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Abstract— The Content Delivery Networks (CDN) paradigm is
based on the idea to move third-party content closer to the users
transparently. More specifically, content is replicated on servers
closer to the users, and users requests are redirected to the best
replica in a transparent way, so that the user perceives better
content access service. In this paper we address the problem of
dynamic replica placement and user requests redirection jointly.
Our approach accounts for users demand variability and server
constraints, and minimizes the costs paid by a CDN provider
without degrading the quality of the user perceived access service.
A non-linear integer programming formulation is given for the
replica placement and user request redirection problems. The
actual solution is obtained by mapping the non-linear integer
problem into a series of mixed integer linear problems obtained
by linearizing the non-linear constraints of the original problem.
Preliminary numerical results show that the proposed solution
is capable of effectively limiting the percentage of unsatisfied
requests without over-replicating the contents over the CDN
servers.

I. I NTRODUCTION

Content Delivery Networks (CDNs) are one of the answers
to the challenges posed by the remarkable commercial success
of the Internet in the very recent years. Replicating third-party
content on servers closer to the final users, and redirecting
transparently their requests to the “best replica” (e.g., the clos-
est replica in terms of distance, latency, etc.) CDN providers
are able to offer improved content access service.

Solutions for CDN require addressing a number of technical
problems, which include the selection of the kind of content
that should be hosted (if any) at a given CDN server (replica
placement), what is the best replica for a given customer, and
which mechanisms should be used to redirect the user to such
replica.

This paper concerns the joint optimization of replica place-
ment and user request redirection. Our solution is dynamic
in the sense that replicas are added and removed from CDN
servers according to the dynamically changing user request
traffic. The redirection mechanism is also changed accordingly.

Previous solutions have mostly addressed these problems
separately. Of the solutions proposed for replica placement,
most concern the static case. Basically, given the topology of
the network, the set of CDN servers as well as the request traf-
fic pattern, replicas are placed so that some objective function
is optimized while meeting constraints on the system resources
(server storage, server sustainable load, etc.). Typical problem

formulations aim at either maximizing the user perceived
quality given an upper bound on the number of replicas, or
minimizing the cost of the CDN infrastructure while meeting
constraints on the user perceived quality (e.g., latency) [1].

For the static case, simple efficient greedy solutions have
been proposed in [2], [3] and [4]. In [2] Qiu et al. formulate
the static replica placement problem as a minimumK median
problem, in whichK replicas have to be selected so that the
sum of the distances between the users and their best replica
is minimized. A simple greedy heuristic is shown to have
performance within50% of the optimal strategy. An evaluation
of such greedy scheme to assess the impact ofK on the
user satisfaction (closeness to the replica), for different traffic
patterns, is presented in [5]. Qui et al. have also proposed “hot
spot,” a solution for placing replicas on nodes that along with
their neighbors generate the greatest load [2]. In [6] “hot zone”
is presented as an evolution of the “hot spot” algorithm. The
idea is to first identify network regions made of nodes whose
latency to each other is low. Regions are then ranked according
to the content request load that they generate and replicas are
placed in the regions high in the ordering. In [3] and [4] Jamin
et al. and Radoslavov et al. propose fan-out based heuristics
in which replicas are placed at the nodes with the highest fan-
out irrespective of the actual cost function. The rationale is
that such nodes are likely to be in strategic places, closest (on
average) to all other nodes, and therefore suitable for replica
location. In [4] a performance evaluation based on real-world
router-level topologies shows that the fan-out based heuristic
has trends close to the greedy heuristic in terms of the average
client latency.

A major limit of all these solutions is that they neglect
to consider the natural dynamics in the user requests traffic.
When things change that would make a different placement
less costly or more satisfying for the users, the only possible
solution is to re-apply the placement algorithm from scratch.
This approach has a couple of problems. First of all, it may
react slowly to the system changes, so that the new placement
of the replicas is not the best one for the current user request
traffic. Moreover, the replica placement happens every time
from scratch, i.e., without considering where replicas are
currently placed. This could possibly lead to non-negligible
reconfiguration costs.

