.

To conclude, we have shown that the combination of
application topology, optimization function, and infrastruc-
ture size can deeply change the complexity of the placement
problem to be solved. Moreover, we have shown that is
not easy to identify a single heuristic that always achieves
the best performance: e.g., see Local Search for diamond
applications in Table 4 (Appendix C.2). By analyzing the
overall behavior in our experiments, we have concluded

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome
lterByCoordinates countByWindow globalRankdatasource parser partialRank

Fig. 8: Reference DSP application

 0

 25

 50

 75

 100

 125

 150

 175

 0  500  1000  1500  2000  2500  3000  3500

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Time (s)

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

Greedy FF
Greedy FF (no δ)

Fig. 9: Response time of the DEBS 2015 Grand Challenge
application when deployed using the different heuristics.

that Local Search achieves the best performance trade-off
between efficiency (i.e., speed-up) and efficacy (i.e., perfor-
mance degradation).

7.5 Evaluating the Storm-based Heuristics Prototype
This section aims to evaluate the heuristics behavior when
employed in a real setting. To this end, we integrate them
in Distributed Storm, our extension of the popular DSP
framework Apache Storm. We postpone to Appendix B the
details about the heuristic integration in Storm.

We perform the experiments using 32 worker nodes
and one further node for Nimbus and ZooKeeper. The
worker nodes are distributed across 7 different data centers:
our university cluster and 6 regions of the Google Cloud
Platform (i.e., europe-* and us-east1). Each worker node has
1 vCPU and 1.7 GB of RAM (as the g1-small instances of
Google). Hence, we consider Su = 1, 8u 2 Vres. To avoid
overloading the computing resources, each worker node can
host at most 2 DSP operators, i.e., Cu = 2. The average inter-
data center network delay is 58 ms, and the intra-data center
network delay is negligible (further details in Appendix D).

We use the reference application that solves a query of
the DEBS 2015 Grand Challenge [47]; it finds the top-10 most
frequent routes of New York taxis for the last 30 minutes.
The application consists of 8 operators (see Figure 8, whose
description is in Appendix E) and we feed it with sample
data emitted with a rate of 10 tuples/s. This allows to run
the application in steady traffic conditions, and more easily
study the initial placement. We pin the data source and sink
of the application on a node located in the university cluster.

We set the heuristics to minimize the application re-
sponse time R. We use the same parameters of Section 7.1
and normalization factor Rmax = 750 ms. Figure 9 reports
the application performance in terms of response time.

ODP identifies the optimal placement that spans the
DSP application over two different data centers: the uni-
versity cluster and the Google data center closest to our
university (i.e., Frankfurt with an average network delay of
22 ms). The model-based heuristics efficiently exploit ODP



13

and successfully identify the optimal placement solution.
As we can readily see from Figure 9, Hierarchical ODP,
ODP-PS, and RES-ODP let the application experience the
best performance with an average response time of 55 ms.
The model-free heuristics that exploit the resource penalty
function � exhibit a very good behavior: in this case, Greedy
First-fit, Local Search, and Tabu Search determine a best
application placement, which exploits the same data centers
of the optimal solution. Furthermore, Figure 9 clearly shows
the benefits of the performance penalty function �. Indeed,
Greedy First-fit (no �) identifies a sub-optimal placement
that scatters the application operators over 4 different data
centers. As a result, a higher response time is experienced
(159 ms on average), which corresponds to a performance
degradation of 15%.

7.6 Considerations on Run-time Adaptation
We conclude this section by discussing how the presented
heuristics can be modified to support run-time adaptation,
that is to adjust the application placement as the execution
conditions change. Local Search represents the most promis-
ing approach for run-time adaptation, since it can start
searching directly from the current placement. Indeed, by
construction, it quickly identifies solutions with relatively
small placement adjustments, thus indirectly minimizing
the adaptation costs. All the other heuristics require some
adjustment to be efficiently used to update the application
deployment at run-time while considering the reconfigura-
tion costs. For example, if periodically executed, the Greedy
First-fit heuristics would recompute the placement from
scratch; as such, it may lead a completely new application
deployment with a high adaptation cost. Conversely, the
model-based heuristics can be easily extended to explicitly
incorporate the adaptation costs; to this end, instead of
solving ODP, they should consider the elastic placement
problem formulation, like the one we presented in [40].

8 CONCLUSION

In this paper, we presented several heuristics for computing
the placement of DSP applications over geo-distributed in-
frastructures. Relying on a penalty function, these heuristics
explicitly take into account the heterogeneity of optimiza-
tion goals and computing and network resources. Some of
them are built around the ODP model (i.e., Hierarchical
ODP, ODP-PS, and RES-ODP), whereas others implement
well-known meta-heuristics for the problem at hand (i.e.,
Greedy First-fit, Local Search, and Tabu Search).

We conducted a thorough evaluation by means of nu-
merical and prototype-based experiments. We investigated
the heuristics’ performance under different configurations
of application topology, computing infrastructure size, and
deployment optimization objective. To this end, we used
ODP as benchmark to determine the heuristics speed-up on
resolution time and the quality of the computed placement
solution (i.e., closeness to the optimal placement solution).
The experimental results showed that the heuristics achieve
different speed-up and performance degradation for the dif-
ferent combinations of application topology, infrastructure
size, and optimization objective. There is not a one-size-fits-
all heuristic, and we discussed how the different approaches

behave under different deployment configurations. By ag-
gregating the results over the evaluated configurations, we
identified Local Search as the heuristic that achieves the best
trade-off between speed-up and performance degradation.

As future work, we want to explore the design of more
sophisticated heuristics that can combine the strengths of
model-based and model-free solutions. We also plan to in-
vestigate heuristics for the run-time adaptation of placement
solutions. They should support the execution of applications
with desirable QoS, even in face of varying input workloads
and changing environment conditions. To this end, we plan
to extend our heuristics to support run-time reconfigura-
tions taking into account their cost. We will also consider the
more general setting where a geo-distributed infrastructure
hosts multiple concurrent DSP applications, each arriving
and departing over time with unforeseen requirements and
characteristics.

REFERENCES

[1] M. D. de Assunção, A. da Silva Veith, and R. Buyya, “Distributed
data stream processing and edge computing: A survey on resource
elasticity and future directions,” J. Netw. Comput. Appl., vol. 103,
pp. 1–17, 2018.

