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Abstract—Architecting software systems according to the service-
oriented paradigm, and designing runtime self-adaptable systems are
two relevant research areas in today’s software engineering. In this
paper we address issues that lie at the intersection of these two im-
portant fields. First, we present a characterization of the problem space
of self-adaptation for service-oriented systems, thus providing a frame
of reference where our and other approaches can be classified. Then,
we present MOSES, a methodology and a software tool implementing
it to support QoS-driven adaptation of a service-oriented system. It
works in a specific region of the identified problem space, corresponding
to the scenario where a service-oriented system architected as a
composite service needs to sustain a traffic of requests generated by
several users. MOSES integrates within a unified framework different
adaptation mechanisms. In this way it achieves a greater flexibility in
facing various operating environments and the possibly conflicting QoS
requirements of several concurrent users. Experimental results obtained
with a prototype implementation of MOSES show the effectiveness of
the proposed approach.

Index Terms—Service-oriented architecture, runtime adaptation, qual-
ity of service.

1 INTRODUCTION

1.1 Motivation

Two of the major current trends in software engineering
are: the increasingly central role of the service-oriented
architecture (SOA) paradigm in the development of soft-
ware systems, and the emphasis given to the need of
introducing self-adaptation features within software sys-
tems.

The SOA paradigm encourages the realization of
new software systems by composing network-accessible
loosely-coupled services. It has its roots in the existence
of a widely deployed internetworking infrastructure,
and in the general shift that has occurred in the way
enterprises operate, where fully integrated enterprises
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are being replaced by more agile networks of enterprises,
offering each other specialized services. According to
the SOA paradigm, the development focus shifts from
activities concerning the in-house custom design and
implementation of the system components, to activities
concerning the identification, selection, and composition
of services offered by third parties.

The goal of self-adaptation is to alleviate the manage-
ment problem of complex software systems that operate
in highly changing and evolving environments. Such
systems should be able to dynamically adapt themselves
to their environment with little or no human inter-
vention, in order to meet both functional requirements
concerning the overall logic to be implemented and non-
functional requirements concerning the quality of service
(QoS) levels that should be guaranteed.

The two fields outlined above are quite strictly in-
tertwined. On one hand, SOA-based systems represent
a typical domain where self-adaptation can give sig-
nificant gains. Indeed, the open and dynamic world
of services is characterized by a continuous evolution:
providers may modify the exported services; new ser-
vices may become available; existing services may be
discontinued by their providers; usage profiles may
change over time due to the open market in which they
are situated [6]. On the other hand, the loose coupling,
dynamic selection and binding features of SOA systems
make them particularly amenable to the introduction of
runtime adaptation policies. In particular, the use of self-
adaptation to fulfill non-functional QoS requirements
such as performance, reliability and cost plays a central
role in the SOA domain. Indeed, in the envisaged service
marketplace (e.g., [44], [48], [51]), several competing ser-
vices may co-exist implementing the same functionality
with different QoS and cost. Thus, a prospective user
could choose the services that best suit his/her QoS
requirements. Hence, being able to effectively deliver
and guarantee the QoS level required by a given class
of users may bring competitive advantage to a service
provider over the others.

1.2 Contribution

The approach proposed in this paper spans over the
two fields summarized above. Our goal is to address
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issues concerning the design and implementation of a
self-adaptive SOA system aimed at maintaining some
specified QoS and cost requirements.

General discussions concerning the issues and the
state of the art in the design and implementation of self-
adaptive software systems have been presented, e.g., in
[29], [55], [17], [3], [36], [10], [50]. These papers evidence
the number and the several facets of the problems to
be tackled. As a consequence, it is unlikely that a single
methodology, design or implementation approach could
be able to encompass effectively all of them.

In this respect, as a first contribution of this paper, we
outline a characterization of the problem space of QoS-
driven self-adaptation for the SOA domain, providing
a frame of reference for existing literature. Moreover,
this characterization can help in the identification of
interesting problems arising in different regions of this
space and promising ways to tackle them.

Then, as a second contribution (that constitutes the
most relevant part of this paper), we present MOSES
(MOdel-based SElf-adaptation of SOA systems), a method-
ology and a software tool that implements it, for QoS-
driven runtime adaptation of SOA systems. MOSES is
tailored for a significant region of the overall problem
space, corresponding to the scenario where a SOA sys-
tem architected as a composite service needs to sus-
tain a traffic of requests generated by several classes
of services. Within this scenario, MOSES determines
the most suitable configuration of this system for a
given operating environment by solving an optimization
problem (that is a LP problem), derived from a model
of the composite service and of its environment. The
adopted model allows MOSES to integrate in a unified
framework both the selection of the set of concrete
services to be used in the composition, and (possibly)
the selection of the coordination pattern for multiple
functionally equivalent services, where the latter allows
to achieve QoS levels that could not be achieved by using
single services. In this respect, MOSES is a step forward
with respect to most existing approaches for runtime
SOA systems adaptation, that limit the range of their
actions to the selection of single services to be used in
the composition. We assess the effectiveness of MOSES
through an extensive set of experiments performed using
the software tool that implements it.

This paper integrates and extends the basic elements
of the MOSES methodology and prototype presented in
[14] and [7]. Specifically, with respect to those works,
the new contributions of this paper can be summarized
as follows: (i) we have defined a characterization of
the problem space of QoS-based self-adaptation for the
SOA domain; (ii) we have included the management of
stateful services; (iii) we have implemented an improved
version of the MOSES prototype; (iv) we have run a thor-
ough set of experiments to validate the whole MOSES
methodology and compared the computational cost of
MOSES with that of other state of the art approaches.

Fig. 1. Taxonomy of self-adaptation for SOA.

1.3 Organization

The remainder of the paper is organized as follows. In
Section 2 we examine the problem of self-adaptation
from the perspective of the SOA domain, and identify
different dimensions that can be used to characterize
the problem space. Based on this characterization, we
specify in the same section the problem addressed by
MOSES. In Section 3 we present an overview of the
MOSES framework, and also outline its architecture and
the main tasks of its components. Sections 4, 5, and 6
describe specific aspects of MOSES. In particular, in
Section 4 we present the adaptation policy model and
the QoS model used by MOSES to calculate the overall
QoS of a service composition. Based on these models, in
Section 5 we present the formulation of an optimization
problem that is solved within the MOSES framework to
determine a suitable adaptation policy. Then, in Section 6
we describe the MOSES prototype that implements the
overall methodology and present a broad set of exper-
iments to assess the effectiveness of the approach and
to illustrate the kind of adaptation directives issued by
MOSES. In Section 7 we discuss related works. Finally, in
Section 8 we summarize some lessons learned with the
development of the MOSES methodology, and present
directions for future work.

2 PROBLEM SPACE CHARACTERIZATION

A sensible way to characterize the problem space for
self-adaptive software systems is to organize it along
several dimensions, where each dimension captures one
or more related facets of the problem. Papers addressing
this issue have provided somewhat different characteri-
zations [29], [55], [17], [3], [36], [10], [50], mainly because
of some difference in the adopted perspective. Overall,
they can be considered as possible answers to some basic
questions [55]:

• why should adaptation be performed (which are its
goals);

• when should adaptation actions be applied;



3

• where the adaptation should occur (in which part of
the system) and what elements should be changed;

• how should adaptation be implemented (by means
of which actions);

• who should be involved in the adaptation process.

The answers provided by the papers cited above aim
at addressing the whole software systems domain. In
this section we adopt a narrower viewpoint, and outline
possible answers to these questions based on the specific
features of the SOA domain, with special emphasis
on QoS aspects. We remark that our main goal is to
show some of the key issues to be tackled rather than
presenting an exhaustive analysis of the literature for the
SOA domain.

Figure 1 summarizes the main concepts of this char-
acterization. For the sake of clarity, the class diagram in
Fig. 2 illustrates some elements of the SOA domain we
use in this characterization. A more detailed taxonomy
of these elements can be found, for example, in [9], [19].

2.1 Dimensions of Self-adaptation for SOA Systems

Why. The basic goal of adaptation is to make the system
able to fulfill its functional and/or non functional require-
ments, despite variations in its operating environment,
which are very likely to occur in the SOA domain. As
pointed out in the introduction, our focus in this paper is
on non functional requirements concerning the delivered
QoS and cost. In the SOA domain, these requirements
are usually the result of a negotiation process engaged
between the service provider and user, which culmi-
nates in the definition of a Service Level Agreement (SLA)
concerning their respective obligations and expectations
[39]. In a stochastic setting, a SLA specifies guarantees
about the average value of quality attributes, or more
tough guarantees about the higher moments or percentiles
of these attributes.

With regard to functional requirements, we just men-
tion that, in the SOA domain, adaptation may play a
relevant role in tackling runtime interoperability issues
among dynamically discovered and selected services
(e.g., [18], [43]).

When. Broadly speaking, adaptation can be performed
at different stages of the system lifetime [36]: develop-
ment time, compile/link time, load time, runtime. In the
SOA domain, the emphasis is on building systems by
late composition of running services. Hence, the focus
of adaptation in this domain is on the runtime stage.
This narrower viewpoint of the “when” dimension is
also adopted in [55] for the broader field of self-adaptive
software. Within this stage, we may further distinguish
reactive and proactive adaptation. In the reactive mode,
the system adapts itself after a change has been detected.
In the proactive mode, the system anticipates the adap-
tation based on a prediction of possible future changes.

Where-What. The SOA paradigm emphasizes a com-
positional approach to software systems development,
where the units of composition are services. A service
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Fig. 2. Conceptual model of the SOA domain.

can be considered as a black-box component deployed
on some platform, operated by an independent authority
and made accessible through some networking infras-
tructure using standard protocols. Hence, the compo-
sition of services can be considered as the basic locus
for adaptation in the SOA domain. Looking at service
composition, we may distinguish an abstract composition,
where only the required functionalities (tasks) and their
composition logic are specified, and a concrete compo-
sition, where the tasks of an abstract composition are
bound to actual implementations, based on the use of
operations offered by network accessible concrete services.
Based on this distinction, adaptation in the SOA domain
may take place at two different levels:

• services only: the adaptation only involves the con-
crete composition, acting on the implementation
each task is bound to, leaving unchanged the com-
position logic (i.e., the overall abstract composition);

• services and workflow: the adaptation involves both
the concrete and abstract composition; in particular,
the composition logic can be altered.

We may also look at the where-what question from the
perspective of the adaptation scope. In this perspective,
we may take two different viewpoints: the number of
SOA systems operating in the same environment that
are directly involved in the adaptation process, and
the granularity level at which adaptation is performed,
considering the flow of requests addressed to a SOA
system by the same or different users.

We first discuss this issue from the “granularity level”
viewpoint in the “scope” dimension:

• single request: the adaptation concerns a single ser-
vice request, and aims at making the system able to
fulfill the requirements of that request, irrespective
of whether it belongs to some flow generated by one
or more users;

• flow of requests: the adaptation concerns an overall
flow of requests, and aims at fulfilling requirements
concerning the global properties of that flow.

Let us consider now the “number of SOA systems”
viewpoint:
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• single system: a single system is explicitly considered
as the system to be adapted, while everything else,
including other competing SOA systems, is consid-
ered part of its environment;

• multiple systems: several SOA systems, competing
for overlapping sets of services in the same envi-
ronment, are explicitly considered in the adaptation
process.