A few papers (e.g., [7] and [8]) have addressed the problem



of dynamic replica placement. However, the proposed schemes
are embedded in specific architectures for performing requests
redirection and computing the best replicas. No framework is
provided for identifying the optimal strategy, and for quantify-
ing the solutions performance with respect to the optimum. In
RaDar [7] a threshold based heuristic is proposed to replicate,
migrate and delete replicas in response to system dynamics.
The overall proposed solution combines dynamic replica allo-
cation with servers load-aware redirection to the best replica to
achieve low average users latency while empirically balancing
the load among the CDN servers. No limits on the servers stor-
age and on the maximum users latency are explicitly enforced.
In [8] two schemes designed for the Tapestry architecture [9]
are presented. The idea is that upon a content request the
neighborhood of the user access point in the overlay network is
searched. If there is a server hosting a replica of the requested
content within a maximum distance from the user, and such
server is not overloaded, the request will be redirected to this
server (or to the closest server if multiple servers meet such
constraints). Otherwise a new replica is added to meet the
user request. Two variants are introduced depending on the
neighborhood of the overlay network which is searched for
replicas, and on the scheme used to select the best location
for the new replica. Although the ideas presented in the paper
appear promising they are tightly coupled with the Tapestry
architecture, and the approach does not explicitly account for
neither the costs of reconfiguration nor for possible servers
storage limits. Finally, no information is provided in [8] on the
rule to remove replicas, making it hard to compare with our
approach. Recently, the authors have presented a framework
for dynamic replica placement in [10]. By assuming the users
requests dynamics to obey to a Markovian model the problem
of optimal dynamic replica placement has been described as
a semi-Markov decision process accounting for the traffic, the
user level of satisfaction as well as the costs paid to add,
maintain or remove a replica from CDN servers. Although this
model allows us to achieve optimality and provides insights
to the dynamic replica placement problem, it is not scalable.
Moreover, the paper concerns only replica placement, without
addressing user request redirection.

In this paper we address the joint optimization of dynamic
replica placement and users requests redirection to the best
replica. We assume that users access the CDN networks
through one among|VA| access points, requesting access to
one of C possible contents. Replicas of theC contents can
be stored in one or more among a number|VR| ≥ 0 of
CDN servers. The user request satisfaction is modeled by
a 0, 1 variable. A weight is associated to the routes from
a user to a replica. The weight indicates the user perceived
quality of accessing that replica. A user is said to be satisfied
when the weight of the route to the best replica is below a
given thresholddmax. The aim of our model is to limit the
CDN infrastructure cost while guaranteeing that over a given
percentage1− ε of the users (say,99%) are satisfied.

Our scheme relies on the idea of periodically taking deci-
sions on which replicas to add/remove, and on the best replica

to which a given user request should be redirected. The deci-
sion on how the system should evolve is the outcome of a non-
linear integer programming formulation of the problem. The
inputs are the CDN topology, the current replica allocation, the
estimated users requests traffic over the next period of time,
the CDN servers resource constraints (available storage and
maximum load),dmax and ε.

The actual solution is obtained by mapping the non-linear
integer problem into a series of mixed integer linear problems
obtained by linearizing the non-linear constraints of the orig-
inal problem. The series of mixed integer linear problems is
then solved numerically leading to a solution of the replica
placement and user requests redirection problem for the next
time interval. Our solution is proactive in the sense that
it takes into account the user requests dynamics over the
upcoming new time interval (of lengthT ). This is obtained
by using RLS (Recursive Least Square prediction) to design
an adaptive filter. This allows us to estimate, based on current
and past traffic, the future user requests traffic process. Despite
the fact our RLS-prediction is affected by the users traffic
dynamics and by the length of the intervalT (the shorterT
is the more accurate is the estimate), preliminary results show
that the proposed solution is capable of effectively limit the
percentage of unsatisfied requests. This is achieved without
over-replicating the contents over the CDN servers, and hence
with low cost for the CDN infrastructure. In the considered
scenarios the placed replica are used, on average, at around
90% of their maximum load, showing the scheme effectiveness
in placing new replicas only when needed.

The paper is organized as follows. In Section II we introduce
mathematical preliminaries needed for describing our scheme.
In Section III the dynamic replica placement and user requests
redirection problems are described: the system constraints and
costs are introduced and discussed here. Sections IV and V
describe the nonlinear integer programming formulation as
well as the linearization techniques used to obtain solutions on
how the CDN system should evolve. Section VI describes the
results of a preliminary performance evaluation which assesses
the effectiveness of the proposed solution. Finally conclusions
end the paper in Section VII.