[2] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for
Internet-scale data stream systems,” IEEE Internet Comput., vol. 12,
no. 6, pp. 50–60, 2008.

[3] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal op-
erator placement for distributed stream processing applications,”
in Proc. ACM DEBS ’16, 2016, pp. 69–80.

[4] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online schedul-
ing in Storm,” in Proc. ACM DEBS ’13, 2013, pp. 207–218.

[5] N. Backman, R. Fonseca, and U. Çetintemel, “Managing paral-
lelism for stream processing in the cloud,” in Proc. HotCDP ’12.
ACM, 2012, pp. 1:1–1:5.

[6] T. Li, J. Tang, and J. Xu, “A predictive scheduling framework for
fast and distributed stream data processing,” in Proc. 2015 IEEE
Int’l Conf. on Big Data, 2015, pp. 333–338.

[7] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos et al.,
“Network-aware operator placement for stream-processing sys-
tems,” in Proc. IEEE ICDE ’06, 2006.

[8] S. Rizou, F. Durr, and K. Rothermel, “Solving the multi-operator
placement problem in large-scale operator networks,” in Proc.
ICCCN ’10, 2010.

[9] Q. Zhu and G. Agrawal, “Resource allocation for distributed
streaming applications,” in Proc. IEEE ICPP ’08, 2008, pp. 414–421.

[10] B. Gedik, H. Özsema, and O. Öztürk, “Pipelined fission for stream
programs with dynamic selectivity and partitioned state,” J. Paral-
lel Distrib. Comput., vol. 96, pp. 106–120, 2016.

[11] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement of replicated
tasks for distributed stream processing systems,” in Proc. ACM
DEBS ’10, 2010, pp. 128–139.

[12] M. Rychly, P. Koda, and P. Mr, “Scheduling decisions in stream
processing on heterogeneous clusters,” in Proc. 8th Int’l Conf.
Complex, Intelligent and Software Intensive Systems, 2014.

[13] A. Chatzistergiou and S. D. Viglas, “Fast heuristics for near-
optimal task allocation in data stream processing over clusters,”
in Proc. ACM CIKM ’14, 2014, pp. 1579–1588.

[14] J. Li, A. Deshpande, and S. Khuller, “Minimizing communication
cost in distributed multi-query processing,” in Proc. IEEE ICDE
’09, 2009, pp. 772–783.

[15] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “MIST: Fog-based
data analytics scheme with cost-efficient resource provisioning for
IoT crowdsensing applications,” J. Parallel Distrib. Comput., vol. 82,
pp. 152–165, 2017.

[16] I. Stanoi, G. Mihaila, T. Palpanas, and C. Lang, “WhiteWater:
Distributed processing of fast streams,” IEEE Trans. Softw. Eng.,
vol. 19, no. 9, pp. 1214–1226, 2007.

[17] F. Starks, V. Goebel, S. Kristiansen, and T. Plagemann, “Mobile dis-
tributed complex event processing—Ubi sumus? Quo vadimus?”
in Mobile Big Data: A Roadmap from Models to Technologies. Springer,
2018, pp. 147–180.



14

[18] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “T3-Scheduler: A
topology and traffic aware two-level scheduler for stream pro-
cessing systems in a heterogeneous cluster,” Future Gener. Comput.
Syst., vol. 89, pp. 617–632, 2018.

[19] J. Ghaderi, S. Shakkottai, and R. Srikant, “Scheduling storms and
streams in the cloud,” ACM Trans. Model. Perform. Eval. Comput.
Syst., vol. 1, no. 4, pp. 14:1–14:28, 2016.

[20] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-aware online
scheduling in Storm,” in Proc. IEEE ICDCS ’14, 2014, pp. 535–544.

[21] Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu, “Efficient dynamic
operator placement in a locally distributed continuous query
system,” in On the Move to Meaningful Internet Systems 2006, ser.
LNCS. Springer, 2006, vol. 4275, pp. 54–71.

[22] R. Eidenbenz and T. Locher, “Task allocation for distributed stream
processing,” in Proc. IEEE INFOCOM ’16, 2016.

[23] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“SpanEdge: Towards unifying stream processing over central and
near-the-edge data centers,” in Proc. IEEE/ACM SEC ’16, 2016, pp.
168–178.

[24] L. Tian and K. M. Chandy, “Resource allocation in streaming
environments,” in Proc. 7th IEEE/ACM Int’l Conf. Grid Computing,
2006, pp. 270–277.

[25] L. Fischer, T. Scharrenbach, and A. Bernstein, “Scalable linked
data stream processing via network-aware workload scheduling,”
in Proc. 9th Int’l Workshop Scalable Semantic Web Knowledge Base
Systems, 2013.

[26] Z. Abrams and J. Liu, “Greedy is good: On service tree placement
for in-network stream processing,” in Proc. IEEE ICDCS ’06, 2006.

[27] P. Smirnov, M. Melnik, and D. Nasonov, “Performance-aware
scheduling of streaming applications using genetic algorithm,”
Procedia Computer Science, vol. 108, pp. 2240–2249, 2017.

[28] B. Chandramouli, J. Goldstein, R. Barga, M. Riedewald, and I. San-
tos, “Accurate latency estimation in a distributed event processing
system,” in Proc. IEEE ICDE ’11, 2011, pp. 255–266.

[29] B. Peng, M. Hosseini, Z. Hong, R. Farivar et al., “R-Storm:
Resource-aware scheduling in Storm,” in Proc. of Middleware ’15.
ACM, 2015, pp. 149–161.

[30] M. Fu, A. Agrawal, A. Floratou, B. Graham et al., “Twitter Heron:
Towards extensible streaming engines,” in Proc. IEEE ICDE ’17,
2017, pp. 1165–1172.

[31] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag et al., “The
Stratosphere platform for big data analytics,” VLDB J., vol. 23,
no. 6, pp. 939–964, 2014.

[32] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A general communi-
cation cost optimization framework for big data stream processing
in geo-distributed data centers,” IEEE Trans. Comput., vol. 65, no. 1,
pp. 19–29, 2016.

[33] J. Jiang, Z. Zhang, B. Cui, Y. Tong, and N. Xu, “StroMAX:
Partitioning-based scheduler for real-time stream processing sys-
tem,” in Proc. DASFAA ’17. Springer, 2017, pp. 269–288.

[34] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 6, pp. 1447–1463, 2014.