How. Possible answers to this question depend on the
level of the composition where adaptation takes place,
as discussed above. For adaptations involving only the
services of the composition, adaptation actions could be
based on:

• service tuning: the behavior and/or properties of the
operations of concrete services are changed, depend-
ing on the current operating conditions, exploiting
some management interface exposed by the concrete
services themselves (e.g., based on WSDM MOWS
[34]). This kind of action does not change the current
binding between tasks and operations of concrete
services;

• service selection: the goal of this action is to identify
and to bind to each task a corresponding single
operation offered by a concrete service, selecting it
from a set of candidates. This kind of action could
change the binding between tasks and operations, if
the previous selection is no longer suitable for the
new operating conditions;

• coordination pattern selection: rather than binding
each task to a single operation, this action binds it
to a set of functionally equivalent operations offered
by different concrete services, coordinating them
according to some spatial or temporal redundancy
pattern. The coordination pattern is selected within
a set of implementable patterns (e.g., 1-out-of-n
parallel redundancy, alternate service), that could
in general guarantee different QoS and cost levels,
for the same set of coordinated operations. Binding
a task to a set of equivalent operations allows to
obtain QoS levels (concerning reliability and, in
some cases, performance) that could not be achiev-
able binding it to a single operation. Of course this
advantage should be weighted against the higher
cost caused by the use of multiple concrete services.

Who. This dimension concerns the “authorities” that
manage the adaptation process and it is related to the
“number of SOA systems” dimension discussed above.
In the case of a single system, we may assume that
its adaptation is under the control of a single authority
(that must take into account the fact that the constituent
services of the managed system could be operated by
third parties). In the case of multiple systems, their
adaptation could be still under the control of a single
authority. Alternatively, it could be under the control of
multiple cooperating authorities, that, for example, agree
on some common utility objective. Finally, it could be
under the control of multiple non cooperating authorities,

that compete in a selfish way for some set of services.

2.2 The MOSES Approach to Adaptation

Devising an adaptation methodology strongly depends
on the assumptions made about the domain it will
be applied to. Different assumptions may lead to dif-
ferent formulations of the problem to be solved, and
corresponding solution methodologies. Looking at the
existing literature, we see that a largely uncovered region
of the problem space outlined in Section 2.1 concerns
the flow of requests granularity level. Indeed, most of the
proposed methodologies focus on the single request case
(e.g., [5], [11], [16], [25], [26], [59], [61], [62]). However,
a per-request approach hardly scales with workload
increases, thus making this approach unsuitable for a
system subject to a quite sustained flow of requests. We
discuss this issue in Section 6.2.2.

With MOSES, we intend to address this part of the
problem space. Indeed, MOSES focuses on a scenario
where several classes of services address a relatively
sustained traffic of requests to a SOA system architected
as a composite service. Each class may have its own
QoS requirements, and negotiates a corresponding SLA
with the system. In this scenario, we assume that the
QoS requirements stated in the SLA concern the average
value of QoS attributes calculated over all the requests
belonging to a flow generated by a given user. These
values are guaranteed to the user as long as the rate of
requests he/she addresses to the system does not exceed
a given threshold, established in the SLA itself.

With regard to the mechanisms used to perform the
adaptation, several papers have focused on service selec-
tion. However, it may happen that, under a specific op-
erating condition, no selection exists of single operations
offered by concrete services allowing the fulfillment of
the QoS requirements. In this case, adaptation method-
ologies based only on service selection fail to meet their
objective, which could cause a loss of income and/or
reputation for a service provider.

To overcome this problem, with MOSES we propose
to broaden the range of the considered adaptation mech-
anisms, by exploiting the availability in a SOA environ-
ment of multiple independent implementations of the
same functionality. To this end, MOSES is able to select
and implement adaptation actions based on a combina-
tion of both the service selection and coordination pattern
selection mechanisms. In this way, MOSES may fulfill
QoS levels (concerning reliability and performance) that
could not be achieved otherwise, thus increasing the
flexibility of a provider in facing a broader range of QoS
requirements and operating conditions.

In summary, MOSES addresses the following region
of the problem space characterized in Section 2.1, as
evidenced by the shaded boxes in Fig. 1:

• why: fulfillment of SLAs about the average value of
QoS attributes, negotiated between the provider of a
composite service and multiple classes of services;
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each class of services is characterized by its own
SLA;

• when: runtime reactive adaptation;
• where-what:

– composition level: services only;
– scope (granularity): flows of requests addressed

to the system by different users;
– scope (number of systems): a single SOA system

architected as a composite service;

• how: service selection and coordination pattern se-
lection;

• who: single authority.

3 OVERVIEW OF THE MOSES FRAMEWORK

MOSES is intended to act as a service broker, which offers
to prospective users a composite service with a range
of different service classes exploiting for this purpose
a set of existing concrete services. Its main task is to
drive the adaptation of the composite service to fulfill
the QoS goals of the different service classes it offers,
when changes occur in its operating environment.

To achieve this goal, MOSES manages a feedback
control loop [45]. Figure 3 shows a high level view of the
MOSES architecture implementing this loop, organized
according to the IBM’s MAPE-K (Monitor, Analyze, Plan,
Execute, and Knowledge) reference model of an auto-
nomic system [31]. The MOSES input consists of the
description of the composite service in some suitable
workflow orchestration language (e.g., BPEL [49]), and
the set of candidate concrete services that can be used to
implement the required tasks (including the parameters
of their SLAs). MOSES uses this input to build a model
which is then used (and kept up to date) at runtime to
determine possible adaptation actions to be performed.
Each macro-component in Fig. 3 is actually architected
as a set of interacting components. We give some de-
tails about these components and their functions in
Section 3.4. Before that, we present in Section 3.1 the class
of SOA systems managed by MOSES, in Section 3.2 the
adaptation actions it performs, and in Section 3.3 a SLA
model we use to state the QoS and cost requirements
that drive the MOSES actions.

3.1 Composite Service Model

The class of services managed by MOSES consists of all
those composite services whose orchestration logic (i.e.,
their abstract composition, according to the terminology
of Section 2.1) can be abstractly defined as an instance
generated by the following grammar:

C ::= S|seq(C+)|loop(C)|sel(C+)|par and(C+)

S ::= S1|S2|...|Sm

In this definition, C denotes a composite service, S1,
S2, ..., Sm denote tasks (i.e., functionalities needed to
compose a new added value service), and C+ denotes
a list of one or more services. Hence, MOSES currently
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Fig. 3. The MOSES approach.

is able to manage composite services consisting either
of a single task, or of the orchestration of other services
according to the composition rules: seq, loop, sel, par and.
Table 1 summarizes the intended meaning of these rules
and the corresponding BPEL constructs. For the sake
of clarity, in Table 2 we summarize the notation used
throughout the paper.

We point out that the above grammar is purposely ab-
stract, as it intends to succintly specify only the structure
of the considered composite services. Hence, we omit
details such as how to express the terminating condi-
tion for a loop. A thorough approach to the modeling
of service orchestration is presented in [32], based on
the Orc language; [20] shows how Orc can model the
workflow patterns listed in [1]. In this respect, we point
out that the grammar we define does not capture all the
possible structured orchestration patterns, but includes
a significant subset1.

TABLE 1
Workflow composition rules.

Rule Meaning BPEL

seq(C+) sequential execution of services in C+ sequence
loop(C) repeated execution of service C while
sel(C+) conditional selection of one service in C+ switch

par and(C+) concurrent execution of services in C+ flow
(with complete synchronization)

Figure 4 shows an example of an orchestration pattern
described as a UML2 activity diagram, and the corre-
sponding instance generated by the grammar. MOSES
uses this grammar to check whether the orchestration
pattern of an actual SOA system matches the kind of
patterns it is able to manage. In the positive case, it uses
the grammar to support the construction of a suitable
runtime model to be used for adaptation purposes.

1. In particular, it can be easily realized that our grammar captures
the structure of workflow patterns 1, 2+3, 4, 10 (for structured cycles
only), 13 and 16 reported in [1].
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Fig. 4. A MOSES-compliant workflow.

TABLE 2
Main notation adopted in the paper.

Symbol Description
K Set of classes
k Class index
Rk

max Class k upper bound on the
expected response time

Ck Class k cost
Dk

min Class k lower bound on service reliability
λk
u Class k flow of request rate generated

by user u
Lk Class k flow of request rate
Si Task
i Task index
m Number of tasks
opij Operation/Concrete service
ij Concrete service index
zij , z = r|c|d Operation opij response time, cost

and reliability
Lij Maximum operation opij load
ℑi Set of task i implementations
J Implementation index
Z(Si; J),
Z = R| logD|C Task Si response time, cost

and (log of the) reliability under
implementation J

xk
iJ Fraction of class k requests for task Si

that are bound to implementation J
V k
i Expected number of times task Si

is invoked by a class k user
Zk(x),
Z = R| logD|C Class k response time, cost and (log of the)

reliability under adaptation policy x

wz , z = r|c|d Normalized QoS attribute weight

3.2 Adaptation Actions

MOSES performs adaptation actions that take place at
the services only composition level. Their goal is to de-
termine at runtime the most suitable implementation to
be bound to each abstract task Si, selecting it from a set
ℑi of available implementations, built as follows.

We assume that a set CS = {csl} of candidate concrete
services have been identified to build an overall imple-
mentation of the composite service. Different csl can be
offered by different providers with different QoS and
cost attributes, or even by the same provider offering

differentiated services.
Each csl implements a set OP (csl) of operations. We

denote by OP = ∪OP (csl) the set of all the available
operations, and by OP i ⊆ OP the subset of functionally
equivalent operations that implement the task Si.

MOSES exploits the availability of multiple equivalent
operations to build implementations of each Si based on
the use of redundancy schemes, to get QoS levels possibly
higher than those guaranteed by each single operation, at
the expense of a higher cost. According to these schemes,
a possible implementation of a task Si may consist of
a set of two or more equivalent operations belonging
to OP i, coordinated according to some coordination
pattern.

At present, the MOSES framework includes two such
coordination patterns, denoted as alt and par or, besides
the simple single pattern. Table 3 summarizes their in-
tended meaning. We have selected these two coordina-
tion patterns as they have complementary characteristics
with respect to their QoS and cost, as will be explicitly
discussed in Section 4.2.1.

TABLE 3
Coordination patterns.

Rule Meaning

single execution of a single operation
alt sequential (alternate) execution of operations

in a list, until either one of them
successfully completes, or the list is exhausted

par or concurrent execution of the operations in
a set (with 1 out of n synchronization)

Hence, the set ℑi of available implementations for each
task Si is given by the union of the following sets:

ℑi = OP i ∪ OPalt
i ∪OPpar

i

where:

• OP i has been already defined above; selecting an
element in this set models the selection of an imple-
mentation of Si based on a single operation;

• OPalt
i is the set of all the ordered lists of at least

two elements belonging to OP i, with no repetitions;
selecting an element in this set models the selection
of an implementation of Si based on the alt pattern
applied to that list;

• OPpar
i is the set of all the subsets of at least two

elements belonging to OP i; selecting an element in
this set models the selection of an implementation
of Si based on the par or pattern applied to that
subset.

For a given abstract composition that models the busi-
ness logic of a SOA system, the selection for each Si of
different elements in the set ℑi corresponds to different
concrete configurations of the overall composite service,
each characterized by different values of their overall
QoS attributes. We call adaptation policy the runtime selec-
tion and implementation of one of these configurations,
to best match the QoS constraints and objectives in a
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given operating environment. We detail in Sections 4
and 5 the methodology adopted in MOSES to determine
this policy.