II. M ATHEMATICAL PRELIMINARIES

A. Autoregressive Process Prediction

An Autoregressive (AR) processx of orderm is a stationary
Gaussian process which takes the form

x(n) = θ0 + θ1x(n− 1) + . . . + θmx(n−m) + a(n) (1)

whereθ = (θ0, θ1, . . . , θm) is a set of weights anda is a white
noise Gaussian process with zero mean and varianceσ2

a.
Prediction for AR processes is straightforward. The “best”

predictors (in least mean square error sense) of the future
values x(n + 1), x(n + 2), . . . , x(n + L), given the past
x(n), x(n − 1), . . . are obtained by setting to zero the future
values of the white noisea. Thus, the best predictor̂x(n + j)



of x(n + j) can be recursively computed forj = 1, . . . , L, as
follows

x̂(n+j) = θ0+θ1x̂(n+j−1)+θ2x̂(n+j−2)+. . .+θmx̂(n+j−m)
(2)

where we set̂x(k) = x(k) for k ≤ n.
Denotee(l) = x̂(n + l) − x(n + l) the l-ahead forecast

error. e(l) captures howx(n + l) deviates from the predicted
value x̂(n + l). e(l) is normally distributed with zero mean,
and its variance isσ2

e(l) = σ2
a · (

∑l
i=0 ψ2(k)) ≤ σ2

x, where
ψ(.) is the impulse response of the Infinite Impulse Response
filter with parameterθ1. The error variance increases withl
and converges to the variance of the processσ2

x as l grows to
infinity.

It is important to observe that the equations above are
nothing but determining the conditional distribution of the
future values of the processx given knowledge of the past
values. Thus, in the following, to stress that the predicted
values x̂(n + l) and the error varianceσ2

e(l) are the mean
and the variance of the (Gaussian) conditional distribution of
the future values, we will denote them byµ(l) and σ2(l),
respectively. We will also denote as̃x(l) ∼ N (µ(l), σ2(l)) a
Gaussian random variable with meanµ(l) and varianceσ2(l).

B. Recursive Least Square Process Prediction

In this paper we use Recursive Least Square (RLS) based
process prediction. The idea behind the RLS-based prediction
amounts to: 1) regard/model a process as a (time varying
parameter) AR process; 2) use this model to predict future
behavior, and 3) adopt a recursive form for the estimation of
the model parameter to reduce computational complexity.

To model the user request we need to: 1) choose the
model orderm; (2) estimate the unknown parameterθ and
the varianceσ2

a of the white noise. The RLS approach pro-
ceeds recursively as follows. Hereafter, for simplicity, we will
assume the model orderm as given.

Let x(n) = (x(n−1), . . . , x(n−m+1)) be the most recent
m observed values of the process (excluding the current value
x(n)), andθ(n) = (θ1(n), . . . , θm(n)) the current estimate of
θ. The RLS estimation ofθ is then recursively expressed as

k(n) =
λ−1P(n− 1)x(n)

1 + λ−1xT P(n− 1)x(n)
(3)

θ(n) = θ(n− 1) + k(n)(x(n)− θ(n− 1)x(n)) (4)

P = λ−1P(n− 1)− λ−1k(n)xT (n)P(n− 1) (5)

whereλ is a forgetting factor,P(n) denotes the inverse of the
input correlation matrix, andk(n) is a gain vector.

Given θ(n), the estimation of the future values of the
processx(n + 1), x(n + 2), . . ., is carried out as in (2) withθ
replaced byθ(n).

For l = 1, 2, . . ., the estimate the variancêσ2
e(l)(n) of the

error is

σ̂2
e(l)(n) =

l∑

k=0

ψ2(k; n)σ̂2
a(n) (6)

1In other words,ψ(0), ψ(1), . . . can be computed via (1) using the
“impulse” input: a(0) = 1 anda(k) = 0, k > 0.

whereψ(· ; n) is the impulse response of the filterθ(n), and

σ̂2
a(n) =

1
n− 2m− 1

n∑

j=m+1

e2(j)

is the current estimate of the white noise process variance.
As before, we observe that the predicted values and the

error variances characterize the conditional distribution of the
future values of the process. We remark that these conditional
distributions converge to the actual conditional distribution
only in the case of Gaussian processes. In all other case these
are conditional distribution are only approximations.

