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Abstract— The Content Delivery Networks (CDN) paradigm is formulations aim at either maximizing the user perceived
based on the idea to move third-party content closer to the users quality given an upper bound on the number of replicas, or
transparently. More specifically, content is replicated on servers minimizing the cost of the CDN infrastructure while meeting

closer to the users, and users requests are redirected to the best traint th r perceived lit laten 1
replica in a transparent way, so that the user perceives better CONStraints on the user perceived quality (e.g., latency) [1].

content access service. In this paper we address the problem of For the static case, simple efficient greedy solutions have
dynamicreplica placement and user requests redirection jointly. been proposed in [2], [3] and [4]. In [2] Qiu et al. formulate

Our approach accounts for users demand variability and server the static replica placement problem as a minimiinmedian
constraints, and minimizes the costs paid by a CDN provider problem, in whichK replicas have to be selected so that the

without degrading the quality of the user perceived access service. . . .
A non-linear integer programming formulation is given for the  SUM of the distances between the users and their best replica

replica placement and user request redirection problems. The IS minimized. A simple greedy heuristic is shown to have
actual solution is obtained by mapping the non-linear integer performance withirs0% of the optimal strategy. An evaluation
problem into a series of mixed integer linear problems obtained of such greedy scheme to assess the impacf<obn the

by linearizing the non-linear constraints of the original problem. e satisfaction (closeness to the replica), for different traffic

Preliminary numerical results show that the proposed solution . - . N
is capable of effectively limiting the percentage of unsatisfied patterns, is presented in [S]. Qui et al. have also proposed “hot

requests without over-replicating the contents over the CDN SPOt” a solution for placing replicas on nodes that along with
Sservers. their neighbors generate the greatest load [2]. In [6] “hot zone”

is presented as an evolution of the “hot spot” algorithm. The
idea is to first identify network regions made of nodes whose
Content Delivery Networks (CDNs) are one of the answelatency to each other is low. Regions are then ranked according
to the challenges posed by the remarkable commercial sucaesthe content request load that they generate and replicas are
of the Internet in the very recent years. Replicating third-parptaced in the regions high in the ordering. In [3] and [4] Jamin
content on servers closer to the final users, and redirectigigal. and Radoslavov et al. propose fan-out based heuristics
transparently their requests to the “best replica” (e.g., the clag-which replicas are placed at the nodes with the highest fan-
est replica in terms of distance, latency, etc.) CDN provideogit irrespective of the actual cost function. The rationale is
are able to offer improved content access service. that such nodes are likely to be in strategic places, closest (on
Solutions for CDN require addressing a number of technicaverage) to all other nodes, and therefore suitable for replica
problems, which include the selection of the kind of contembcation. In [4] a performance evaluation based on real-world
that should be hosted (if any) at a given CDN server (replicauter-level topologies shows that the fan-out based heuristic
placement), what is the best replica for a given customer, ahds trends close to the greedy heuristic in terms of the average
which mechanisms should be used to redirect the user to setibnt latency.
replica. A major limit of all these solutions is that they neglect
This paper concerns the joint optimization of replica placée consider the natural dynamics in the user requests traffic.
ment and user request redirection. Our solution is dynami¢hen things change that would make a different placement
in the sense that replicas are added and removed from CI&¥s costly or more satisfying for the users, the only possible
servers according to the dynamically changing user requestution is to re-apply the placement algorithm from scratch.
traffic. The redirection mechanism is also changed accordinghhis approach has a couple of problems. First of all, it may
Previous solutions have mostly addressed these problemact slowly to the system changes, so that the new placement
separately. Of the solutions proposed for replica placemeat,the replicas is not the best one for the current user request
most concern the static case. Basically, given the topology tadffic. Moreover, the replica placement happens every time
the network, the set of CDN servers as well as the request traibm scratch, i.e., without considering where replicas are
fic pattern, replicas are placed so that some objective functiomrrently placed. This could possibly lead to non-negligible
is optimized while meeting constraints on the system resourgesonfiguration costs.
(server storage, server sustainable load, etc.). Typical problen few papers (e.g., [7] and [8]) have addressed the problem
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of dynamic replica placement. However, the proposed schenmeavhich a given user request should be redirected. The deci-
are embedded in specific architectures for performing requesitsn on how the system should evolve is the outcome of a non-
redirection and computing the best replicas. No framework ligear integer programming formulation of the problem. The
provided for identifying the optimal strategy, and for quantifyinputs are the CDN topology, the current replica allocation, the
ing the solutions performance with respect to the optimum. &stimated users requests traffic over the next period of time,
RaDar [7] a threshold based heuristic is proposed to replicatiee CDN servers resource constraints (available storage and
migrate and delete replicas in response to system dynamiteximum load)d,,., ande.