3.2.1 Adaptation Actions for Stateless and Stateful Ser-
vices

In the discussion above about the MOSES adaptation
actions, we implicitly assume that tasks can be bound
to any concrete service implementing them. Actually,
this holds only for stateless tasks, i.e., tasks that do not
require sharing any state information with other tasks. In
the general case, composite services may include stateful
tasks, i.e., tasks that do need state information to be
shared among them; as a consequence, these tasks need
to be implemented by operations of the same concrete
service. This very requirement limits the possibility of
exploiting redundancy patterns to implement stateful
tasks. Indeed, the functionally equivalent operations
used within these patterns generally belong to different
concrete services. This makes unlikely, or even impossi-
ble, the sharing of state information among them, unless
we put constraints on the implementations. To overcome
this problem, MOSES currently uses the alt or par or
patterns for the implementation of stateless tasks only,
while the implementation of stateful tasks is restricted
to only the single pattern.

We model the presence of stateful tasks by consid-
ering a partition S = {S1, . . . ,Sf} of the set of tasks
{S1, . . . , Sm}. Tasks that need to share some state infor-
mation belong to the same subset Sh ∈ S and need to be
implemented by operations of the same concrete service
csl. A stateless task Si is simply modeled by associating
it with a singleton Sh ∈ S.

3.3 SLA Model

As stated in Section 2.2, MOSES considers SLAs stating
conditions that should hold globally for a flow of requests
generated by a user. In general, a SLA may include a
large set of parameters, referring to different kinds of
functional and non-functional attributes of the service,
and different ways of measuring them. MOSES presently
considers the average value of the following attributes:

• response time: the interval of time elapsed from the
service invocation to its completion;

• reliability: the probability that the service completes
its task when invoked2;

• cost: the price charged for the service invocation.

Other attributes, like reputation or availability, could be
easily added.

Our general model for the SLA between the provider
and the user of a service thus consists of a tuple
〈R,C,D,L〉, where: R is the upper bound on the average
service response time, C is the service cost per invoca-
tion, D is the lower bound on the service reliability. The
provider guarantees that thresholds R and D will hold

2. This measure is called successful execution rate in [62].

on average provided that the request rate generated by
the user does not exceed the load threshold L.

In our framework MOSES performs a two-fold role
of service provider towards its users, and of service
user with respect to the providers of the concrete ser-
vices it uses to implement the composite service it is
managing. Hence, it is involved in two types of SLAs,
corresponding to these two roles, that are both defined
using the SLA template. In the case of the SLAs between
the composite service users and MOSES (acting the
provider role), we assume that MOSES offers a set K
of service classes. Hence, the SLA for user u of service
class k ∈ K is defined as a tuple 〈Rk

max, C
k, Dk

min, λ
k
u〉.

All these coexisting SLAs (for each u and k) define the
QoS objectives that MOSES must meet.

To meet these objectives, we assume that MOSES
(acting the user role) has already identified for each task
Si a pool of concrete services implementing it. The SLA
contracted between MOSES and the provider of the op-
eration opij ∈ OP i is defined as a tuple 〈rij , cij , dij , Lij〉.
These SLAs define the constraints within which MOSES
should try to meet its QoS objectives.

3.4 MOSES Components

Figure 5 details the macro-components of the MOSES
architecture in Fig. 3, showing the core components they
consist of – BPEL Engine, Composition Manager, Adapta-
tion Manager, Optimization Engine, QoS Monitor, Execution
Path Analyzer, WS Monitor, Service Manager, SLA Manager,
and Data Access Library – and their interactions. Informa-
tion about their implementation is given in Section 6.

Service Manager
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QoS Monitor

Optimization Engine
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Analyzer

BPEL Engine

WS Monitor

Service Registry

Fig. 5. MOSES high-level architecture.

The Execute macro-component comprises the Composi-
tion Manager, BPEL Engine, and Adaptation Manager com-
ponents. The first component receives from the broker
administrator the description of the composite service
in some suitable workflow orchestration language (e.g.,
BPEL [49]), and builds a behavioral model of the com-
posite service. To this end, the Composition Manager
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interacts with the Service Manager for the identification
of the operations that implement the tasks required by
the service composition. Once created, the behavioral
model is saved in the Knowledge macro-component to
make it accessible to the other system components.

While the Composition Manager is invoked rarely
during the MOSES operativeness, the BPEL Engine and
Adaptation Manager are the core modules for the ex-
ecution and runtime adaptation of the composite ser-
vice. The first is the software platform that actually
executes the business process (e.g., Sun BPEL Service
Engine or Apache ODE) and represents the user front-
end for the composite service provisioning. It interacts
with the Adaptation Manager to allow the invocation
of the component services. The Adaptation Manager
is in charge of carrying out at runtime the adaptation
actions. Indeed, for each operation invocation, it binds
dynamically the request to the real endpoint that rep-
resents the operation. This endpoint is identified on the
basis of the optimization problem solution determined
by the Optimization Engine. We point out that the
optimization problem solution takes place not for each
operation invocation, but only when some component in
the Analyze macro-component determines the need of a
new solution in order to react to some change occured
in the MOSES enviroment. The BPEL Engine and the
Adaptation Manager also acquire raw data needed to
determine respectively the usage profile of the compos-
ite service and the performance and reliability levels
(specified in the SLAs) actually perceived by the users
and offered by the concrete services. Together, the BPEL
Engine and the Adaptation Manager are responsible for
managing the user requests flow, once the user has been
admitted to the system with an established SLA.

The Optimization Engine implements the Plan macro-
component of the autonomic loop. It solves the opti-
mization problem, which is based on the behavioral
model initially built by the Composition Manager and
instantiated with the parameters of the SLAs negotiated
with both the MOSES users and the providers of the
concrete services. The model is kept up to date by the
monitoring activity carried out by the MOSES Monitor
and Analyze macro-components. The solution of the
optimization problem determines the adaptation policy
in a given operating environment, which is passed to the
Adaptation Manager for its actual implementation.

The components in the Monitor and Analyze macro-
components capture changes in the MOSES environment
and, if they are relevant, modify at runtime the behav-
ioral model and trigger the Optimization Engine to make
it calculate a new adaptation policy.

Currently, tracked changes include:

• the arrival/departure of a user with the associated
SLA (SLA Manager);

• observed variations in the SLA parameters of the
constituent operations (QoS Monitor);

• addition/removal of an operation implementing a
task of the abstract composition (Service Manager

and WS Monitor);
• variations in the usage profile of the tasks in the

abstract composition (Execution Path Analyzer).

Finally, the Knowledge macro-component is accessed
through the Data Access Library, which allows to access
the parameters describing the composite service and its
operating environment (they include the set of tasks in
the abstract composition, the corresponding candidate
operations with their QoS attributes, and the current
solution of the optimization problem that drives the
composite service implementation).

4 ADAPTATION AND QOS MODEL

In this section we present the adaptation policy model
adopted within MOSES, and the QoS model it uses to
compute the QoS attributes of a composite service.

4.1 Adaptation Policy Model

The MOSES adaptation policy is based on a set of direc-
tives used to select at runtime the “best” implementation
of the composite service in a given scenario. MOSES
assumes a flow-based service demand model with mul-
tiple concurrent service classes, where for each task Si

different requests in a flow can be bound to different
implementations. The MOSES adaptation policy consists
of determining, for each service class k and each task Si:

• the coordination pattern(s) and the corresponding
list of operations to be used to build concrete im-
plementation(s) for Si (selected among the single, alt
and par or patterns).

• the fraction of requests generated by class k requests
for Si that must be switched and bound to a specific
implementation of Si.

We model the MOSES adaptation policy by associating
with each class k a vector x

k = [xk
1 , . . . ,x

k
m], where each

entry x
k
i = [xk

iJ ], 0 ≤ xk
iJ ≤ 1, J ∈ ℑi,

∑

J∈ℑi
xk
iJ = 1,

i = 1, . . . ,m, denotes the adaptation policy for task Si.
Here, xk

iJ denotes the fraction of class k requests for Si

to be bound to the implementation denoted by J . We
denote by x = [xk]k∈K the MOSES adaptation policy
vector which encompasses the adaptation policy of all
the service classes.

The adaptation policy vector x is used by the Adapta-
tion Manager to determine for each and every invocation
of a task Si the coordination pattern to be used and
the actual service(es) to implement it. Given a class k
request for the task Si, the Adaptation Manager chooses
the implementation denoted by J with probability xk

iJ ,
thus giving rise to a randomized partitioning among
the implementations in ℑi of the overall class k flow
directed to Si. As an example, consider the case OP i =
{opi1, opi2, opi3, opi4} for task Si and assume that the
adaptation policy x

k
i for a given class k specifies the fol-

lowing values: xk
i{opi1}

= xk
i{opi3}

= 0.3, xk
i{opi2,opi3}

= 0.4

and xk
iJ = 0 otherwise. According to this policy, given a

class k request for task Si, the Adaptation Manager binds
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the request: with probability 0.3 to operation opi1, with
probability 0.3 to operation opi3, and with probability 0.4
to the pair opi2, opi3 coordinated by the par or pattern
(see Fig. 6).

Fig. 6. Implementation of the MOSES adaptation policy
for a single task.

4.2 QoS Model

MOSES presently considers the following attributes for
each service class k ∈ K :

• the expected response time Rk, which is the average
time needed to fulfill a class k request for the
composite service;

• the expected execution cost Ck , which is the average
price to be paid for a class k invocation of the
composite service;

• the expected reliability Dk, which is the probability
that the composite service completes its task for a
class k request. As in [62], when writing expressions,
we will work with the logarithm of the reliability
rather than the reliability itself, to obtain linear
expressions, when composing the reliability of dif-
ferent services.

For each service class, the overall QoS of a composite
service implementation depends on: the usage profile
and the composition logic of the composite service tasks;
the adopted adaptation policy; the QoS of the task
implementation selected within that adaptation policy.

In Section 4.2.1 we derive the QoS attributes of a task
as a function of the selected implementation, while in
Section 4.2.2 we show how MOSES takes into account
task orchestration and usage profile to compute the
composite service QoS.

QoS attributes are calculated based on the following
assumptions:

• service invocation is synchronous;
• services fail according to the fail-stop model;
• service cost is charged on a per-invocation basis.

4.2.1 Task QoS Attributes

Let us first consider a task in isolation. For each class
of service, the QoS of a task depends on: 1) the QoS
associated with the different set of operations and the
associated coordination pattern that can be bound to
the task to build its concrete implementation; and 2) the

probability that a particular coordination pattern and set
of operations is bound to a given request.

Let Zk(Si;x), Z = C|D|R, denote class k QoS attribute
of task Si under the adaptation policy x. Since imple-
mentation J is chosen with probability xk

iJ , we readily
have:

Ck(Si;x) =
∑

J∈ℑi

xk
iJC(Si; J) (1)

logDk(Si;x) =
∑

J∈ℑi

xk
iJ logD(Si; J) (2)

Rk(Si;x) =
∑

J∈ℑi

xk
iJR(Si; J) (3)

where R(Si; J), C(Si; J) and D(Si; J) denote the aver-
age response time, cost and reliability of Si, when the
implementation of Si corresponds to a given J ∈ ℑi.