III. PROBLEM STATEMENT

We model the Internet network topology as a weighted
undirected graphG = {V, E}. The vertex setV is the set
of network nodes, while each edge in the setE represents a
physical network link and is labeled with some kind of additive
metric, e.g. the number of hops between the endpoints. We
identify two subsetsVA and VR of the set of network nodes
V . VA is the set of CDN access nodes where the requests
generated by the users enter the core CDN network.VR is the
set of nodes in the core network where one or more content
replica servers can be placed (called sites in the following).
Figure 1 shows an example with a40 nodes hierarchical transit
stub network topology obtained by running thegt-itm
topology generator [11]. The white circles represent the access
nodes, the gray big circles the sites that can host replicas, and
the small black circles nodes only used for sake of routing.
Thin and thick links reflect the low or high bandwidth of the
links.

We assume thatC content providers exploit the hosting
service of the CDN. Customers entering the CDN through
an access node inVA can therefore issue requests for one of
C sets of contents, and replicas of some of theC contents can
be placed in each site inVR. Requests entering the CDN are
measured in units of aggregate requests. No more thanV MAX

A

units of aggregate requests can be generated by an access node
(to model the limited access link bandwidth). Requests for a
given content are served by a suitable replica. To model user
satisfaction, we assume that user requests cannot be served
by a replica at a distance above a given thresholddmax. We
will denote by R(i) ⊆ VR the set of sites within distance
dmax of an access nodei ∈ VA. Users requests from access
nodei are redirected to one of the replicas inR(i). This can
be accomplished by several means,i.e., anycast. We assume
that each replica can serve up toK units of aggregate request
for that content (replica service capacity limit). No more than
V MAX

R replicas can be hosted at a given site (site resource
limit).

We model the user requests at nodei ∈ VA for contentc ∈
C as a discrete time stochastic processxi,c(n), n = 0, 1, . . ..
We do not make any particular assumption on these processes.
User requests are redirected to available replicas. We denote
by αij,c the fraction of requests for contentc, originating from
nodei and redirected to nodej. Clearly,

∑
j∈R(i) αij,c = 1.



For a sitej ∈ VR, the aggregate demand of contentc is
xj,c(n) =

∑
i∈S(j) αij,cxi,c(n), whereS(j) = {i ∈ VA|j ∈

R(i)} is the set of access nodes which can be served by
replicas in sitej. Denote byrj,c(n) the number of contentc
replicas at nodej at timen. The requests can be fully served
if xj,c(n) ≤ Krj,c(n), i.e., if the aggregate demand does not
exceed the replica capacity for that content; otherwise, users
that were redirected to that replica suffer some level of service
degradation.

We describe a given configuration of requests and replicas
by means of a state vectors = (x, r) with x = (xi,c)i∈VA,c∈C

and r = (rj,c)j∈VR,c∈C in which the variablexi,c represents
the number of requests for contentc ∈ C originated at node
i ∈ VA , andrj,c is the number of replicas of contentc ∈ C
placed at sitej ∈ VR.

We assume that replica placement and redirection decisions
are taken at regular intervals of timeT . At each interval, a
decision is made on which replicas to place (and where to
place) and/or which replica to remove (and from where to
remove it). We can denote such a decision by a vectord =
(dj,c+, dj,c−)j∈VR,c∈C ∈ D, where

D = { d|dj,cx ∈ N,x = +/−, dj,c+dj,c− = 0
dj,c+ − dj,c− + rj,c ≥ 0,

0 ≤
∑

c∈C

dj,c+ − dj,c− + rj,c ≤ V MAX
R , j ∈ VR, c ∈ C}

The variabledj,c+ denotes how many replicas of contentc
are added whiledj,c− how many removed. For convenience,
we will often use the variablesdj,c = dj,c+ − dj,c− which
denote the relative changes in the number of replicas. Replicas
can be added up to site saturation or removed up to site
depletion.

At the same time also a decision is taken on how to redirect
requests in the next interval. We can denote such a decision
by a vectorα ∈ A, whereα = (αij,c)i∈VA,j∈R(i),c∈C and

A = {α|
∑

j∈R(i),c∈C

αij,c = 1, i ∈ VA, αij,c ≥ 0, i ∈ VA, j ∈ R(i), c ∈ C}

Redirection is accomplished by splitting users’ requests in
each access node, for each content, according to the vectorα,
that is, for i ∈ VA, j ∈ VR and c ∈ C, αc

ij is the fraction of
requests from nodei for contentc redirected to nodej.

We associate a cost to each state and decision. We associate
to each state a cost - paid per unit of time - which is the sum
of a cost derived from the users perceived quality (users to
replica distance, number of unsatisfied requests) and of the
CDN infrastructure costs for hosting and maintaining replicas.