[35] F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni, “Elastic
symbiotic scaling of operators and resources in stream processing
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 3, pp. 572–
585, 2018.

[36] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal op-
erator replication and placement for distributed stream processing
systems,” SIGMETRICS Perform. Eval. Rev., vol. 44, no. 4, 2017.

[37] T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara,
“Online scheduling and interference alleviation for low-latency,
high-throughput processing of data streams,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 12, pp. 3553–3569, 2017.

[38] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong et al.,
“MCEP: A mobility-aware complex event processing system,”
ACM Trans. Internet Technol., vol. 14, no. 1, pp. 6:1–6:24, 2014.

[39] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn, and P. Pietzuch,
“SQPR: Stream query planning with reuse,” in Proc. IEEE ICDE
’11, 2011, pp. 840–851.

[40] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Op-
timal operator deployment and replication for elastic distributed
data stream processing,” Concurr. Comput.: Pract. Exper., vol. 30,
no. 9, 2018.

[41] ——, “Decentralized self-adaptation for elastic data stream pro-
cessing,” Future Gener. Comput. Syst., vol. 87, pp. 171–185, 2018.

[42] M. Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi et al.,
“TCEP: Adapting to dynamic user environments by enabling
transitions between operator placement mechanisms,” in Proc.
ACM DEBS ’18, 2018, pp. 136–147.

[43] K. P. Yoon and C.-L. Hwang, Multiple Attribute Decision Making: an
Introduction. Sage Pubns, 1995, vol. 104.

[44] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[45] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: A survey,” in Approximation Algorithms
for NP-hard Problems. PWS Publishing Co., 1997, pp. 46–93.

[46] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An ap-
proach to universal topology generation,” in Proc. IEEE MASCOTS
’01, 2001, pp. 346–353.

[47] Z. Jerzak and H. Ziekow, “The DEBS 2015 grand challenge,” in
Proc. ACM DEBS ’15, 2015, pp. 266–268.

Matteo Nardelli is research associate at the
University of Rome Tor Vergata. He received
the Doctorate degree in computer science from
the University of Rome Tor Vergata in 2018. His
research interests are in the field of distributed
computing systems, with a special emphasis on
data stream processing systems. He has more
than 20 publications in international conferences
and journals.

Valeria Cardellini is associate professor of com-
puter science at the University of Rome Tor Ver-
gata. She received the Doctorate degree in com-
puter science from the University of Rome Tor
Vergata in 2001. Her research interests are in
the field of distributed computing systems, with a
focus on Web and Cloud systems and services.
She has more than 90 publications in interna-
tional conferences and journals. She is TPC co-
chair of IEEE/ACM UCC 2018, has served as
TPC member of conferences on performance

and Web and as frequent reviewer for well-known international journals.

Vincenzo Grassi is full professor of computer
science at the University of Rome Tor Vergata.
His general research interests are in the field
of methods and tools for performance and de-
pendability modeling and analysis of computing
and communication systems. Within this general
framework, he has recently focused on mobile
computing systems and on geographically dis-
tributed service-oriented systems. He has more
than 80 publications in international conferences
and journals and he has served and is currently

serving in the program committees of conferences.

Francesco Lo Presti is associate professor of
computer science at the University of Rome
Tor Vergata. He received the Doctorate de-
gree in computer science from the University of
Rome Tor Vergata in 1997. His research inter-
ests include measurements, modeling and per-
formance evaluation of computer and communi-
cations networks. He has more than 90 publica-
tions in international conferences and journals.
He has served as TPC member of conferences
on networking and performance areas, and as

reviewer for various international journals.



1

Supplemental Materials
Matteo Nardelli, Member, IEEE , Valeria Cardellini, Member, IEEE, Vincenzo Grassi, and Francesco

Lo Presti, Member, IEEE

F

This document includes the supplemental materials
for the paper entitled “Efficient Operator Placement for
Distributed Data Stream Processing Applications” (doi:
10.1109/TPDS.2019.2896115).

APPENDIX A
OPTIMAL PLACEMENT MODEL

In this appendix, we derive the expression for the QoS met-
rics of interest and we present the ODP problem formulation
in detail. For the sake of clarity, in Table 3 we summarize the
main used notation.

TABLE 3: Main notation adopted in the paper.

Symbol Description

Vdsp Set of DSP application operators
Edsp Set of DSP application streams
�(i,j) Average data rate exchanged on (i, j) 2 Edsp

Vres Set of computing nodes
Eres Set of logical links
Su Processing speed-up of u 2 Vres

Au Availability of node u 2 Vres

d(u,v) Network delay on (u, v) 2 Eres

A(u,v) Availability of (u, v) 2 Eres

A.1 ODP Variables

We model the ODP problem with binary variables xi,u,
i 2 Vdsp, u 2 V i

res: xi,u = 1 if operator i is deployed on node
u and xi,u = 0 otherwise. A correct placement must deploy
an operator on one and only one computing node. For
the problem formulation, we also find convenient to con-
sider binary variables associated to links, namely y(i,j),(u,v),
(i, j) 2 Edsp, (u, v) 2 Eres, which denote whether the data
stream flowing from operator i to operator j traverses the
network path from node u to node v. By definition, we have
y(i,j),(u,v) = xi,u^xj,v . For short, in the following we denote
by x and y the placement vectors for nodes and edges,
respectively, where x = hxi,ui, 8i 2 Vdsp, 8u 2 V i

res and
y =

⌦
y(i,j),(u,v)

↵
, 8xi,u, xj,v 2 x.