We now determine the value of these QoS attributes
when Si is implemented according to the three differ-
ent coordination patterns currently considered within
MOSES.

We distinguish among the three cases:

• J ∈ OP i: assuming J = {opij}, the QoS attributes
coincide with those of the selected concrete opera-
tion opij :

C(Si; J) = cij , D(Si; J) = dij , R(Si; J) = rij
(4)

• J ∈ OPalt
i : the concrete operations listed in J =

[opij1 , . . . , opijl ] are tried in sequence, starting from
the first in the list, until one of them successfully
completes. Hence, the reliability of this pattern is de-
rived from the probability that at least one operation
completes, while the cost and time to completion of
all the elements of the list must be summed, each
weighted by the probability that the invocations of
all the preceding elements in the list have failed:

C(Si; J) =

l
∑

h=1

cijh

h−1
∏

s=1

(1− dijs)

D(Si; J) = 1−
l

∏

h=1

(1− dijh ) (5)

R(Si; J) = D(Si; J)
−1

l
∑

h=1

rijhdijh

h−1
∏

s=1

(1− dijs)

• J ∈ OPpar
i : in this case, the costs of all the opera-

tions in J = {opij1 , . . . , opijl} must be summed as
they are invoked in parallel, while the completion
time is the minimum of the completion times of
those operations that successfully complete; thus
R(Si; J) is the sum of the minimum completion time
of all non-empty subsets H ⊆ J weighted with
the probability that only the operations in H do
complete successfully:
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C(Si; J) =
l

∑

h=1

cijh

D(Si; J) = 1−

l
∏

s=1

(1− dijs) (6)

R(Si; J) = D(Si; J)
−1

∑

H∈2J\{⊘}

(

∏

js∈H

dijs
∏

js∈J\H

(1− dijs )
)

·

min
js∈H

{rijs}

We make the following remarks concerning the evalua-
tion of R(Si; J):

• In both Equations (5)-(6) R(Si; J) is calculated con-
ditioned on the event that at least one service in
the considered list terminates. The probability of this
event is equal to the service reliability D(Si; J).

• The expression for R(Si; J) in (6) is actually an
approximation: the Jensen’s inequality [47] ensures
that the expectation of the minimum of random
variables is lower than or equal to the minimum of
the expectations, with the equality holding only in
the deterministic case. Nevertheless, the approxima-
tion is accurate in case of small variances. In other
cases a more suitable expression should be used,
which would require the knowledge of the response
time distribution, but this is out of the scope of this
paper.

From Equations (5)-(6), we see that the implementa-
tions of Si according to the alt or par or patterns have the
same reliability when they use the same set of services.
On the other hand, it is not difficult to verify (with some
algebra) that alt has a lower cost than par or, but a higher
response time, since the sequential invocation used by alt
means that on the average not all the selected services
are invoked, but the response time of those invoked must
be summed.

4.2.2 QoS Attributes of the Composite Service

For each class k ∈ K MOSES builds and maintains a
labeled tree T = (V,E,L), where V , E and L are the tree
nodes, edges and labels, respectively. T is derived from
the syntax tree that describes the production rules used
to generate the composite service, by simply collapsing
the S and C nodes. The leaf nodes of T are thus asso-
ciated with tasks, while its internal nodes are associated
with composition rules. Hence, for each non root node
v ∈ V , its parent node f(v) denotes the composition rule
within which v occurs.

The set L of edges is defined as follows. Each edge
(f(v), v) ∈ E is labeled with ℓk(f(v), v), the expected
number of times v is invoked within f(v) for a class k
request:

• if f(v) is the seq or par and composition rule then
ℓk(f(v), v) = 1;

• if f(v) is the loop rule, ℓk(f(v), v)) is the average
number of times the loop body is executed;

• if f(v) is the sel rule, ℓk(f(v), v) corresponds to the
probability that v is executed.

MOSES performs a monitoring activity to keep these
values up to date. Figure 7 shows the tree T maintained
by MOSES for the composite service depicted in Fig. 4
(labels equal to 1 are omitted). Based on this model,

Fig. 7. Composite service labeled tree.

following well known QoS composition rules [15], we
can derive the overall composite service QoS attributes
Rk(x), Ck(x) and Dk(x) (defined at the beginning of
Section 4.2), given Rk(Si;x), Ck(Si;x) and Dk(Si;x),
1 ≤ i ≤ m. Table 4 shows these rules, where for each
node v ∈ V we denote by d(v) the (possibly empty) set
of its children. These rules define a visit algorithm of the
labeled tree T , from which we obtain:

Zk(x) = Z
k(root;x)

Z = C| logD|R, where root denotes the root node of T .

TABLE 4
Recursive rules to calculate the average value of the

QoS attributes of a composite service.

QoS rules
node v ∈ V (where Z

k = C
k | log Dk |Rk)

seq Z
k(v;x) =

∑

u∈d(v) Z
k(u;x)

loop Z
k(v;x) = ℓk(v, d(v))Zk(d(v; x))

sel Z
k(v;x) =

∑

u∈d(v) ℓ
k(v, u)Zk(u;x)

par and C
k(v;x) =

∑

u∈d(v) C
k(u;x)

log Dk(v;x) =
∑

u∈d(v) log D
k(u;x)

R
k(v;x) = maxu∈d(v) R

k(u;x)

Si Z
k(u;x) = Zk(Si;x)

From the rules of Table 4 we now derive closed
form expressions for the QoS attributes of the composite
service, that will provide the basis for the optimization
problem formulation of the next section. In these expres-
sions, for each node v ∈ V , we write v ≺ u if node v is
a descendant of node u.

Cost and Reliability. For these attributes, from the
recursive rules of Table 4, it is easy to realize that

Ck(x) =
m
∑

i=1

(

∏

j�Si

ℓk(f(j), j)
)

Ck(Si;x) =
m
∑

i=1

V k
i Ck(Si;x) (7)
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and

logDk(x) =

m
∑

i=1

(

∏

j�Si

ℓk(f(j), j)
)

logDk(Si;x)

=

m
∑

i=1

V k
i logDk(Si;x) (8)

where V k
i =

∏

l�Si
ℓk(f(l), l), Si ∈ V , is the expected

number of times task Si is invoked by the composite
service for a service class k user.
Response Time. For Rk(x), we need to account for the
fact that the overall response time of the par and pattern
is the largest response time among its component tasks.
As a consequence, the response time is no longer addi-
tive and we cannot derive an expression analogous to (7).
In this case, we obtain a recursive set of expressions for
the response time, whose number is linear in the number
of par and composition patterns in the process. To this
end, we first introduce the notion of direct descendant
among nodes in V . We say that a node v ∈ V is a direct
descendant of u ∈ V , denoted by v ≺dd u, if v ≺ u and for
any other node w ∈ V , v ≺ w ≺ u implies w 6= par and,
i.e., if there is no node labelled par and in the path from
v to u. In other words, a node v ∈ V is said to be a
direct descendant of u if task/pattern v is nested within
the composition pattern u, but, within u, it is not nested
within a par and pattern.

Let Π ⊂ V denote the set of nodes corresponding to
par and activities. We have the following result for the
response time Rk (we omit the proof - which is a simple
application on the recursive formulas of Table 4 - for
space reasons).

Theorem 1: For QoS class k ∈ K , the response time Rk

can be computed recursively as follows:

Rk(x) = R
k(root;x) (9)

R
k(v;x) =















maxu∈d(v) R
k(u;x) v ∈ Π

∑

Si∈V,Si≺ddv

V k
i

V k
v
Rk(Si;x)+

∑

u∈Π,u≺ddv

V k
u

V k
v
R
k(u;x) v /∈ Π

(10)

Theorem 1 provides the response time Rk(v) of each
composition pattern v ∈ V and the composite service
response time Rk, k ∈ K . Observe that if the par and
pattern is not present in the workflow, Π = ∅ and (10)
reduces to Rk(x) =

∑m

i=1 V
k
i Rk(Si;x).

5 OPTIMAL ADAPTATION

In this section we present the optimization problem
solved by MOSES to determine the optimal policy x

in a given environment and analyze its computational
complexity.

5.1 Optimization Problem

The basic goal of MOSES is to determine an adaptation
policy x that allows it to meet its QoS objectives stated
by the 〈Rk

max, C
k, Dk

min, λ
k
u〉 SLAs, given the constraints

determined by the 〈rij , cij , dij , Lij〉 SLAs. Within the
possibly empty set of feasible x’s that satisfy these
constraints, MOSES wants to select the x that opti-
mizes a given utility function. Depending on the uti-
lization scenario of MOSES, the utility function could
be aimed at optimizing specific QoS attributes for the
different service classes (e.g., minimizing their average
response time) and/or it could be aimed at optimizing
the MOSES own utility, e.g., minimizing the overall cost
to offer the composite service (that would maximize the
MOSES owner incomes). These different optimization
goals could be possibly conflicting, thus leading to a
multi-objective optimization problem. To deal with it we
transform it into a single objective problem using for
this purpose the Simple Additive Weighting (SAW) tech-
nique [30], which is the most widely used scalarization
method. According to SAW we define the MOSES utility
function F (x) as the weighted sum of the (normalized)
QoS attributes of all users. More precisely, let

Z(x) =

∑

k∈K LkZk(x)
∑

k∈K Lk
(11)

where Z = R| logD|C is the expected overall response
time, reliability and cost, respectively, and Lk =

∑

u λ
k
u

is the aggregated flow of class k requests. We define the
utility function as follows:

F (x) = wr
Rmax −R(x)

Rmax − Rmin
+wd

logD(x)− logDmin

logDmax − logDmin
+wc

Cmax − C(x)

Cmax − Cmin
(12)

where wr, wd, wc ≥ 0, wr + wd + wc = 1, are
weights for the different QoS attributes. Rmax (Rmin),
Dmax (Dmin), and Cmax (Cmin) denote, respectively, the
maximum (minimum) value for the overall expected
response time, cost and reliability. We will describe how
to determine these values shortly.

With these definitions, the optimization problem can
be formulated as follows:

max F (x)

subject to: Ck(x) ≤ Ck, k ∈ K (13)

logDk(x) ≥ logDk
min, k ∈ K (14)

R
k(root;x) + Tovd ≤ Rk

max, k ∈ K (15)

R
k(u;x) ≤ R

k(v;x), u ∈ d(v), v ∈ Π, k ∈ K
(16)

R
k(v;x) =

∑

Si≺ddv

V k
i

V k
v

∑

J∈ℑi

xk
iJR(Si; J)+

+
∑

u∈Π,u≺ddv

V k
u

V k
v

R
k(u;x), v /∈ Π, k ∈ K

(17)
∑

k∈K

∑

J∈ℑi,j∈J

xk
iJV

k
i Lk ≤ Lij , opij ∈ OP (18)

xk
iJ ≥ 0, J ∈ ℑi,

∑

J∈ℑi

xk
iJ = 1, 1 ≤ i ≤ m, k ∈ K (19)

xk
i1j1

= xk
i2j2

opi1j1 , opi2j2 ∈ OP (csl) (20)

Si1 , Si2 ∈ Sl, |Sl| > 1, k ∈ K
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Equations (13)-(17) are the QoS constraints for each
class on the cost, reliability and response time. The
constraints (15)-(17) for the response time are directly
derived from (10). The additional term Tovd accounts
for the overhead introduced by the broker itself in
managing the system. Equations (18) are constraints on
the operations load and ensure that the system managed
by MOSES does not exceed the volume of invocations
agreed with the providers of those operations. The LHS
of (18) is the volume of invocations of operation opij
under adaptation policy x. It is the sum over all service
classes of the per class number of invocations per unit
time of a given operation opij (the second summation
is over all the implementations J in which j occurs).
The RHS of (18) is the maximum load Lij negotiated
with the provider of the operation. Equations (19) are
the functional constraints. Finally, (20) are the state-
ful constraints which basically require that, for stateful
tasks, the fraction of requests that are bound to different
operations of the same concrete service must be the
same. Remember that if Si is stateful, we only use the
service selection adaptation technique; in this case J
takes values only in OP i.