We measure users perceived quality by the sum over
all users requests of the distance between the access node
where the request is originated and the replica serving it,
i.e., by

∑
i∈VA,j∈VR,c∈C αij,cxi,cdij where dij is the dis-

tance between nodei and j. A replica maintenance cost
is used to model the costs of hosting replicas and keeping
them up to date. We use a simple proportional cost model

CMaint

∑
j∈VR,c∈C rj,c + dj,c, where CMaint is a suitable

constant.
Two other costsC+ andC− are paid by the CDN provider

when dynamically adjusting the number of replicated servers,
and are associated to the decision to add or remove a replica
respectively.

The overall cost for each each state and decision is thus

g(x, r, d, α) =
∑

i∈VA,j∈VR,c∈C

αij,cxi,cdij +

CMaint

∑

j∈VR,c∈C

(rj,c + dj,c) +

∑

j∈VR,c∈C

(C+dj,c+ − C−dj,c−) (7)

The minimization of the long run average costs described
above enables a decision making criterion that can be used to
formulate dynamic replica placement strategies. Given a state,
a cost function associated to it and the costs of replicating
and deleting replicas, the goal is to identify a strategy which
dynamically allocates and deallocates replicas in response to
users demand variations so that the overall cost is minimized
while meeting the constraints on the replica service capacity
and site resources.

IV. REPLICA PLACEMENT ALGORITHM

If we model the user requests to obey to a Markov process,
we can formulate the optimal strategy as Markov Decision
Process. This approach, though, poses serious problems in
practice since determining the optimal strategy is not feasible
in practice. Here we consider the simpler myopic strategy
which consists in minimizing, step by step, the current cost.

We formulate the replica placement algorithm as an opti-
mization problem. At each decision interval, we take the action
d ∈ D and adopt the redirection strategyα which solves the
following optimization problem:

Minimize g(x, r, d, α)
subject to

(8)

Pf
u ≤ ε, d ∈ D, α ∈ A (9)

wherePf
u is (an estimate) of the probability of not being

able to satisfy all requests in the future interval. Hereε is a
small constant, e.g., 0.01, which determines the desired level
of statistical guarantee to provide. We will derive an expression
for the bound in the next section.

A. User Request Prediction

Our optimization revolves around the constraintPf
u ≤ ε.

The goal is to keep the probability of not satisfying requests
below a given threshold during the next interval. To this end,
we predict the user content request dynamics. At each decision
point jT , j = 0, 1, . . ., for each access nodei ∈ VA and con-
tentc ∈ C, the algorithm predicts the future requests dynamics
based on past historyxi,c(jT ), xi,c(jT − 1), . . .. Prediction is
carried out by means of the RLS-based algorithm presented in
Section II-B. The prediction phase yields an estimate of the



future requests dynamics. For each processxi,c, this amounts
to a set of Gaussian random variables(x̃i,c(l))l=1,...,T , with
x̃i,c(l) ∼ N (µi,c(l), σ2

i,c(l)), l = 1, . . . , T .
Denote byx̃ij,c(l) the predictedl-step ahead user requests

for contentc originated at nodei and redirected to nodej.
Then, x̃ij,c(l) ∼ N (αij,cµi,c(l), α2

ij,cσ
2
x̃i,c

(l)).
Finally, denote byx̃j,c(l) =

∑
i∈S(j) xij,c(l), the aggre-

gate predictedl-step ahead demand for contentc at node
j. Then, x̃j,c(l) ∼ N (µj,c(l), σ2

j,c(l)), where µc,j(l) =∑
i∈VA

αij,cµi,c(l) andσ2
j,c(l) =

∑
i∈VA

α2
ij,cσ

2
ij,c(l).

Requests can be fully served if and only if

x̃j,c(l) ≤ K (rj,c + dj,c) , j ∈ VR, c ∈ C, l = 1, . . . , T (10)

i.e., if in the following interval of lengthT , for all contents
the aggregate demands do not exceed the site replica capacity;
otherwise, users requests suffer some level of service degra-
dation.

Let Aj,c(l) be the event that that (10) holds. Then

P[Aj,c(l)] = Ψ
(

(rj,c + dj,c)K − µj,c(l)
σj,c(l)

)
(11)

whereΨ(·) is the ccdf of the Normal standard distribution.
We can expressPf

u in terms of the probabilities above by
using the union bound

Pf
u = P[∪j∈VR,c∈C,l=1,...,T Aj,c(l)] ≤

∑
j∈VR,c∈C,l=1,...,T

P[Aj,c(l)].