The overall proposed solution combines dynamic replica allo- The actual solution is obtained by mapping the non-linear
cation with servers load-aware redirection to the best replicaitneger problem into a series of mixed integer linear problems
achieve low average users latency while empirically balancin@tained by linearizing the non-linear constraints of the orig-
the load among the CDN servers. No limits on the servers stimal problem. The series of mixed integer linear problems is
age and on the maximum users latency are explicitly enforceblen solved numerically leading to a solution of the replica
In [8] two schemes designed for the Tapestry architecture [Slacement and user requests redirection problem for the next
are presented. The idea is that upon a content request fihee interval. Our solution is proactive in the sense that
neighborhood of the user access point in the overlay networktistakes into account the user requests dynamics over the
searched. If there is a server hosting a replica of the request@doming new time interval (of lengti’). This is obtained
content within a maximum distance from the user, and subly using RLS (Recursive Least Square prediction) to design
server is not overloaded, the request will be redirected to tlaa adaptive filter. This allows us to estimate, based on current
server (or to the closest server if multiple servers meet sughd past traffic, the future user requests traffic process. Despite
constraints). Otherwise a new replica is added to meet tlie fact our RLS-prediction is affected by the users traffic
user request. Two variants are introduced depending on thgnamics and by the length of the interval (the shorterl’
neighborhood of the overlay network which is searched fig the more accurate is the estimate), preliminary results show
replicas, and on the scheme used to select the best locatiest the proposed solution is capable of effectively limit the
for the new replica. Although the ideas presented in the pagesrcentage of unsatisfied requests. This is achieved without
appear promising they are tightly coupled with the Tapestrver-replicating the contents over the CDN servers, and hence
architecture, and the approach does not explicitly account f@ith low cost for the CDN infrastructure. In the considered
neither the costs of reconfiguration nor for possible servessenarios the placed replica are used, on average, at around
storage limits. Finally, no information is provided in [8] on thed0% of their maximum load, showing the scheme effectiveness
rule to remove replicas, making it hard to compare with oum placing new replicas only when needed.

approach. Recently, the authors have presented a frameworkhe paper is organized as follows. In Section Il we introduce
for dynamic replica placement in [10]. By assuming the usersathematical preliminaries needed for describing our scheme.
requests dynamics to obey to a Markovian model the problamSection Ill the dynamic replica placement and user requests
of optimal dynamic replica placement has been described raglirection problems are described: the system constraints and
a semi-Markov decision process accounting for the traffic, th@sts are introduced and discussed here. Sections IV and V
user level of satisfaction as well as the costs paid to adgkscribe the nonlinear integer programming formulation as
maintain or remove a replica from CDN servers. Although thigell as the linearization techniques used to obtain solutions on
model allows us to achieve optimality and provides insightsow the CDN system should evolve. Section VI describes the
to the dynamic replica placement problem, it is not scalablgsults of a preliminary performance evaluation which assesses
Moreover, the paper concerns only replica placement, withatie effectiveness of the proposed solution. Finally conclusions

addressing user request redirection. end the paper in Section VII.
In this paper we address the joint optimization of dynamic
replica placement and users requests redirection to the best [I. MATHEMATICAL PRELIMINARIES

replica. We assume that users access the CDN networks . .