The maximum and minimum values of the QoS at-
tributes in the objective function (12), used to get a
normalized value, are determined by replacing Zk(x),
Z = R| logD|C in (11) with the maximum and minimum
value that the QoS attributes can attain. Rmax, Cmax,
and Dmin are simply expressed respectively in terms of
Rk

max, Ck, and Dk
max. For example, the maximum cost is

given by Cmax =
∑

k∈K LkCk
max∑

k∈K Lk . Similar expressions hold

for Rmax and Dmin. Rmin, Cmin, and Dmax are similarly
expressed in terms of the Rk

min, Ck
min, and Dk

max, the
minimum response time, minimum cost and maximal
reliability that can be experienced by a class k request.
For instance, Ck

min =
∑m

i=1 V
k
i C

∗(Si) where C∗(Si) =
minJ∈ℑi

C(Si; J) is the minimum cost implementation
of task Si. Similar expressions hold for Rk

min and Dk
max.

We conclude by observing that the proposed optimiza-
tion problem is a Linear Programming (LP) problem
which can be efficiently solved via standard techniques.

5.2 Complexity Analysis

There are several algorithms to solve LP problems, in-
cluding the well known simplex and interior points al-
gorithms [37]. Widely used software packages (CPLEX R©,
MATLAB R©) adopt variants of the well-known interior
point Mehrotra’s predictor-corrector primal-dual algo-
rithm [38], which has O(n

3
2 log n

ǫ
) worst case iteration

complexity and O(n3) iteration cost, where n is the num-
ber of variables of the LP problem [54]. The complexity
in our problem arises from the potentially large value
of n, corresponding to the number of variables xk

iJ , due
to the fact that J ranges over the potentially large set
ℑi. In the general case, we have n = O(m|K|maxi |ℑi|).
This value can grow very quickly with the number ni of
candidate operations for each task Si.

In general, but for the simplest scenarios, we need to
restrict the possible implementations to a subset of ℑi.
This is typically the case of sets OP i of large cardinality
where it is neither convenient nor feasible to consider all
possible implementation patterns. To this end, we in gen-
eral replace ℑi with its subset ℑi(a, p) = OP i∪OPalt

i (a)∪
OPpar

i (p), OPalt
i (a) ⊆ OPalt

i , OPpar
i (p) ⊆ OPpar

i where
a and p denote the maximal number of operations that
can be used to implement an alt and par or pattern,
respectively. At one extreme, we have single service
selection only with ℑi(0, 0) where we exclude any form
of redundancy; in this case, n = O(m|K|maxi ni), which
grows linearly with respect to ni. On the other extreme,
we consider all the possible redundancy coordination
patterns, where the set of possible Si implementations
is ℑ(a, p) = ℑi. In this case, we have a superexponential
number of variables n = O(m|K|maxi ni!), since the
number of possible alt coordination patterns of a Si

implementation is proportional to the factorial of ni,
while the number of par or coordination patterns is 2ni .
These values are clearly not feasible but for small values
of ni. In general, ℑ(a, p) with bounded a and p, limits
the complexity to n = O(m|K|(maxi ni)

max{1,a,p}). We
believe that this restriction is not a significant limitation
in practice, given the diminishing marginal reliability
increase we can achieve with higher redundancy levels,
largely outset by the increasing cost of the redundant
solutions (and in case of the alt pattern also by increasing
execution times). This theoretical analysis will be com-
plemented by an experimental analysis in Section 6.2.

6 EXPERIMENTAL RESULTS

We first describe in Section 6.1 the prototype we have
developed to implement the MOSES methodology and
then present the results of experiments conducted to
assess its effectiveness. The purpose of this evaluation
is twofold. First, we analyze in Sections 6.2 and 6.3
the performance impact of some overheads introduced
by our adaptation framework. Specifically, we study
the computational cost of the optimal adaptation policy
carried out by the Plan macro-component, and compare
it with alternative approaches in literature. Furthermore,
we analyze the overhead for the runtime binding carried
out by the Execute macro-component. Then, we provide
in Section 6.4 an overall evaluation which involves all
the MOSES macro-components to illustrate the dynamic
behavior of the MOSES adaptation policy.

6.1 MOSES Prototype

The MOSES prototype has been designed following the
high-level architecture shown in Fig. 5. Being a MOSES
goal the capability to sustain a high traffic of requests,
we have paid attention to design the prototype so as not
to prejudice the performance of the managed composite
services. In this section, we review the main features of
the prototype; its detailed description and some prelim-
inary experiments with a scalability focus are in [7].



13

The MOSES prototype exploits the rich capabilities
offered by the Java Business Integration (JBI) imple-
mentation called OpenESB3 and the relational database
MySQL, which both provide interesting features to en-
hance the scalability and reliability of complex systems.
JBI defines a messaging-based pluggable architecture
and its major goal is to provide an enabling framework
that facilitates the dynamic composition and deployment
of loosely coupled participating applications and service-
oriented integration components. The key components
of the JBI environment are the Service Engines (SEs),
that enable pluggable business logic, the Binding Com-
ponents (BCs), that enable pluggable external connectiv-
ity, and the Normalized Message Router (NMR), which
directs normalized messages from source to destination
components according to specified policies. Figure 8
illustrates the OpenESB-based architecture of MOSES.

Each MOSES component is executed by one Service
Engine, that can be either Sun BPEL Service Engine
for the business process logic, or J2EE Engine for the
logic of all the other MOSES components. The resulting
prototype has a good deployment flexibility, because
each component can be accessed either as standard Web
service or as EJB module through the NMR. However, to
increase the prototype performance, we have exploited
the NMR presence for all the inter-module commu-
nications, so that message exchanges are “in-process”
and avoid to pass through the network protocol stack,
as it would be for SOAP-based communications. With
regard to the MOSES storage layer, we have relied on
the relational database MySQL, which provides trans-
actional features through the InnoDB storage engine
and supports clustering and replication. However, to
free the MOSES future developers from knowing the
storage layer internals, we have developed a data access
library, named MOSES Data Access Library (MDAL),
that completely hides the data backend. This library
currently implements a specific logic for MySQL, but its
interface can be enhanced with other logics.

Fig. 8. MOSES OpenESB-based architecture.

3. OpenESB is a stable open source JBI implementation, developed
by under the direction of Sun Microsystems.

6.1.1 MOSES Overheads

The runtime adaptation management introduces in
MOSES different types of overheads, that may affect
the response time of the composite service and can be
classified according to the MOSES macro-components:
(1) overhead due to the Plan macro-component (i.e.,
the Optimization Engine); (2) overhead of the Execution
macro-component (i.e., the Adaptation Manager) due to
the runtime binding of the task endpoints to concrete
implementations; (3) overhead due to the Monitor and
Analyze macro-components.

For the first type of overhead, we observe that the
Optimization Engine calculates a new adaptation policy
asynchronously with respect to the service execution
flow, while incoming service requests are served by
the Adaptation Manager according to the previously
calculated policy. Only when the new adaptation policy
is stored in the database, the Adaptation Manager begins
to use it. Hence, the Optimization Engine only interferes
with those requests that are being served while the new
solution of the optimization problem has to be stored.
However, the time taken to calculate a new adaptation
policy affects the MOSES ability to promptly react to
changes in the environmental conditions. Therefore, in
Section 6.2 we assess the policy computational cost
for increasing instances of the adaptation model and
demonstrate that the optimization problem formulation
as LP helps considerably in terms of load scalability with
respect to other approaches in literature.

The second kind of overhead affects each request to
the composite service as many times as the number of
invoke activities executed in the BPEL process. For
every invocation of an abstract task, the Adaptation
Manager, which is stateless, retrieves the current adap-
tation policy kept in the storage layer and, according to
it, determines the coordination pattern to be used and
the actual operation(s) to implement the abstract task, as
presented in Section 4.1. We will measure in Section 6.2
the overhead introduced by the Adaptation Manager to
execute the runtime binding.

Finally, for the third kind of overhead, we should
distinguish between Monitor and Analyze macro-
components impact. We point out that only Monitor
affects the overall service time perceived by a user, while
Analyze does not affect it, since this function is executed
asynchronously with respect to the business process. The
most time consuming and frequent monitoring activity
is that performed with respect to the SLA parameters
offered by the operations. In this case, the monitoring
overhead is about one millisecond for each invoke
activity, as it only involves inserting the operation re-
sponse time in a table of the MOSES database: for
each operation invocation, MOSES gets the timestamp
before and after the invocation itself, and then stores the
observed response time, together with a flag reporting
whether the operation execution failed. Such values are
asynchronously read by the QoS Monitor in the Analyze
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macro-component, that runs on a different machine with
respect to that assigned to the BPEL execution to not
interfere with the Execution macro-component. The QoS
Monitor is invoked at a fixed, configurable frequency
and its task is to analyze stored monitoring data in
order to find out whether some SLA has been violated.
It performs two steps: (i) for each invoked operation,
it computes statistics like average response time and
standard deviation, (ii) it compares computed statistics
with SLA parameters and, in case of violation, it issues
a call to the Optimization Engine.

6.1.2 Testing Environment
The testing environment consists of 3 Intel Xeon quad-
core servers (2 Ghz/core) with 8 GB RAM each (nodes
1, 2, and 3), and 1 KVM virtual machine with 1 CPU
and 1 GB RAM (node 4); a Gb Ethernet connects all
the machines. The deployment schema of the MOSES
prototype is as follows: node 1 hosted all the MOSES
modules in the Execute macro-component, node 2 the
data backend together with the invoked operations, and
node 3 the modules in the Monitor+Analyze and Plan
macro-components. Node 4 hosted the workload gener-
ator, which is different according to the experiment goal.

6.2 Adaptation Policy Computational Cost

In this section we experimentally evaluate the adaptation
policy computational cost and compare it with alterna-
tive approaches in the literature.

6.2.1 Computational Cost
We implemented the optimization problem in
MATLAB R©. To assess the algorithm computational cost,
we executed the algorithm on 2.00GHz Intel(R) Xeon(R)
CPU E5504 quad-core with 8GB RAM on randomly
generated problem instances and measured the solution
execution time. The results are reported in Figs. 9-10 for
different values of number of composite service tasks
m, number of service classes |K|, number of operations
implementing a task ni, and different maximum degree
of redundancy a, p. For the sake of simplicity, and
without loss of generality, in the following we consider
only the par or pattern as redundancy pattern for the
analysis of the computational complexity.