• V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli

are with University of Rome Tor Vergata, Italy. E-mails:

{cardellini, nardelli}@ing.uniroma2.it, vincenzo.grassi@uniroma2.it,

lopresti@info.uniroma2.it

A.2 QoS Metrics
Response Time. For a DSP application, with data flowing
from several sources to several destinations, there is no
unique definition of response time. For any placement vec-
tor x (and resulting y), we consider as response time the
critical path average delay R(x) = R0(x,y). We define the
critical path of the DSP application as the set of nodes and
edges, forming a path from a data source to a sink, for which
the sum of the operator computational latency and network
delays is maximal. Hence, the critical path average delay is
the expected traversal time of the critical path. Formally, we
have:

R(x) = R0(x,y) = max
⇡2⇧dsp

R0
⇡(x,y) (5)

where R0
⇡(x,y) is the end-to-end delay along path ⇡ and

⇧dsp the set of all source-sink paths in Gdsp. For any path
⇡ = (i1, i2, . . . , in⇡ ) 2 ⇧dsp, where ip and n⇡ denote the
pth operator and the number of operators in the path ⇡,
respectively, we obtain:

R0
⇡(x,y) =

n⇡X

p=1

R0
ip(x) +

n⇡�1X

p=1

D0
(ip,ip+1)(y) (6)

where

R0
i(x) =

X

u2V i
res

Ri

Su
xi,u (7)

D0
(i,j)(y) =

X

(u,v)2V i
res⇥V j

res

d(u,v)y(i,j),(u,v) (8)

denote respectively the execution time of operator i when
mapped on node u and the network delay for transferring
data from i to j when mapped on the path from u to v,
where i, j 2 Vdsp and u, v 2 Vres.

Availability. We define the application availability A as
the availability of all the nodes and paths involved in the
processing and transmission of the application data streams.
We have A(x) = A0(x,y) where:

A0(x,y) =
Y

i2Vdsp

A0
i(x) ·

Y

(i,j)2Edsp

A0
(i,j)(y) (9)

where

A0
i(x) =

X

u2V i
res

Auxi,u (10)

A0
(i,j)(y) =

X

(u,v)2V i
res⇥V j

res

A(u,v)y(i,j),(u,v) (11)



2

denote respectively the availability of the operator i 2 Vdsp

and of the data stream from i to j, (i, j) 2 Edsp. To
obtain a linear expression, we consider the logarithm of the
availability, obtaining:

logA0(x,y) =
X

i2Vdsp

X

u2V i
res

auxi,u+

+
X

(i,j)2Edsp

X

(u,v)2V i
res⇥V j

res

a(u,v)y(i,j),(u,v)

(12)

where au = logAu and a(u,v) = logA(u,v). Expres-
sion (12) deserves some comments. Let us focus on the first
term and observe that the logarithm of the first factor of
A0(x,y), that is

Q
i2Vdsp

A0
i(x) =

Q
i2Vdsp

(
P

u2V i
res

Auxi,u),
is actually

P
i2Vdsp

log(
P

u2V i
res

Auxi,u) and in general
log(

P
u2V i

res
Auxi,u) 6=

P
u2V i

res
(logAu)xi,u. However,

since only one term of the sum in the expression
log(

P
u2V i

res
Auxi,u) can be different from zero (an oper-

ator is assigned to exactly one node), it follows that only
one variable in the set {xi,u}u2V i

res
is equal to 1. Thefore,

for any application placement x, log(
P

u2V i
res

Auxi,u) =P
u2V i

res
(logAu)xi,u, from which the first term in (12) di-

rectly follows. Similar arguments apply to the second term.
Network Usage. We define the network usage Z as the

amount of data that traverses the network at a given time.
We have Z(x) = Z 0(y):

Z 0(y) =
X

(i,j)2Edsp

Z 0
(i,j)(y) (13)

where the stream (i, j) 2 Edsp imposes a load expressed by:

Z 0
(i,j)(y) =

X

(u,v)2V i
res⇥V j

res:u 6=v

�(i,j)d(u,v)y(i,j),(u,v) (14)

where d(u,v) is the network delay among nodes u, v 2 Vres,
with u 6= v.

A.3 Optimal Placement Formulation
Depending on the usage scenario, a DSP placement strategy
could be aimed at optimizing different, possibly conflicting,
QoS attributes. Leveraging on the Simple Additive Weight-
ing technique [43], we define the ODP optimization function
F (x) = F 0(x,y) as a weighted sum of the normalized
application QoS attributes:

F 0(x,y) = wr
R0(x,y)�Rmin

Rmax �Rmin

+ wa
logAmax � logA0(x,y)

logAmax � logAmin

+ wz
Z 0(y)� Zmin

Zmax � Zmin
(15)

where wr, wa, wz � 0, wr + wa + wz = 1, are weights for
the different QoS attributes. Rmax (Rmin), Amax (Amin), and
Zmax (Zmin) denote respectively the maximum (minimum)
value for the overall expected response time, availability,
and network usage. Observe that after normalization, each
metric ranges in the interval [0, 1], where the value 0 corre-
sponding to the best possible case and 1 to the worst case.

We formulate the ODP problem as an ILP model as
follows:

min
x,y,r

F 00(x,y, r)

subject to:

r �
n⇡X

p=1

X

u2V
ip
res

Rip

Su
xip,u+

n⇡�1X

p=1

X

(u,v)2
V

ip
res⇥V

ip+1
res

d(u,v)y(ip,ip+1),(u,v) 8⇡ 2 ⇧dsp

(16)

Cu �
X

i2Vdsp

Cixi,u 8u 2 Vres

(17)
X

u2V i
res

xi,u = 1 8i 2 Vdsp

(18)

xi,u =
X

v2V j
res

y(i,j),(u,v)
8(i,j)2Edsp,

u2V i
res

(19)

xj,v =
X

u2V i
res

y(i,j),(u,v)
8(i,j)2Edsp,

v2V j
res

(20)

xi,u 2 {0, 1} 8i2Vdsp,

u2V i
res

y(i,j),(u,v) 2 {0, 1} 8(i,j)2Edsp,

(u,v)2V i
res⇥V j

res

In the problem formulation we replaced the objective func-
tion F 0(x,y), which is not a linear in x and y because
of term R0(x,y) = max⇡2⇧dsp R

0
⇡(x,y), with the linear

function F 00(x,y, r). The latter is obtained from F 0(x,y)
by replacing the response time R0(x,y) with the auxiliary
variable r. Indeed, if we introduce r and substitute the
expressions (12) and (14) in (15), we readily obtain:

F 00(x,y, r) = wr
r �Rmin

Rmax �Rmin

+ wa
logAmax � logA0(x,y)
logAmax � logAmin

+ wz
Z0(y)� Zmin

Zmax � Zmin
(21)

=
wr

Rmax �Rmin
r

+
wa

logAmin � logAmax

X

i2Vdsp

X

u2V i
res

auxi,u

+
wa

logAmin � logAmax

X

(u,v)2
V i
res⇥V j

res
u 6=v

a(u,v)y(i,j),(u,v)

+
wz

Zmax � Zmin

X

(u,v)2
V i
res⇥V j

res
u 6=v

�(i,j)d(u,v)y(i,j),(u,v)

+ wr
Rmin

Rmin �Rmax
+ wa

logAmax

logAmax � logAmin

+ wz
Zmin

Zmin � Zmax
(22)

which is linear in in r, x, and y.
In the formulation, Equation (16) follows from (5)–(6).