through one amongV,| access points, requesting access {0 Autoregressive Process Prediction

one of C possible contents. Replicas of tidé contents can  An Autoregressive (AR) processof orderm is a stationary
be stored in one or more among a number| > 0 of Gaussian process which takes the form

CDN servers. The user request satisfaction is modeled by

a 0,1 variable. A weight is associated to the routes from

a user to a replica. The weight indicates the user perceived:(n) = 6y + 01z(n — 1)+ ...+ 0pz(n —m)+a(n) (1)

quality of accessing that replica. A user is said to be satisfied

when the weight of the route to the best replica is below‘#hered = (0o, 01,.. ., 0x) is a set of weights andis a white
given thresholdd,,,,,. The aim of our model is to limit the NOiSe Gaussian process with zero mean and variafice

; i i +an Prediction for AR processes is straightforward. The “best”
CDN infrastructure cost while guaranteeing tha? overa glVepr}edictors (in least mean square error sense) of the future
percentagd — ¢ of'the users (_sa;99%) are sgnsfled. . values z(n + 1),z(n + 2),...,z(n + L), given the past
Our scheme relies on the idea of periodically taking decj(n), z(n — 1),... are obtained by setting to zero the future
sions on which replicas to add/remove, and on the best repliedues of the white noise. Thus, the best predictai(n + ;)



of z(n + j) can be recursively computed fgr=1,...,L, as wherey(-;n) is the impulse response of the filté¢n), and
follows

~ : ~ . ~ . ~ ) 1

z(n+j) = 0o+b1z(n+j—1)+022(n+j—2)+...+0,zx(n+j—m) =2 - - 205

where we sef(k) = z(k) for k < n. _ ) ) ) _
Denotee(l) = Z(n + 1) — x(n + 1) the [-ahead forecast is the current estimate of the white noise process variance.

error. e(l) captures how:(n + ) deviates from the predicted As before, we observe that the predicted values and the

value Z(n + 1). e(l) is normally distributed with zero mean,error variances characterize the conditional distribution of the

and its variance is? n = o2 . (Z? o V2 (k) < o2, where future values of the process. We remark that these conditional
e 1= — x?

¥(.) is the impulse response of the Infinite Impulse Responggstributions converge to the actual conditional distribution
filter with parameter®. The error variance increases with only in the case of Gaussian processes. In all other case these
and converges to the variance of the procebssi grows to aré conditional distribution are only approximations.

infinity.

It is important to observe that the equations above are
nothing but determining the conditional distribution of the We model the Internet network topology as a weighted
future values of the process given knowledge of the pastundirected graphG = {V, E}. The vertex sefl is the set
values. Thus, in the following, to stress that the predicteaf network nodes, while each edge in the &ktepresents a
values Z(n + 1) and the error variance?, are the mean physical network link and is labeled with some kind of additive
and the variance of the (Gaussian) conditional distribution ofetric, e.g. the number of hops between the endpoints. We
the future values, we will denote them hy(i) and o2(l), identify two subsetd/, and Vx of the set of network nodes
respectively. We will also denote agl) ~ N (u(l),0%(l)) a V. V4 is the set of CDN access nodes where the requests
Gaussian random variable with meafi) and variancer?(1). generated by the users enter the core CDN netwidgkis the
B. Recursive Least Square Process Prediction set of nodes in the core network where one or more content

reglica servers can be placed (called sites in the following).

IIl. PROBLEM STATEMENT

In this paper we use _Recursivg Least Square (RLS) paﬁg ure 1 shows an example withi@ nodes hierarchical transit
process prediction. The idea behind the RLS-based pred|ct§)[ b network topology obtained by running thg-itm
amounts fo: 1) regard/mgdel a ;Lr.ocess dals a (tm:jg V?ry'{}ﬂ)ology generator [11]. The white circles represent the access
param'eter) AR process; 2) use this model to prec ict .utu'r] des, the gray big circles the sites that can host replicas, and
behavior, and 3) adopt a recursive form for the estimation e small black circles nodes only used for sake of routing.