(12)

For sake of simplicity, in the following we will
approximate the sum above with its dominant term
maxj∈VR,c∈C,l=1,...,T P[Aj,c(l)]

We will thus replace (9),Pf
u ≤ ε, by

P[Aj,c(l)] ≤ ε j ∈ VR, c ∈ C, l = 1, . . . , T. (13)

which, along with (11), becomes

µj,c(l)+ zεσj,c(l) ≤ K(rj,c +dj,c) j ∈ VR, k ∈ C, l = 1, . . . , T
(14)

wherezε is the ε-percentile of the standard normal distri-
bution.

We can now express our replica placement optimization
problem,REP for short, as:

Minimize g(x, r, d, α)
subject to

(15)

zε

√ ∑
i∈s(j)

α2
ij,cσ2

i,c(l) ≤ K(rj,c + dj,c)−
∑
i∈VA

αij,cµi,c

j ∈ VR, c ∈ C, l = 1, . . . , T (16)

dj,c + rj,c ≥ 0 j ∈ VR, c ∈ C

0 ≤
C∑

c=1

dj,c + rj,c ≤ V MAX
R j ∈ VR

∑
j∈R(i),c∈C

αij,c = 1 i ∈ VA

αij,c ≥ 0 i ∈ VA, j ∈ VR, c ∈ C

dj,c+, dj,c− ∈ N j ∈ VR, c ∈ C

V. A MIP FORMULATION

The optimization problem (15) poses serious challenges
because of the presence of integer variables and nonlinear
constraints. Here we propose the following approach which
consists in considering a (series of) mixed integer linear prob-
lem (MIP) obtained by linearizing the non-linear constraints
(16) as follows.

First of all, we eliminate the square root—which is not
differentiable in zero—by taking the square of both sides of

(16). This yields

z2
ε

∑
i∈S(j)

α2
ij,cσ2

i,c(l) ≤
(

K(rj,c + dj,c)−
∑
i∈VA

αij,cµi,c(l)

)2

(17)

0 ≤ K(rj,c + dj,c)−
∑
i∈VA

αij,cµi,c(l) (18)

for j ∈ VR, c ∈ C, l = 1, . . . , T , with the second
inequality expressing the non-negativity of the right hand
side of (16). (17) is a concave quadratic constraint which
transforms the problem to a quadratic constrained problem
with concave constraints for which no general algorithm is
known.

We now linearize (17). For the RHS, letfj,c,l((d, α)) =
(K(rj,c + dj,c) −

∑
i∈S(j) αij,cµi,c(l))2. The linear term of

the Taylor expansion offj,c,l(d, α) around a point(d′, α′) ∈
D ×A is

Lj,c,l((d, α) ; (d′, α′)) =

2γj,c,l

(
K(rj,c + dj,c)−

∑
i∈S(j)

αij,cµi,c(l)− γ2
j,c,l

)
(19)

whereγj,c,l = (K(rj,c + d′j,c)−
∑

i∈S(j) α′ij,cµi,c(l)).
For the LHS, we simply replaceα2

ij,c by αij,c, obtaining
z2
ε

∑
i∈R(j) αij,cσ

2
i,c(l).

Given (d′, α′) ∈ D × A, we call the Replica
Placement Mixed Integer Programming formulation
(REP−MIP((d′, α′)) for short) the following optimization
problem obtained fromREP by replacing the LHS and RHS
of (17) by Lj,c,l((d, α) ; (d′, α′)) and

∑
i∈S(j) αij,cσ

2
i,c(l),

respectively:

Minimize g(x, r, d, α)
subject to

(20)

∑
i∈S(j)

(
2γj,c,lµi,c(l) + z2

ε σ2
i,c(l)

)
αij,c − 2γj,cKdj,c (21)

≤ 2γj,cKri,c − γ2
j,c

j ∈ VR, c ∈ C, l = 1, . . . , C

dj,c + rj,c ≥ 0, j ∈ VR, c ∈ C

0 ≤
C∑

c=1

dj,c + rj,c ≤ V MAX
R j ∈ VR

∑
j∈R(i),c∈C

αij,c = 1 i ∈ VA

αij,c ≥ 0 i ∈ VA, j ∈ VR, c ∈ C

dj,c+, dj,c− ∈ N j ∈ VR, c ∈ C



It is easy to realize thatREP−MIP(d′, α′) has been ob-
tained by upper bounding and lower bounding by means of
suitable linear functions the left and right hand side of (17),
respectively. Thus ,REP−MIP(d′, α′) has a smaller feasible
region thenREP; hence, ifREP−MIP(d′, α′) is feasible its
optimal solution is also a solution - not necessarily an optimal
one - forREP.