In Fig. 9 we plot the execution time vs the number of
service tasks m for different level of par or redundancy:
p = 0, no redundancy, i.e., service selection only, p = 2,
at most two concrete services using the par or pattern,
and p = 3, at most three concrete services using the
par or pattern and for different numbers of available
operations implementing a given task ni (ni = 10, 20
and 50). In these set of experiments, we consider only
one class of service, i.e., |K| = 1. From the plots, we
can observe that for fixed p and ni, the execution time
grows almost linearly with the number of tasks m (about
one order of magnitude increase of the execution time
for one order of magnitude increase in the number of

tasks). At closer inspection we verified this holds true for
execution times below one second; for larger values the
execution time is proportional to m3 which is consistent
with the the fact that the problem size n grows linearly
with m (and |K|) and the per iteration cost of interior
points methods is O(n3). We will return to this later.

By comparing the different plots we note that, as
expected, the execution time is greatly affected by the
absence/presence of redundancy patterns and the num-
ber of available implementations: without redundancy
(Fig. 9(a)), the execution time is always below 1 second;
if we consider redundancy with the par or pattern with
at most two services (Fig. 9(b)), the execution time
increases up to few seconds for the larger instances;
by increasing the maximum number of redundant op-
erations to three (Fig. 9(c)), the execution time grows
significantly up to 5 minutes for large values of ni. This
behavior can be explained by observing that the use of
the redundancy patterns, coupled with a high number
of concrete operations, yields a large number of possible
implementations and thus a large number of variables
since n is proportional to np

i : in the range of values
considered, while the smallest problem instance has only
100 variables, the largest one grows up to 2,087,500. This
has, of course, a significant impact on the problem execu-
tion time. Nevertheless, the complexity increase caused
by the exploitation of redundancy patterns should be
weighted against the significant increase in reliability of
the computed solution, as shown in Section 6.4.

In Fig. 10 we vary the number of service classes
|K| and study the impact of |K| on execution time for
different values of ni and maximal redundancy level
p. The number of tasks is again fixed to m = 50. Not
surprisingly, the same remarks above on the influence
of m hold true for the number of service classes: for
fixed p and ni, the execution time grows almost linearly
with |K| for smaller instances and proportionally to |K|3

otherwise. We observe that this behaviour is consistent
with the O(n3) iteration cost and O(n

3
2 log n

ǫ
) worst

case iteration complexity of interior points methods.
Indeed, in our experiments we observed a relatively low
number of iterations for convergence, which grew only
slightly from about 10 to 100 (hence much less than the
O(n

3
2 log n

ǫ
), the worst iteration cost for the Mehrotra

algorithm) which explains the O(n3) overall cost.
We remark that since the optimization problem is

solved asynchronously with respect to MOSES opera-
tions, this large value does not directly impact on the
broker responsiveness to user requests; it only affects the
time it takes to update the adaptation policy. In other
words, it only affects the interval of time during which,
while a new solution is being computed, the broker uses
the old, sub-optimal policy for the ongoing requests.

6.2.2 Comparison with Other Approaches
In this section we compare the computational complexity
of the MOSES optimization problem with the complex-
ity of other frameworks proposed in the literature for
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Fig. 9. Optimization problem execution time for different values of maximal redundancy: (a) no redundancy; (b) at
most two concrete services using the par or pattern and (c) at most three concrete services using the par or pattern.
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Fig. 10. Optimization problem execution time as function
of the number of service classes.

runtime adaptation of SOA systems. We stress that the
goal of this comparison is to show that our approach
takes comparable or even smaller time to calculate an
adaptation plan, and hence is at least as scalable as other
approaches. As such, the following results should not be
regarded as a comparison of the relative quality and/or
effectiveness of the different approaches, which are not
directly comparable because they differ in terms of QoS
metrics, QoS model and performance goals.

For comparison we rely on published performance
data. We refer to data recently published in [4] that,
analogously to our approach, proposes a per-flow runtime
adaptation framework for SOA systems. In [4], service
selection takes the form of a constrained non-linear
optimization problem, where non-linearities arise from:
1) the use of an explicit expression of the response
time of a concrete service as function of the service
load using a M/G/1 model; 2) the use of reputation -
defined as the probability of not violating a threshold
on the response time - as a QoS index (see [4] for
details). The solution of the non-linear problem in [4]
is computed through SNOPT, a commercial solver for
non linear programming [23], which uses Sequential
Quadratic Programming (SPT) algorithm.

For comparison purpose, we considered the same set
of system parameters used in [4] (Tables 5 and 6 in
[4]) and ran our experiments using randomly generated
problem instances on an equivalent physical machine.
Table 5 shows the average execution time in seconds of

TABLE 5
Performance comparison with the per-flow approach of

[4] and per-request approaches of [5], [2] (time
measured in seconds).

m ni MOSES per-flow [4] per-request [5], [2]

100 10 0.11 8.10 0.17
100 20 0.21 9.54 0.63
100 25 0.27 9.98 0.58
100 50 0.58 14.30 0.29

1000 10 1.40 19.60 2.10
1000 20 3.03 144.30 5.38
1000 25 4.07 149.60 4.54
1000 50 8.64 451.30 19.88
5000 10 11.20 444.90 4.54
5000 20 24.55 1000.05 35.06

10000 10 15.64 970.15 113.92
10 100 0.13 7.90 0.027
10 200 0.25 9.61 0.037
10 300 0.44 9.83 0.053
10 400 0.62 10.80 0.043
10 500 0.83 13.98 0.067
10 600 0.92 15.00 0.121
10 700 1.10 17.50 0.097
10 800 1.45 17.60 0.0186
10 900 1.68 19.80 0.112
10 1000 1.87 20.50 0.170
20 500 1.78 19.30 0.189
40 500 4.47 141.40 0.432
50 500 7.54 147.30 0.560
100 500 19.22 448.70 1.518

the optimization problems in the two approaches over
randomly generated problem instances. In all experi-
ments |K| = 1. From the table, we can observe that the
MOSES Optimization Engine is from one to two orders
of magnitude faster over the large set of parameters.
This directly descends from the adoption of a linear
programming model as optimization problem, while
in [4] service selection takes the form of a constrained
non-linear optimization problem.

A direct comparison with data concerning other ap-
proaches is more problematic, as they consider per-
request adaptation. Following [4], we compare our ap-
proach with the per-request approaches presented in [5],
[2] which are among the most representative contribu-
tions in the literature. The data, also shown in Table 5, are
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taken from [4] and have been obtained on an equivalent
machine, according to CINT and SpecCPU2006 bench-
marks (lines (m,ni) = (100, 10)− (10000, 10) report val-
ues from [5], while the rest report values from [2]). The
results show that MOSES adaptation policy has execu-
tion times comparable to those in [5] and about one order
of magnitude larger than those in [2]. We can argue that
in a lightly loaded and/or small scale system, it may be
effective to address the adaptation to each single request,
independently of other concurrent requests, to customize
the system with respect to that single request. However,
in a large scale system subject to a quite sustained flow
of requests, performing a per-request rather than a per-
flow adaptation could cause an excessive computational
load4. In this kind of scenarios, per-flow adaptation is
likely to be more effective, even if it loses the potentially
finer customization features of per-request adaptation.
Moreover, per-request adaptation could also incur in
stability and management problems, since the “local”
adaptation actions could conflict with adaptation actions
independently determined for other concurrent requests.

6.3 Runtime Binding

We now move on to measure the overhead introduced by
the Adaptation Manager to perform the runtime binding.
We point out that this kind of overhead is present in
every system that provides runtime binding capabilities
as MOSES does, irrespectively of the methodology used
to determine the adaptation policy.

We have performed a stress test of the MOSES pro-
totype under an open system model, where the re-
quests to the composite service have been generated
at an increasing rate through the httperf tool [28].
The overall experiment consists of 120 runs, each one
lasting 300 seconds during which httperf generates
requests to the composite service at a constant rate.
The adaptation policy is determined at the beginning
of each run and is then used for the entire duration of
the run without being recalculated, because the goal of
this experiment is to measure the additional overhead
the runtime binding adds to a plain BPEL engine. The
main performance metric we collected for each run is
the mean response time, i.e., the time spent on average
for the entire request-response cycle.

For increasing values of the request arrival rate to
the composite service, Fig. 11 compares the response
time achieved by MOSES, which executes the runtime
binding according to the adaptation directives, to that
obtained by the standard GlassFish ESB with Sun BPEL
Engine, which only provides the composite service ex-
ecution with a static binding to a given operation. As
expected, MOSES is able to sustain lower load levels
than GlassFish ESB before reaching the saturation point,
because of the overhead introduced by the Adaptation

4. The Amazon e-commerce platform [21] is an example of service-
based system subject to tens of millions requests. Adapting such a
system according to the per-request approach would be hardly feasible.
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Fig. 11. MOSES response time.

Manager for each abstract task. Until the request arrival
rate does not reach the MOSES saturation point (around
80 req/sec), the MOSES response time is on average
74% higher than that provided by GlassFish ESB (the
percentage increase ranges from a minimum of 13% to a
maximum of 127%). Higher request rates can be tackled
by MOSES in a scalable way by replicating the system
components [7]. We found that by organizing the MOSES
components into clusters and replicating the clusters, we
are able to minimize the network overheads for inter-
module communications and storage access so that the
distributed version of MOSES obtains a nearly linear
performance improvement according to the number of
installed GlassFish instances.

In the experiments presented above, the composite
service workflow corresponds to that shown in Fig. 4. In
general, we observe that the runtime binding overhead is
related to the size of the managed composite service. In
case of static binding, the binding execution complexity
depends only on the number of abstract tasks, i.e., O(m).
In case of MOSES runtime binding, for each invoked ab-
stract task Si the Adaptation Manager needs to retrieve
from the database the specific records of the table that
store the current adaptation policy x

k
i . Since B-trees are

commonly used in databases, the time complexity for
searching the implementation sets is logarithmic in the
number of the table entries. Therefore, the overall execu-
tion complexity in MOSES is O(m log(m|K|maxi |ℑi|)),
where the logarithmic factor is the overhead introduced
by the Adaptation Manager. For space reasons, we do
not report the experimental results that confirm this
analysis.

6.4 MOSES-based Adaptation

We now consider all the MOSES macro-components
working together and validate the effectiveness of our
framework by applying it to the support of a QoS-aware
composite service.
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6.4.1 Experimental Scenario

To issue requests to the composite service managed by
MOSES and to mimic the behavior of users that establish
SLAs before accessing the service, we have developed
a workload generator. It is based on an open system
model, where users requesting a given service class
k ∈ K offered by MOSES arrive at mean user inter-arrival
rate Λk. Each class k user u is characterized by its SLA
parameters defined in Section 3.3 and by the contract du-
ration tku. Each incoming user is subject to an admission
control, carried out by the SLA Manager as follows. The
user arrival rate λk

u is added to the aggregate flow Lk

of class k requests currently served by MOSES, and the
so obtained new instance of the optimization model is
solved by the Optimization Engine. If a solution exists,
the user is admitted and starts generating requests to
the composite service according to the rate λk

u until its
contract ends. Otherwise, its SLA request is rejected,
because MOSES does not hold sufficient resources to
manage it and the already admitted users with their
SLAs, and the user terminates.

Differently from traditional Web workload, SOA
workload characterization has been not deeply investi-
gated up to now (some preliminary results can be found
in [46]). Therefore, in our workload model we assume
exponential distributions of parameters Λk and 1/tk for
the user inter-arrival time and contract duration, re-
spectively. We also assume that the request inter-arrival
rate and the operations service time follow a Gaussian
distribution, where mk and σk are the parameters of the
former, and rij and rij/12 are the parameters of the latter.