Since r must be larger or equal than the response time of



3

any path and, at the optimum, r is minimized, therefore
r = max⇡2⇧dsp R⇡(x,y) = R(x,y). The constraint (17)
limits the placement of operators on a node u 2 Vres ac-
cording to its available resources. Equation (18) guarantees
that each operator i 2 Vdsp is placed on one and only
one node u 2 V i

res. Finally, constraints (19)–(20) model
the logical AND between the placement variables, that is,
y(i,j),(u,v) = xi,u ^ xj,v .

APPENDIX B
STORM INTEGRATION

To use the heuristics in a real DSP framework, we have
integrated them as custom schedulers for Apache Storm. We
first briefly describe the main features of Storm and how it
represents and executes DSP applications. Then, we present
the prototype design in details.

B.1 Apache Storm
Storm is an open source, real-time, and scalable DSP system
maintained by the Apache Software Foundation. It manages
the execution of DSP applications over a set of worker
nodes interconnected in an overlay network. A worker node

is a generic computing resource (i.e., physical or virtual
machine).

In Storm, we can distinguish between an abstract ap-
plication model and an execution application model. In
the abstract model, a DSP application is represented by its
topology, which is a DAG with spouts and bolts as vertices
and streams as edges. A spout is a data source that feeds
data into the system through one or more streams. A bolt is
either a processing element, which generates new outgoing
streams, or a final information consumer. A stream is an
unbounded sequence of tuples, which are key-value pairs.
We refer to spouts and bolts as operators.

In the execution model, Storm transforms the topology
by replacing each operator with its tasks. A task is an
instance of an application operator (i.e., spout or bolt), and it
is in charge of a share of the incoming operator stream. For
the execution, one or more tasks of the same operator are
grouped into executors, implemented as threads. An execu-

tor, which is the smallest schedulable unit, can execute one
or more tasks related to the same operator. The framework
also introduces the worker process, that is basically a Java
process acting as a container for a subset of the executors
of the same topology. To summarize the execution model of
Storm, we can say that a group of tasks runs sequentially in
the executor, which is a thread within the worker process,
that in its turn serves as container on the worker node.

Besides the computing resources (i.e., the worker nodes),
the architecture of Storm includes two additional com-
ponents: Nimbus and ZooKeeper. Nimbus is a centralized
component that manages the topology execution. It uses its
scheduler to define the placement of the application oper-
ators on the available worker nodes. The assignment plan
determined by the scheduler is communicated to the worker
nodes through ZooKeeper

1, that is a shared in-memory ser-
vice for managing configuration information and enabling

1. http://zookeeper.apache.org/

distributed coordination. Since each worker node can exe-
cute one or more worker processes, a Supervisor component,
running on each node, starts or terminates worker processes
according to the Nimbus assignments. A worker node can
concurrently run a limited number of worker processes,
based on the number of available worker slots.

B.2 Heuristics Prototype
We develop new custom schedulers for Storm, whose core
are the model-based and model-free heuristics presented
in Sections 5 and 6. To design these schedulers, we have
to address two issues: (1) to adapt the DSP model to the
specific execution entities of Storm, and (2) to instantiate the
heuristics with the proper QoS information about comput-
ing and networking resources.

As regards the first issue, we have to model the fact that
the Storm scheduler places the application executors on the
available worker slots, considering that at most EPSmax

executors can be co-located on the same slot. Hence, the
heuristics consider Gdsp = (Vdsp, Edsp), with Vdsp as the
set of executors and Edsp as the set of streams exchanged
between the executors. In Storm, an executor is consid-
ered as a black box element; therefore, we conveniently
assume unitary its attributes, i.e., Ci = 1 and Ri = 1,
8i 2 Vdsp. The resource model Gres = (Vres, Eres) must
take into account that a worker node u 2 Vres offers some
worker slots WS(u), and each worker slot can host at most
EPSmax executors2. For simplicity, the heuristics consider
the amount of available resources Cu on a worker node
u 2 Vres equals to the maximum number of executors it
can host, i.e., Cu = WS(u) ⇥ EPSmax. Each worker node
u is also characterized by processing speed-up Su, which
captures the node speed-up with respect to a reference
processing node; this parameter can be computed by means
of preliminary experiments or exploiting the equivalent
compute units proposed by cloud providers (e.g., the EC2
Compute Unit (ECU) used by Amazon Web Services)3.

As regards the second issue, Storm allows to easily
develop new centralized schedulers with the pluggable
scheduler APIs. However, Storm is not aware of the QoS
attributes of its networking and computing resources, ex-
cept for the number of available worker slots. Since we need
to know these QoS attributes to execute the heuristics (and
solve ODP), we rely on Distributed Storm4, our extension of
Storm [48]. It enables the QoS awareness of the scheduling
system by providing intra-node (i.e., availability) and inter-
node (i.e., network delay and exchanged data rate) infor-
mation. This extension estimates network latencies using
a network coordinate system, which is built through the
Vivaldi algorithm [49], a decentralized algorithm having
linear complexity with respect to the number of network
locations. The heuristics retrieve, from the monitoring com-
ponents of the extended Storm, the information needed to
parametrize the nodes and edges in Gdsp and Gres. Specif-
ically, it considers: the node availability (Au, u 2 Vres), and

2. The number of worker slot per worker node can be freely config-
ured by the user; nevertheless, Storm suggests to set it as proportional
to the number of CPU core available on the worker node.

3. https://aws.amazon.com/ec2/faqs/#What is an EC2
Compute Unit and why did you introduce it

4. Source code available at http://bit.ly/extstorm



4

the network latencies (d(u,v), 8u, v 2 Vres). Further details
on Distributed Storm and its monitoring components can be
found in [48]. The model-based prototypes rely on CPLEX c�

(version 12.6.3) for solving the placement problem.

APPENDIX C
EXPERIMENTAL RESULTS
In this appendix, we present in detail the experiments
concerning the impact of the application topologies and
of the objective functions on the heuristics performance
(respectively in Sections C.1 and C.2). Table 4, which ex-
tends Table 2, reports the heuristics performance for each
evaluated configuration.