We formalize this in the following lemma which ensures that
the optimal solution ofREP−MIP(d′, α′) is also a solution
- not necessarily the optimal one - ofREP.

Lemma 1:Let (d, α) be a feasible solution of
REP−MIP((d′, α′)). Then, (d, α) is also a solution of
REP.

Proof: We have only to show that (17), i.e,
z2
ε

∑
i∈S(j) α2

ij,cσ
2
i,c(l) ≤ fj,c,l(d, α), holds for (d, α). To

this end, observe that: 1)0 ≤ αij,c ≤ 1 implies that
z2
ε

∑
i∈VA

α2
ij,cσ

2
i,c(l) ≤ z2

ε

∑
i∈VA

αij,cσ
2
i,c(l) ; 2) fj,c,l(d, α)

is a convex function of(d, α) (it is a composition of a
convex increasing function - the square - with a linear
(affine) function). Convexity implies thatfj,c,l((d, α)) ≥
Lj,c,l((d, α) ; (d′, α′)), (d′, α′) ∈ D ×A. Thus,

z2
ε

∑

i∈S(j)

α2
ij,cσ

2
i,c(l) ≤ z2

ε

∑

i∈S(j)

αij,cσ
2
i,c(l) (22)

≤ Lj,c,l((d, α) ; (d′, α′)) (23)

≤ fj,c,l(d, α) (24)

A question that arises is how close to optimal the quality
of the solution ofREP −MIP is. It is easy to realize that it
is the choice of the linearization point(d′, α′) which mostly
affects the quality of the bounds and hence of the solution. In-
tuitively, the closer the optimizer(d, α) of REP−MIP(d′, α′)
(d′, α′) the better, becauseLj,c,l((d, α); (d′, α′)) gets close to
fi,j,l(d.α) in the neighbor of(d′, α′). Hence, better results are
expected when the linearization point(d′, α′) is close to the
optimizer itself. This suggests the following iterative approach
to solve for the replica placement, whereby we consider a
sequence ofREP − MIP where the optimizer of the current
problem is used as the linearization point of the next.

1) Initialization: Choose an initial value for(d, α),
(d(0), α(0)).

2) REP − MIP solution. Given (d(`−1), α(`−1)), solve
the problem REP−MIP(d(`−1)α(`−1)). Denote by
(d(`), α(`)) the optimal solution.

3) Iteration: Iterate step 2 until

|g(x, r, d(`), α(`))− g(x, r, d(`−1), α(`−1))| ≤ δ

whereδ is a small constant.

The following result ensures that each new iteration yields
a better solution and that the iterations terminate.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Fig. 1. NETWORK TOPOLOGY USED IN THEEXAMPLE .

Theorem 1:Consider a pair(d(0), α(0)) ∈ D × A and
assume thatREP − MIP(d(0), α(0)) has a feasible solution.
The following holds:

(i) the problemsREP − MIP(d(`), α(`)), ` = 1, 2, . . .,
where (d(`), α(`)) is the maximizer of REP −
MIP(d(`−1), α(`−1)) have a feasible solution;

(ii) The sequenceg(x, r, d(`), α(`)) is nonincreasing and con-
verges to a valueg∗;
Proof: The proofs are by induction. (i) We

show that (d(`), α(`)) satisfies the constraints of
REP−MIP(d(`), α(`)). It suffices to show that
(22) holds, i.e., that z2

ε

∑
i∈VA

α
(`)
ij,cσ

2
i,c(l) ≤

Lj,c,l((d(`), α(`)) ; (d(`), α(`))). Since (d(`), α(`)) is a
feasible solution ofREP−MIP(d(`−1), α(`−1)) and fj,c,l is
convex we have

z2
ε

∑
i∈VA

α`
ij,cσ

2
i,c(l) ≤ Lj,c,l((d

(`), α(`)) ; (d(`−1), α(`−1)))(25)

≤ fj,c,l(d
(`), α(`)) (26)

= Lj,c,l((d
(`), α(`)) ; (d(`), α(`−1))). (27)

Hence (22) holds. (ii) We have just shown that(d(`), α(`))
is a solution - not necessarily the optimal one - of
REP−MIP(d(`), α(`)). The optimizer (d(`+1), α(`+1)) of
REP−MIP(d(`), α(`)) then satisfiesg(x, r, d(`+1), α(`+1)) ≤
g(d(`), α(`)). Hence, the sequenceg(x, r, d(`), α(`)), ` =
1, 2, . . . is non-increasing. Convergence to a valueg∗ is then
ensured by the fact thatREP−MIP has no unbounded solution.