The workload generator has been implemented in C
language using the Pthreads library. Multiple indepen-
dent random number streams have been used for each
stochastic component of the workload model. Each ex-
periment lasted about 5 hours and involved a minimum
of 77,000 completed requests to the composite service;
for each reported mean value the 95% confidence inter-
val has been obtained with a maximum relative error in
the mean value less than 0.01. The testing environment
consists of 4 machines, as described in Section 6.1.2.
The invoked operations hosted on node 2 are simple
stubs with no real internal logic; however, their extra-
functional behavior (i.e., response time, reliability, and
cost) conforms to their SLA.

To illustrate the dynamic behavior of the MOSES
adaptation policy, we consider again the simple abstract
workflow of Fig. 4. For the sake of simplicity we assume
that two candidate operations (with their respective
SLAs) have been identified for each task, except for task
S2 for which four operations have been identified. The
respective SLAs differ in terms of cost, reliability, and
response time (being the latter measured in seconds).
Table 6 summarizes the SLA parameters 〈rij , cij , dij〉 for
each operation opij . They have been chosen so that for
task Si, operation opi1 represents the best implementa-
tion, which at a higher cost guarantees higher reliability

TABLE 6
Operation SLA parameters.

Oper. cij dij rij

op11 6 0.995 2
op12 3 0.99 4

op21 4.5 0.99 1
op22 4 0.99 2
op23 2 0.95 4
op24 1 0.95 5

op31 2 0.995 1

Oper. cij dij rij

op32 1.8 0.995 2

op41 1 0.995 0.5
op42 0.8 0.99 1

op51 2 0.99 2
op52 1.4 0.95 4

op61 0.5 0.99 1.8
op62 0.4 0.95 4

and lower response time with respect to operation opij
for j ≥ 2, which costs less but has lower reliability
and higher response time. For all operations, Lij = 10
invocations per second.

On the user side, we assume a scenario with four
classes of the composite service managed by MOSES.
The SLAs negotiated by the users are characterized by a
wide range of QoS requirements as listed in Table 7, with
users in service class 1 having the most stringent require-
ments, D1

min = 0.95 and R1
max = 7.1 and users in service

class 4 the least stringent requirements D4
min = 0.85 and

R4
max = 18.1. The SLA cost parameters for these classes

have been set accordingly, where service class 1 has the
highest cost per request, C1 = 25, while service class 4
only C4 = 12. The rightmost column of Table 7 reports
the values for Lk, that is the aggregate rate of class-k
requests to the composite service. The usage profile of
the different user service classes is given by the following
values for the expected number of service invocations:
V k
1 = V k

2 = V k
3 = 1.5, V k

4 = 1, k ∈ K ; V k
5 = 0.7,

V k
6 = 0.3, k ∈ {1, 3, 4}; V 2

5 = V 2
6 = 0.5. In other words, all

classes have the same usage profile except for users in
service class 2, who invoke the tasks S5 and S6 with
different intensity. The values of the parameters that
characterize the user workload model are tk = 100 and
(mk, σk) = (3, 1), ∀k ∈ K .

TABLE 7
Class SLA parameters.

Class k Ck Dk
min Rk

max Lk

1 25 0.95 7.1 1.5
2 18 0.9 11.1 1
3 15 0.9 15.1 3
4 12 0.85 18.1 1

We have estimated the MOSES overhead for each
served request, represented by Tovd in Equation 15, to
be around 100 msec in the testing environment used
for the experiments. This overhead includes 50 msec
due to the Adaptation Manager and the BPEL process
execution (see Fig. 11, when the request arrival rate
varies between 2 and 12 req/sec due to the considered
setting of our workload parameters), and 50 msec for
the begin/commit transaction overhead due to MySQL.
For the experiments presented in the next section, the
changes detected by MOSES and that trigger the Opti-
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mization Engine include only the arrival/departure of
users, that cause a variation of the load and QoS re-
quirements addressed to the composite service. We recall
that the MOSES prototype is able to capture a variety of
changes in its environment (listed in Section 3.4) and
to trigger consequently the Optimization Engine for a
new adaptation policy. For space reasons, in the experi-
mental results we consider only one type of adaptation
events. Nevertheless, due to the setting of our workload
parameters, the corresponding mean adaptation rate is
on average 0.02 req/sec (corresponding to the mean
interarrival rate of new contract requests), that is the
solution of a new instance of the optimization problem
is on average calculated every 1.2 minutes.

6.4.2 Runtime Adaptation Results
We illustrate the result of the adaptation directives is-
sued by MOSES under two different scenarios of the
broker goal: 1) the maximization of the average relia-
bility, i.e., wd=1; 2) the minimization of the average cost,
i.e., wc=1.
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Fig. 12. Scenario 1 (wd = 1): reliability over time.

In both sets of experiments, we analyze the effective-
ness of considering redundancy patterns for the tasks
implementation. To this end, we compare the perfor-
mance of a broker that supports all the three patterns
(par or, alt, and single) with that of a broker that supports
only the single pattern. In the first case (denoted by
with-Redundancy), the formulation of the optimization
problem is in Section 5; in the latter case (denoted
by w/o-Redundancy), we solved the same optimization
problem with ℑi replaced by ℑi(0, 0). The results are
summarized in Table 8, which shows for each class the
measured values of the SLA parameters for the with-
and w/o-Redundancy approaches in the two scenarios,
along with the 95% confidence interval.

In the first scenario, the broker goal is to maximize the
users’ reliability. In this setting, the solution provided by
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Fig. 13. Scenario 1 (wd = 1): response time over time.

the Optimization Engine is bounded by the maximum
cost the broker is willing to pay for each user (which
defines its profit margin). Only for the w/o-Redundancy
approach, the solution is also bounded by the single
operations available to implement the services. Both
approaches succeed in respecting the SLA values (see
left side of Table 8). We observe that with respect to
the w/o-Redundancy approach, the with-Redundancy
approach allows achieving a higher level of satisfaction
of the reliability parameter (the mean values for the four
classes range from 0.9983 to 0.9991) at a higher cost,
whose mean value is saturated to the maximum agreed
in the SLA (see Table 7). This is particularly evident for
class 1, which requires the most stringent performance
requirements at the highest cost (the mean cost ranges
from 21.149 for the w/o-Redundancy approach to 25.051
for the with-Redundancy approach, being 25 the cost
settled in the SLA). The improvement of the reliability
is achieved thanks to the additional patterns par or and
alt exploited by the with-Redundancy approach.

To compare in more detail the w/o- and with-
Redundancy approaches with respect to the reliability
QoS parameter, Fig. 12 shows how in the first scenario
the reliability of the composite service varies over time
for the four classes. The horizontal line is the agreed reli-
ability, as reported in Table 7. We observe that the w/o-
Redundancy approach leads to some violations of the
agreed reliability, while the with-Redundancy approach
allows the broker to offer always a reliability much better
than that agreed.

The exploitation of the redundancy coordination pat-
terns improves the reliability but it can determine an
increase in the response time when the alt pattern is
selected. Figure 13 shows how in the first scenario the
response time of the composite service varies over time
for the four classes, being the horizontal lines the agreed
response times, as reported in Table 7. We observe that
the with-Redundancy approach leads to a response time
that is slightly higher than that achieved by the w/o-
Redundancy approach. However, for classes from 2 to
4 the response time is always much lower than that
agreed, while for class 1, which requires the most strin-
gent performance requirements, it reaches the maximum
agreed in the SLA.
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TABLE 8
Measured values for SLA parameters (mean and 95% confidence interval).

Scenario 1 (wd=1) - w/o-Redundancy Scenario 2 (wc=1) - w/o-Redundancy
Ck Dk Rk Ck Dk Rk

k = 1 21.149 ± 0.148 0.955± 0.0028 6.934± 0.037 20.973 ± 0.172 0.9539± 0.0033 7.007 ± 0.044
k = 2 18.173 ± 0.155 0.9514 ± 0.0035 9.741± 0.075 15.866 ± 0.117 0.934 ± 0.0036 10.899± 0.079
k = 3 14.808 ± 0.072 0.9339 ± 0.0024 12.194 ± 0.058 12.255 ± 0.062 0.9032 ± 0.003 14.491± 0.076
k = 4 11.744 ± 0.093 0.9017 ± 0.0049 14.936 ± 0.122 10.659± 0.09 0.8623± 0.0058 17.651± 0.135

Scenario 1 (wd=1) - with-Redundancy Scenario 2 (wc=1) - with-Redundancy
Ck Dk Rk Ck Dk Rk

k = 1 25.051 ± 0.184 0.9991 ± 0.0004 7.182± 0.045 20.843 ± 0.172 0.9555± 0.0033 7.135 ± 0.051
k = 2 18.427 ± 0.137 0.9991 ± 0.0004 9.509± 0.068 15.891 ± 0.141 0.9308± 0.0044 11.023 ± 0.1
k = 3 14.97± 0.074 0.9987 ± 0.0003 12.641 ± 0.064 12.144 ± 0.053 0.9024± 0.0026 14.747± 0.066
k = 4 11.953 ± 0.087 0.9983 ± 0.0004 16.001 ± 0.121 10.426 ± 0.091 0.8625± 0.0062 17.76 ± 0.146

We now turn our attention to the second scenario,
where the broker goal is to minimize the expected cost
(which in turn maximizes the broker profit). In this
setting, the broker has no incentive to guarantee to the
users more than the minimum required. As a result, the
solution provided by the Optimization Engine guaran-
tees only the minimum required level of reliability (see
right side of Table 8), with increasing costs for increasing
reliability levels.

Let us now consider how in the second scenario the
reliability of the composite service varies over time, as
shown in Fig. 14. As expected, we find that the reliability
level achieved with the with-Redundancy approach is
lower with respect to the first scenario. The motivation
is that, when the broker minimizes the cost of the com-
posite service, the solution of the optimization problem
exploits less frequently the redundancy coordination
patterns par or and alt as they may cost more than the
single pattern.
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Fig. 14. Scenario 2 (wc = 1): reliability over time.

7 RELATED WORK

7.1 Architectures for Self-adaptation

It has been widely recognized that the architecture of
self-adaptive software systems should include one or
more control loops to perform self-adaptation tasks [17].
A notable example of a general approach based on
this idea is the autonomic computing framework [29].
As evidenced in Section 3, MOSES can be seen as an
instantiation for the SOA environment of an autonomic
system, focused on the fulfillment of QoS requirements.

A reference model for the architecture of a self-
adaptive software system has been presented in [33].
This paper suggests to architect the system along three
different layers, that interact with each other by report-
ing status information to the above layer and issuing
adaptation directives to the layer below. The bottom
layer (component control) is concerned with adaptation
at the level of single components (i.e., services in the
SOA domain). The middle layer (change management)
reactively uses a pre-specified set of plans to adapt
the system consisting of components at the lower layer.
When these plans are no longer able to meet the system
goals, or when new goals are introduced, the upper layer
(goal management) determines new adaptation plans.