C.1 Application Topologies and Network Size
In this experiment, we compare the performance of the
heuristics against ODP, when the optimization objective is
the minimization of the application response time R. This
corresponds to set the weights wr = 1, wa = wz = 0
to the objective function F (Equation 4). We evaluate the
heuristics for different application topologies (i.e., diamond,
sequential, replicated) and different size of the computing
infrastructure (i.e., when the number of nodes grows from
36 to 100).

Diamond Application. From Figure 5, we readily see
that the application topology strongly influences the overall
behavior of ODP and the heuristics. The diamond applica-
tion has the lowest computational demand, which leads to
a resolution time always below 10 s (see Figure 5a). Con-
versely, the replicated application is the most demanding
one and, when ODP is used, the resolution time reaches
3 ⇥ 104 s, which is 3 orders of magnitude higher than the
one experienced for the diamond application (see Figure 5c).
When the diamond application has to be deployed, ODP
and the model-based heuristics are very competitive and
can quickly compute the placement solution in less than
1 s, even when the infrastructure includes 100 computing
nodes. In this case, Local Search and Tabu Search perform
worse than the others: they register a resolution time that
grows up to 19 s on the largest infrastructure. Interestingly,
these heuristics are slower then ODP (they obtain a speed-
up factor lower than 1). Greedy First-fit, with and without
the penalty function �, computes the placement solution in
1 ms, independently from the infrastructure size.

Considering the performance degradation reported in
Figure 6a, we can identify two main groups of heuristics.
In the first one, we find the approaches that compute lower
quality placement solutions (i.e., with not negligible perfor-
mance degradation), namely ODP-PS, Hierarchial ODP, and
Greedy First-fit (no �). As expected, since Greedy First-fit
(no �) does not consider the QoS attributes of computing
resources, it determines placement solutions having a very
limited quality. Hierarchical ODP, the fastest model-based
heuristic, shows a performance degradation of about 17%,
whereas ODP-PS has a degradation of 7%. All the other
heuristics identify the optimal placement. Interestingly, be-
sides being very fast (with a speed-up of 454 times), Greedy
First-fit also identifies the optimal placement solution. As a
consequence, also Local Search and Tabu Search identify the
optimum; nevertheless, they are even slower than ODP.

Sequential Application. When the sequential applica-
tion has to be deployed on the computing infrastructure,
the benefits of the heuristics are clearer: they can reduce the
resolution time up to 3 orders of magnitude with respect
to ODP. From Figure 5b, we can observe a non-monotonic
trend on the resolution time, especially for ODP. It depends
on the different network topologies that, being randomly
generated, do not preserve exactly the same connectivity
as the network size increases. Differently from the case of
diamond applications, here all the heuristics have a resolu-
tion time smaller than the one by ODP, and they present
only a limited performance degradation (see Figure 6b).
More precisely, Tabu Search, ODP-PS, Local Search, and
Hierarchical ODP have speed-up from 66 to 448 times,
respectively, with a performance degradation always below
3% (see Table 2). Observe that, in this case, Local Search and
Tabu Search are effective, because they improve the sub-
optimal placement solutions identified by Greedy First-fit.

Replicated Application. The replicated application is
characterized by a higher number of streams exchanged
between operators; this makes the optimization function
harder to minimize. In general, all the placement policies
have a resolution time greater by one order of magnitude
than the case of sequential application. From Figure 5c,
we observe an exponential growth of the ODP resolution
time when the number of computing resources increases.
The model-based heuristics successfully restrict the solution
space and present a resolution time that increases slowly
as the infrastructure size grows. Considering the case of
100 resources, the slowest model-based heuristic, i.e., RES-
ODP, has a resolution time in the order of 102 seconds.
Local Search and Tabu Search obtain similar performance.
As appears from Figure 6c, ODP-PS and RES-ODP are as
fast as Tabu Search, but they compute a better placement
solution (performance degradation of 2%, 0%, and 4%,
respectively). In this case, Hierarchical ODP is faster than
Tabu Search and Local Search with a speed-up of 603 times
(instead of 353 and 65, respectively), however it has a higher
performance degradation, i.e., 11%. The resolution time of
ODP is prohibitively high; surprisingly, ODP+T performs
very badly in this case, reporting a 49% of performance
degradation. Greedy First-fit is very beneficial for replicated
applications, because of its limited resolution time (1 ms);
moreover, the penalty function further improves this heuris-
tic, by reducing performance degradation from 24% to 5%.

C.2 Optimization Objectives

In Section 7.2, we investigated the heuristics behavior when
they minimize the application response time. In this ap-
pendix, we first consider the other single-objective opti-
mization functions (i.e., maximization of the application
availability and minimization of network usage), and then
we focus on a multi-objective function. In particular, we
describe the heuristics behavior aggregated by optimization
objective: for each one, we consider the average value of
speed-up and performance degradation which have been
experienced for all the application topologies.

Response Time. In Section 7.2, we considered the min-
imization of the response time as optimization objective
(i.e., wr = 1, wa = wz = 0). Figure 10a reports the



5

TABLE 4: Heuristics comparison. For each heuristic, the first row reports the resolution time speed-up (sp), whereas
the second one represents the performance degradation (pd). Each column reports the average value of speed-up and
performance degradation obtained by considering the different size of computing infrastructure. The last column reports
the average value of the performance metrics obtained by considering the performance of all the experiments.