We observe that the above results, while providing an
algorithm to improve the solution, do not say anything on how
close this solution is to the optimizer ofREP. Our numerical
results, nevertheless, suggest that our solution might be close
to the actual optimizer in most cases, yet we not have a proof
for that. This will be subject of further research.

VI. N UMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the dynamic replica placement algorithm behavior. Due to the
limited space here we concentrate on the simple topology in
Figure 1 with 24 access nodes and 7 service nodes (sites). The
thin lines denote slower links (with a weight of 2), the thick



TABLE I

SIMULATIONS RESULTS.

T % of time with % not served av. utilization
not served requests

20 3.64± 3.27 0.55± 1.15 0.89
50 4.9± 4.7 1.12± 1.84 0.88
100 7.8± 6.27 1.76± 2.81 0.88

ones faster links (with a weight of 1). We assume users issue
requests for two types of content. The aggregate requests at site
i ∈ VA for contentc are modeled as independent Markovian
birth-death process with birth and death rate equal to 0.005.
We setK = 1, V MAX

A = 10, V MAX
R = 30, dmax = ∞.

For the replica placement, we setε = 0.05, Cmaint = 10,
C+ = C− = 0 (thus in this example we ignore the cost of
adding and removing replicas). The value of parameterT was
varied in the different set of experiments. Finally, for the RLS
prediction we usem = 3 and a forgetting factorλ = 0.99.

We summarize the results, in table I, where we report: (1)
the fraction of time when there were unsatisfied requests; (2)
the fraction of requests that could not be served, i.e.,

∑t
n=1

∑
j∈VR,c∈C(xj,c(n)− rj,c(n))+∑n
l=1

∑
j∈VR,c∈C xj,c(n)

where (x)+ = max{x, 0}; and (3), the average utilization,
computed as

∑t
n=1

∑
j∈VR,c∈C min{xj,c(n), rj,c(n))∑n
l=1

∑
j∈VR,c∈C(rj,c(n))

;

Simulation results include 99% confidence interval computed
over 100 independent simulations. Each simulation wast =
10000 time unit long (after having removed the initial transient
period).

The algorithms perform better for smaller decision intervals.
The causes of the degradation for the larger intervals are
twofold. First, the performance of the RLS estimator degrades
as the intervals length grows. Second, use of the approxi-
mation Pf

u ≈ maxj∈VR,c∈C,l=1,...,T P[Aj,c(l)] becomes more
inaccurate asT grows. As a consequence we observe that the
fraction of time in which requests are not satisfied exceedsε,
especially forT = 100. We note that, nonetheless, the fraction
of requests that cannot be served, which well captures the
user perceived quality of service, attains very small values,
well below the5% value set forε for all values ofT . At
the same time, the resource utilization is quite high and close
to 90% for all values ofT . In this example, the algorithm
achieves good quality of service while attaining at the same
time very high utilization, showing its capability of satisfying
the users requests while limiting the number of replicas, thus
the infrastructure costs.

VII. C ONCLUSIONS

In this paper we have tackled with the problem of jointly
optimizing the problems of dynamic replica placement and
users requests redirection to the best replica. Differently from

previous approaches, our solution does not rely on specific
architectures and accounts for all the major relevant constraints
of the problem. Aim of our formulation is to limit the CDN
infrastructure costs (e.g., the number of replicas, the cost for
their installation, maintenance and removal) while guarantee-
ing that the percentage of users requests which do not receive
a satisfactory access service is bounded by a small value.
Multiple contents and realistic constraints on the CDN servers
resources (storage and maximum load) are also accounted for.
Our results are twofold. First, we have modeled the problem by
non-linear integer programming, and then solved it by a series
of mixed integer linear programming problems obtained by
linearizing the non-linear constraints of the original problem.
Secondly, results are shown which assess the effectiveness of
the proposed solution in limiting the percentage of unsatisfied
users requests while avoiding to over-replicate contents in the
CDN networks. Such results show that all the replica hosted by
CDN servers are highly utilized (on average at around90% of
their maximum load), thus confirming the scheme capability
of introducing new replicas only when needed.
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