the model parameter to reduce computational COMPIEXItY. Thin and thick links reflect the low or high bandwidth of the
To model the user request we need to: 1) choose tf

. inks.
model orderm; (2) estimate the unknown parametérand

. . . We assume thaC' content providers exploit the hosting
2 -
the variances; of the white noise. The RLS approach pro ervice of the CDN. Customers entering the CDN through

ceeds recursively as follows. Hereafter, for simplicity, we Wlin access node iif, can therefore issue requests for one of

assume the model ordet as given. C sets of contents, and replicas of some of¢heontents can

Letx(n) = (z(n—1), ..., z(n—m+1)) b? the most recent e placed in each site iig. Requests entering the CDN are
m observed values of the process (excluding the current vall ~ < ired in units of agareqate requests. No more
z(n)), andf(n) = (61(n), ..., 6,,(n)) the current estimate of goreg d )

units of aggregate requests can be generated by an access node
(to model the limited access link bandwidth). Requests for a
given content are served by a suitable replica. To model user

f. The RLS estimation of is then recursively expressed as

AP (n — 1)x(n)

k(n) = — (3) satisfaction, we assume that user requests cannot be served
L+ A7 IxTP(n — 1)x(n) by a replica at a distance above a given threshild,.. We
0(n) = 6(n—1)+k(n)(z(n)—0(n—-1)x(n)) (4) wil denote by R(i) C Vi the set of sites within distance
P = M'P(n—1) —2'k(n)xT(n)P(n—1) (5) dma. Of an access nodee V. Users requests from access

where)\ is a forgetting factorP(n) denotes the inverse of thenOdez are rt_ad|rected to one of th? replicas fifi). This can
be accomplished by several means, anycast. We assume

input correlation matrix, andt(n) is a gain vector. : .
Given 6(n), the estimation of the future values of thethat each replica can serve upAbunits of aggregate request

processz(n + 1), z(n + 2), ..., is carried out as in (2) with for '[Rg;l(’[ cor_ltent (replica service capaC|_ty I|m|t_). No_ more than
replaced byd(n) Vg replicas can be hosted at a given site (site resource

limit).
We model the user requests at nade V4 for contentc €
! C as a discrete time stochastic process(n), n =0,1,....
520y (n) = > 4*(k;n)5a(n) (6) We do not make any particular assumption on these processes.
k=0 User requests are redirected to available replicas. We denote

lin other words,%(0),¢(1),... can be computed via (1) using the by Qijc the fra(_:tion of reques.ts for contemtoriginating from
“impulse” input: a(0) = 1 anda(k) = 0,k > 0. node: and redirected to nodg Clearly,> ;¢ p(;) @ije = 1.

Forl =1,2,..., the estimate the varianc& (n) of the
error is



For a sitej € Vg, the aggregate demand of contenis Ciyrqint ZEVR’C&C Tjc + djc, Where Cpqine iS a suitable
zje(n) = Y ies(j) QijeTic(n), whereS(j) = {i € Va|j € constant.
R(i)} is the set of access nodes which can be served byTwo other costs”* andC~ are paid by the CDN provider
replicas in sitej. Denote byr; .(n) the number of content when dynamically adjusting the number of replicated servers,
replicas at nodg at timen. The requests can be fully servecand are associated to the decision to add or remove a replica
if z;.(n) < Kr;.(n), i.e., if the aggregate demand does naespectively.
exceed the replica capacity for that content; otherwise, userd’he overall cost for each each state and decision is thus
that were redirected to that replica suffer some level of service

degradation. g@,rd,a) = Z Qe odlij +

We describe a given configuration of requests and replicas 1EVAJEVR cEC
by means of a state vecter= (z,r) with = (2, ¢)icv, cec Chaint Z (rje+dje) +
andr = (7j,c)jeva,cec in which the variabler; . represents J€VR,cEC
the number of requests for content C' originated at node Z (Ctdjer — C dje) (7)
i € V4, andr; . is the number of replicas of conteatc C jEVR.cEC

placed at sitgj € Vg.