Policy Diamond Application Sequential Application Replicated Application Average

wa wr wz ⇤ wa wr wz ⇤ wa wr wz ⇤
ODP rt 36 (s) 0.1 0.1 0.1 0.7 0.7 41.4 25.2 31.1 8.2 915.2 19682.8 86404.5

rt 100 (s) 0.7 0.8 0.7 2.6 4.9 2174.8 388.1 5225.4 168.6 32193.9 86407.0 86411.6
Hierarchical sp 17.19 4.40 14.46 6.26 74.25 448.39 170.30 1425.05 52.21 602.77 110.65 269.64 266.30

ODP pd 5% 17% 9% 14% 7% 3% 3% 8% 22% 11% 4% 11% 10%
ODP-PS sp 0.88 3.45 10.79 3.29 1.28 127.17 71.07 896.99 1.02 104.71 52.44 180.92 121.17

pd 0% 7% 2% 4% 0% 0% 0% 3% 0% 2% 2% 2% 2%
RES-ODP sp 0.01 2.93 4.95 1.93 0.05 6.77 9.96 6.27 0.03 73.80 16.05 10.51 11.10

pd 2% 0% 0% 1% 0% 0% 0% 0% 0% 0% 2% 0% 0%
Local Search sp 0.09 0.68 0.45 1.64 0.47 150.54 72.47 333.99 0.38 353.07 587.85 1088.04 215.81

pd 2% 0% 0% 1% 0% 1% 1% 2% 0% 4% 2% 3% 1%
Tabu Search sp 0.07 0.31 0.21 0.84 0.26 65.91 30.64 151.26 0.16 64.93 207.63 480.08 83.53

pd 2% 0% 0% 1% 0% 1% 1% 2% 0% 4% 1% 3% 1%
ODP+T sp 1.74 1.88 1.79 2.22 1.98 2.32 0.96 5.90 1.42 40.75 134.63 261.35 38.08

pd 0% 0% 0% 1% 0% 0% 0% 1% 0% 49% 0% 22% 6%
Greedy First-fit sp 354.60 454.40 338.80 1949.32 2821.80 56 · 104 19 · 104 168 · 104 6 · 104 12 · 106 40 · 106 78 · 106 11 · 106

pd 29% 0% 0% 2% 29% 7% 7% 12% 29% 5% 7% 8% 11%
Greedy First-fit sp 354.60 454.40 338.80 1949.32 2821.80 56 · 104 19 · 104 168 · 104 6 · 104 12 · 106 40 · 106 78 · 106 11 · 106

(no �) pd 29% 34% 9% 15% 29% 7% 7% 10% 29% 24% 15% 16% 19%

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

(a) Minimization of the response time R

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

(b) Maximization of the availability A

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e
rf

o
rm

a
n
ce

 D
e
g
ra

d
a
tio

n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

(c) Minimization of the network usage N

Fig. 10: Heuristics performance to compute the application placement, when different single-objective optimization
functions are considered. Each point reports the average performance on different infrastructure settings and application
topologies.

heuristics performance when this objective function is con-
sidered (note that, in this figure, we aggregate results on the
different application topologies). Figures 10b and 10c report
the heuristic performance when the placement goal is the
maximization of the application availability (i.e., wa = 1,
wr = wz = 0) and the minimization of network usage (i.e.,
wz = 1, wa = wr = 0), respectively. From Figure 10, we can
easily observe that the different optimization objectives lead
to different performance of the heuristics. The minimiza-
tion of response time and network usage result in similar
trade-offs between speed-up and performance degradation.
However, the maximization of availability deeply changes
the heuristics behavior.

Availability. In the evaluated settings, the maximization
of the application availability imposes a limited computa-
tional demand. Even in the most complex configuration, i.e.,
ODP deploying a replicated application on an infrastructure
with 100 nodes, the resolution time is at most 169 s (see
Table 4). Interestingly, Local Search, Tabu Search, and RES-
ODP perform worse than ODP (they have speed-up lower
than 1). Being ODP very fast, ODP-PS does not significantly
reduce its resolution time, obtaining a limited speed-up (see

Figure 10b). We can also observe that most of the heuristics
(i.e., all but Hierarchical ODP and Greedy First-fit) deter-
mine near-optimal placement solutions, introducing at most
2% of performance degradation. In particular, Table 4 re-
ports that this is especially true for sequential and replicated
applications, where the performance degradation is reduced
to 0%. Similarly to the previous scenario, Hierarchical ODP
has a rather high speed-up (up to 2 orders of magnitude),
albeit it degrades the quality of the computed solution (10%
on average). For this optimization function, Greedy First-
fit is not very effective, even when it is equipped with the
penalty function �. With and without the penalty function,
the performance degradation of the computed solution is
close to 30%; this result clearly shows the benefit of per-
forming a local or a tabu search so as to escape from the
local optimum and improve the solution quality.

Network Usage. As we can see from Figure 10c, when
network usage is optimized, the heuristics behave similarly
to the case of response time minimization. Most of the
heuristics have a speed-up of 2 order of magnitude and
achieve a very limited performance degradation (always
below 9%, except for Greedy First-fit (no �)). As reported



6

 0%

10%

20%

30%

40%

50%

60%

10-2 100 102 104 106 108

P
e

rf
o

rm
a

n
ce

 D
e

g
ra

d
a

tio
n

Speed-up

ODP
Hierarchical ODP
ODP-PS

RES-ODP
Local Search
Tabu Search

ODP+T
Greedy FF
Greedy FF (no δ)

Fig. 11: Heuristics performance to compute the applica-
tion placement, when a multi-objective optimization func-
tion is considered. The optimized QoS metrics are equally
weighted. Each point reports the average performance on
different infrastructure settings and application topologies.

in Table 4, the resolution time changes widely with respect
to the application topology. In general, ODP and the other
heuristics can determine the placement of the sequential and
diamond applications rather quickly (at worst, ODP takes
388 s). As regards the sequential application, optimizing the
network usage is apparently less computational demand-
ing than optimizing response time. Nevertheless, when the
replicated application is considered, ODP has a very high
resolution time and the need of heuristics is very well
motivated. More precisely, when the infrastructure contains
100 computing resources, ODP always reaches the timeout
and returns the best feasible solution (i.e., it requires more
than 24 h to identify the optimal solution). Albeit not the
optimum, the computed placement solutions after 24 h are
better than the ones by the other heuristics. As shown in
Figure 10c, the Greedy First-fit heuristics are still the fastest
ones, computing the placement in 1 ms. Excluding the case
of sequential applications, the penalty function � improves
the placement quality by reducing the solution performance
degradation from 9% to 0%, for diamond applications, and
from 15% to 7%, for replicated applications. Also in this
setting, Local Search and Tabu Search are beneficial for
improving the solution quality; they obtain a performance
degradation of 2% and 1%, respectively, for the replicated
application (i.e., the most demanding one). Figure 10c also
shows that most of the heuristics achieve a speed-up of
2 orders of magnitude with a very limited performance
degradation. Hierarchical ODP has slightly higher perfor-
mance degradation. A very good trade-off is obtained by
Local Search with a speed-up of 588 times (i.e., in the worst
case, it takes up to 3 minutes to compute the placement
solution) and only 2% of performance degradation. ODP+T
has overall good performance: with replicated applications,
where the resolution time is very high, the early stop due to
the timeout does not compromise the solution quality. This
happens because, even though CPLEX has found the best
solution within the first 300 ms, it needs to further explore
the solution space so to certify the solution optimality. By
taking up to 1.5 hours to compute the placement, RES-ODP
is not well suited to be applied in online DSP systems.