From the viewpoint of this three-layer reference
model, the bottom layer of the MOSES framework in-
cludes the set of concrete services used in the service
composition, plus the QoS Monitor, Service Manager,
and WS Monitor components. Indeed, each concrete
service possibly implements its own adaptation actions
to fulfill the QoS goals it has negotiated. The QoS
Monitor, Service Manager, and WS Monitor components
collect and report to the above middle layer status infor-
mation (reliability, delivered QoS) about these services.
The middle layer of MOSES includes those components
(Adaptation Manager and Optimization Engine) that use
the status information from the layer below to determine
a new adaptation policy to be used for the composite
service implementation. In the MOSES framework, this
layer bases its actions on a pre-defined set of candi-
date concrete services and a given utility function to
be optimized. Both can be changed by the upper goal
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management layer, by modifying the information stored
in the MOSES Knowledge component.

Finally, the whole system consisting of MOSES itself
plus the composite service it manages can be considered
as a single concrete service offered to prospective users,
thus appearing to those users as a bottom layer compo-
nent with self-adaptation capabilities, that can be used
as a basic building block of a larger self-adaptive system.

7.2 Methodologies for QoS Driven Adaptation

According to the characterization of the problem space
given in Section 2.1, we discuss here how the different
questions have been addressed by the existing literature,
evidencing also some uncovered issues.

Why. Most of the existing approaches addressing the
fulfillment of QoS requirements concern the average val-
ues of QoS attributes. Specifically, some approaches deal
with a single quality attribute (e.g., response time in [35],
reliability in [22], [56], and cost in [12]), while others are
able to tackle multiple quality attributes defining simple
aggregate QoS functions (e.g., [5], [11], [42], [39], [62]).
A potential limitation of these approaches lies in the fact
that user perceived QoS is often better expressed in terms
of bounds on the percentile of the QoS metrics, as also
reflected in some commercial practices5. To the best of
our knowledge, only the approaches proposed in [24],
[60] offer guarantees on the percentile of the response
time. The results in [60], though, are limited to sequential
patterns and only apply to the single request scenario,
while [24] proposes a heuristic for request scheduling in
a single database server which is based on the prediction
of execution time.

A related basic problem to be solved when dealing
with requirements about QoS attributes of SOA systems
is how to determine their value for a composite service,
given the QoS delivered by its component services. Some
papers have focused on this specific issue [15], [35], [53],
while others deal with it as a step within the more
general problem of QoS based model-driven runtime
adaptation of SOA systems. MOSES currently deals with
requirements concerning the average value of multiple
QoS attributes.

When. Existing approaches can be placed between
the link/load time and run time stages [5], [11], [42],
[39], [62], [41], as expected in the SOA domain. These
approaches basically adopt a reactive mode to deal with
adaptation. A topic that deserves more investigation
concerns proactive adaptation. A paper considering this
issue is [27]. MOSES currently adopts a reactive mode.

Where-What. Some works consider both services and
workflow as the overall composition level where adapta-
tion takes place. For example, the SOA environment
redundancy is exploited in [16], [26], [59] to identify
multiple diverse workflows that can be used under

5. The Amazon SOA-based e-commerce platform [21] includes SLAs
concerning the 99.9 percentile of the response time under a given peak
load of service requests per second.

different operating conditions to achieve the same goal.
A different approach, called SASSY and proposed in [41],
generates service-oriented architectures based on quality
requirements. Based on an initial model of the required
service types and their communication, SASSY generates
an optimal architecture by selecting the best services
and potentially adding patterns such as replication or
load balancing, so allowing also some kind of workflow
restructuring. However, most of the proposed method-
ologies address the problem working at the services only
composition level, using different mechanisms to deter-
mine the concrete implementation to be bound to each
workflow task (as discussed below for the how question).

From the viewpoint of the considered number of sys-
tems and granularity level at which adaptation is per-
formed (adaptation scope dimension), most of the pro-
posed approaches focus on a scenario concerning a single
system and a single request addressed to that system, as
already pointed out in Section 2.2 ([5], [11], [16], [25],
[26], [40], [59], [61], [62]). Given this common reference
scenario, these papers propose different methodologies
to determine the most suitable adaptation action. Some
of them propose heuristics (e.g., [8], [25] or genetic
algorithms in [11]) to determine the adaptation actions.
Others propose exact algorithms to this end: Yu and
Lin [61] formulate a multi-dimension multi-choice 0-1
knapsack problem as well as a multi-constraint optimal
path problem; Zeng et al. [62] present a global planning
approach to select an optimal execution plan by means
of integer programming; in [5], [25], [52] the adaptation
actions are selected through mixed integer program-
ming; while [40] combines optimization techniques and
heuristic approaches.

MOSES too refers to a single SOA system to be man-
aged, but focuses on per-flow, rather than on per-request
adaptation, and determines the adaptation actions to be
performed by solving a linear programming model.

How. Several papers have focused on dynamic service
selection, such as [5], [11], [42], [39], [40], [41], [62]. Others
have instead considered the dynamic coordination pattern
selection. For example, [25] provides a methodology to
select different redundancy schemes to improve the re-
liability experienced by a single request addressed to
a composite service. [58] proposes a flexible heuristic
provisioning strategy that allocates multiple services for
unreliable tasks in order to proactively deal with failures.
Finally, [34] presents an example of adaptation based
on service tuning, using for this purpose a management
interface implemented according to the WSDM standard.

In this respect, the MOSES aim is to provide a unified
framework where service selection is integrated with
coordination pattern selection, to achieve a greater flex-
ibility in the adaptation of a SOA system.

Who. Existing approaches mainly focus on systems
managed by a single authority. At present MOSES is
defined for a single system managed by a single au-
thority, but the approach can be extended in a quite
straightforward way to multiple services managed by
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single authority, and to multiple services managed by
multiple cooperating authorities. Runtime adaptation
issues in a scenario where multiple services managed by
multiple non cooperating authorities compete for shared
resource are instead, to the best of our knowledge, still
largely unexplored, even if this scenario seems to be
quite likely for the SOA domain.

Finally, an important aspect in model-driven adapta-
tion of SOA systems concerns the assumptions underly-
ing the proposed methodologies. In this respect, even
if not always explicitly stated, most of the proposed
approaches share a common set of assumptions. In
particular, they include: (i) synchronous invocation of
services, and (ii) stateless services. The former assump-
tion is relevant for the estimation of the overall response
time as (possibly weighted) sum of the response time of
the invoked operations. The latter provides the ground
to freely (re-)bind different functionally equivalent op-
erations to an abstract task, and to coordinate them
by redundancy patterns. A relaxation of the stateless
assumption can be found in [5], where the proposed
model allows to specify that different operations be-
longing to the same concrete services must be bound to
corresponding abstract tasks with an “all or none” logic.

MOSES too relies on the synchronous invocation as-
sumption to calculate the overall response time. On the
other hand, MOSES is able to deal with both stateless
and stateful tasks, but it limits the use of the alt or par or
patterns to stateless tasks, as described in Section 3.2.1.

8 LESSONS LEARNED AND CONCLUSIONS

In this paper we presented the MOSES framework for
runtime QoS-driven adaptation of SOA systems. The
basic guideline we have followed in its definition has
been to devise an adaptation methodology that is flexible,
to cope with QoS requirements that may come from
different classes of users, and (as much as possible)
efficient, to make it suitable for runtime operations. To
achieve flexibility, we have presented a novel approach
which allows us to integrate within our framework
different adaptation mechanisms (service selection and
coordination pattern selection) that can be simultane-
ously used to serve the requests of different users, or
even different requests from the same user. Our results
show that, actually, including both these mechanisms in
the MOSES toolset allows coping with a broader range
of dependability requirements. To achieve efficiency, we
have considered a per-flow granularity which also al-
lowed us to formulate the optimal adaptation problem
as an LP problem. Our experiments have indeed shown
that our approach has comparable or less computational
cost than alternative approaches in the literature. Never-
theless, the inclusion of redundancy patterns can result
in excessive computational costs given the large number
of alternative implementations to consider for larger
problem instances. This suggests to limit the use of these
patterns for a subset of the tasks (e.g., the most critical

ones) or to scenarios where the achievement of a higher
dependability is mandatory.

Because of the distributed nature of the SOA envi-
ronment, the QoS perceived by a user of the compos-
ite service can be affected by the performance of the
networking infrastructure used to access the selected
component services. In the current version of MOSES
this aspect is not explicitly included. A possible way
to manage within the MOSES framework the impact
of networking services on the overall user perceived
QoS could be to include these services in the workflow
that specifies the service composition. This implies that
suitable SLAs should be negotiated and monitored with
the involvement of network providers (as discussed for
example in [57]), and taken into account when determin-
ing the optimal service selection.

We have presented a fully functional prototype which
implements the MOSES framework. The prototype is
presently based on a centralized architecture imple-
menting the whole MAPE control loop, as outlined in
Section 3, which may suffer from scalability issues. To
cope with them, a possible approach is to architect
MOSES as a decentralized system consisting of a set
of federated MOSES brokers, with each one of them
exploiting partially overlapping sets of concrete services.
In this architecture, the brokers coordinate themselves
according to a master-slave scheme, where slave brokers
actually implement only the Monitor and Execute func-
tions of the MAPE loop. The whole loop is implemented
by the master broker, that receives monitored data from
slaves, and uses them to build and solve an overall
optimization problem (through its Optimization Engine
module), that combines together the respective goals
and constraints. The calculated adaptation policy is then
transmitted to slave brokers that implement it through
their respective Adaptation Manager modules. On the
positive side, this master-slave architecture can be easily
implemented, with only minor modifications, from the
current centralized implementation. Indeed, we have
already implemented it on a local scale, as pointed out in
Section 6.3. On the negative side, the master broker could
still represent a bottleneck. Moreover, it appears suitable
for a single organization offering QoS-aware adaptive
services, that need to cope with scalability issues caused
by high volumes of requests. It could be less suitable in
the case of multiple organizations.

A more scalable and decentralized solution would
consist in distributing the whole MAPE loop among
multiple MOSES brokers. Under the hypothesis of feder-
ated cooperating brokers, this would require to devise a
distributed solution of the overall optimization problem.
With respect to the current implementation, this would
require a change in the Optimization Engine algorithm
and implementation. Under the hypothesis of competing
brokers, MOSES should be more deeply restructured.
In this respect, we note that our characterization of
the problem space of self-adaptation for SOA systems
evidences that the case of several self-adaptive SOA
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systems under cooperating or non-cooperating scenarios
is not yet satisfactorily covered by current literature.
Hence, investigating how to cope with these issues is
a timely and promising indication for our future work
on the MOSES framework.

Besides this, there are several other directions along
which we plan to continue our work on the MOSES
framework, as we outline below. A first direction consists
in dealing with requirements concerning higher mo-
ments and percentiles of QoS attributes. In this respect,
a first step towards the inclusion of percentile-based
SLAs in MOSES is presented in [13]. Moreover, we
are investigating how to extend the set of assumptions
under which MOSES currently works. This includes:
relaxing the synchronous invocation assumption; consid-
ering alternative failure models (e.g., Byzantine failures,
which require different kinds of redundancy patterns);
including additional orchestration patterns for service
composition, with respect to those matching the gram-
mar presented in Section 3. A further direction is related
with the assumption, in the current MOSES framework
implementation, of a known pool of candidate con-
crete services, without considering how this pool can
be selected and possibly changed at runtime, and the
relevant SLA parameters dynamically negotiated. This
is a relevant issue, and dealing with it should be one of
the tasks of the upper layer of MOSES, according to the
three-layers model presented in [33].
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