Multi-objective Optimization. We now consider the

case of multi-objective optimization function: the applica-
tion requires a placement solution that minimizes response
time and network usage and, at the same time, maximizes
the availability. This corresponds to assign the weights
wa = wr = wz = 0.33 to the optimization function F .
Figure 11 summarizes the experimental results. From Table 4
we can see that this is the most challenging scenario: the
resolution time of ODP is higher than all the other con-
figurations of objective functions. ODP takes at most 2.6 s
to determine the placement of the diamond application,
meaning that, in this case, ODP is very competitive (only
Tabu Search has, on average, longer resolution time—its
speed-up is 0.84). Conversely, for sequential applications,
ODP shows its scalability issues, by requiring about 1.5 h to
compute the placement. The case of replicated applications
is even worse: in most of the cases (even with the 36
computing resources), ODP reaches the timeout at 24 h and
does not certify the computed best solution as the optimal
one. By observing Figure 11, we can classify the heuristics
in four main groups, according to their performance. The
first group contains RES-ODP, which has a very limited
speed-up: on average, it is one order of magnitude faster
than ODP (i.e., in case of replicated application, RES-ODP is
prohibitively slow—it requires 2.3 h to compute the place-
ment solution). The second group contains ODP-PS, Tabu
Search, and Local Search. They achieve a very good trade-
off between resolution time and solution quality, having
speed-up from 2 to 3 orders of magnitude with respect
to ODP and performance degradation at most of 4%. In
the most challenging setting (i.e., replicated application),
ODP-PS and Local Search compute the placement in 8 and
1.3 minutes, respectively. The third group comprises ODP+T
and Hierarchical ODP. Their speed-up is very similar to
the one by the previous group of heuristics; nevertheless,
their performance degradation is slightly higher: the av-
erage performance degradation by Hierarchical ODP and
ODP+T is around 10%, which, in the worst case, grows up
to 14% and 22%, respectively. The fourth group comprises
the Greedy First-fit heuristic, which is characterized by
a very high speed-up and a rather limited performance
degradation (it is always below 15%). The penalty function �
improves the computed solution quality in, basically, all the
experiments. Interestingly, for sequential applications, there
is an inversion of tendency and � reduces the application
quality by 2%: this is an outlier behavior, which could be
caused by the computing infrastructure topology5 or by the
complexity of the objective function.

APPENDIX D
PROTOTYPE-BASED EVALUATION: DETAILS ON THE
EXPERIMENTAL SETUP

In Section 7.5, we execute a prototype-based evaluation
of the proposed heuristics. In this appendix, we provide
further details regarding the used computing infrastructure.

To perform the experiment, we use 32 worker nodes.
Three of them are co-located in our university cluster placed
in Rome, Italy; the remaining ones are distributed across

5. Our results present this anomaly only for the infrastructure with
49 and 64 computing nodes.



7

TABLE 5: Inter-data center network delays. We label our
university cluster as uniroma2; the other regions are labeled
as by the Google Cloud Platform.

Region pair Average delay (ms)

uniroma2 ! europe-west1 28
uniroma2 ! europe-west2 34
uniroma2 ! europe-west3 22
uniroma2 ! europe-west4 28
uniroma2 ! europe-north1 53

uniroma2 ! us-east1 120
europe-west1 ! europe-west2 7
europe-west1 ! europe-west3 8
europe-west1 ! europe-west4 8
europe-west1 ! europe-north1 33

europe-west1 ! us-east1 93
europe-west2 ! europe-west3 13
europe-west2 ! europe-west4 11
europe-west2 ! europe-north1 38

europe-west2 ! us-east1 88
europe-west3 ! europe-west4 7
europe-west3 ! europe-north1 32

europe-west3 ! us-east1 98
europe-west4 ! europe-north1 31

europe-west4 ! us-east1 98
europe-north1 ! us-east1 125

6 regions of the Google Cloud Platform (i.e., europe-west1,

europe-west2, europe-west3, europe-west4, europe-north1, and
us-east1). Each worker node has 1 vCPU and 1.7 GB of
RAM (as the g1-small instances of Google). Therefore, we
assign equal speed-up value Su to each computing node,
i.e., Su = 1, 8u 2 Vres. To avoid overloading the comput-
ing resources, each worker node can host at most 2 DSP
operators, i.e., Cu = 2. As regards network delay d(u,v),
8u, v 2 Vres, we rely on real measurements carried out
on the geo-distributed computing infrastructure. Table 5
reports the (average) inter-data center network delay, as
measured by the Distributed Storm monitoring system; we
do not report the intra-data center network delays since they
are negligible (and thus set to 0 in the optimization model).

We should observe that the inter-data center network de-
lays play a key role in determining the operator placement
solution. Indeed, in fog environments, they significantly
contribute to the overall end-to-end application latency [50].

APPENDIX E
DEBS 2015 GRAND CHALLENGE APPLICATION

To evaluate the heuristics prototype in Storm, we use the
reference application that solves a query of the DEBS 2015
Grand Challenge [47]. The DSP application processes data
streams originated from the New York City taxis, and
finds the top-10 most frequent routes during the last 30
minutes. This application includes 8 operators, which work
as follows. Data source reads the dataset from Redis; parser

filters out irrelevant and invalid data. Then, filterByCoordi-

nates forwards only the events related to a specific area to
computeRouteID, which identifies the routes covered by taxis.
So, countByWindow computes the route frequency in the last
30 minutes, supported by metronome that defines the passing
of time. Finally, partialRank and globalRank compute the top-
10 most frequent routes.

REFERENCES

[48] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Mat-
teo Nardelli. Distributed QoS-aware scheduling in Storm. In Proc.

ACM DEBS ’15, pages 344–347, 2015.
[49] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris.

Vivaldi: A decentralized network coordinate system. SIGCOMM

Comput. Commun. Rev., 34(4), 2004.
[50] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar

Buyya. Latency-aware application module management for fog
computing environments. ACM Trans. Internet Technol., 19(1):9:1–
9:21, November 2018.