We assume that replica placement and redirection decisi
are taken at regular intervals of tin#. At each interval, a
decision is made on which replicas to place (and where
place) and/or which replica to remove (and from where
remove it). We can denote such a decision by a vegter
(djetsdje—)jevp,cecc € D, where

The minimization of the long run average costs described
Ybve enables a decision making criterion that can be used to
formulate dynamic replica placement strategies. Given a state,
$cost function associated to it and the costs of replicating
Bnd deleting replicas, the goal is to identify a strategy which
dynamically allocates and deallocates replicas in response to
users demand variations so that the overall cost is minimized
D = {ddje€Nax=+/—djerdj. =0 while meeting the constraints on the replica service capacity

and site resources.
dj et = dje— + 15 20,

0< Z djoey — dje + 150 < V}'%V'ij € Vi,ce C} IV. REPLICA PLACEMENT ALGORITHM

)

ceC If we model the user requests to obey to a Markov process,

we can formulate the optimal strategy as Markov Decision

are added whilel; . how many removed. For convenience! '0CeSS: j’h|s approa}ch, though,. POSES serious problerr_ls n
' practice since determining the optimal strategy is not feasible

we will often use the variabled; . = djcy — dj.— which in_practice. Here we consider the simpler myopic strate
denote the relative changes in the number of replicas. Replic L : P yop 9y

; ) w Ich consists in minimizing, step by step, the current cost.
can be added up to site saturation or removed up to si Yy : . .
depletion. e formulate the replica placement algorithm as an opti-

At the same time also a decision is taken on how to reolire?tlza'uon problem. At each decision interval, we take the action

requests in the next interval. We can denote such a decis*gﬁovjainang 6:325;:5 rerc:)lgel:é::}o.n strategywhich solves the
by a vectora € A, wherea = (ijc)icv,,jer(),cec and gop P '

The variabled; . denotes how many replicas of content

Minimize g(z,r,d, @)
A= {a Z Qije =1,i € Va,aije > 0,i € Va,j € R(i),c € C} subject to

JER(i),ceC Pi <e¢ deD, «ac A (9)

Redirection is accomplished by splitting users’ requests inwhere P/ is (an estimate) of the probability of not being
each access node, for each content, according to the vectopple to satisfy all requests in the future interval. Heris a
that is, fori € Vy, j € Vg andc € C, ofj is the fraction of gmga)l constant, e.g., 0.01, which determines the desired level

requests from node for contente redirected to nodg. of statistical guarantee to provide. We will derive an expression
We associate a cost to each state and decision. We assogigtene bound in the next section.

to each state a cost - paid per unit of time - which is the sum

of a cost derived from the users perceived quality (users Ao User Request Prediction

replica distance, number of unsatisfied requests) and of theDur optimization revolves around the constraiff < e.

CDN infrastructure costs for hosting and maintaining replica¥he goal is to keep the probability of not satisfying requests
We measure users perceived quality by the sum oueelow a given threshold during the next interval. To this end,

all users requests of the distance between the access nederedict the user content request dynamics. At each decision

where the request is originated and the replica serving int 7', j = 0,1, ..., for each access node= V4 and con-

i.e., by Z%VAJGVMGC o450 0d;; Where d;; is the dis- tentc € C, the algorithm predicts the future requests dynamics

tance between nodeé and j. A replica maintenance costbased on past history, .(jT), z; (7 — 1), . ... Prediction is

is used to model the costs of hosting replicas and keepiogrried out by means of the RLS-based algorithm presented in

them up to date. We use a simple proportional cost modeéction 11-B. The prediction phase yields an estimate of the

(8)



future requests dynamics. For each process this amounts

to a set of Gaussian random variablgs .({));=1,... r, with V. A MIP EORMULATION

Tiell) ~ Npie(l) ope (), 1 =1, T The optimization problem (15) poses serious challenges
Denote byz;; .({) the predlcted step ahead user request% P £ th P ¢ P b q I'g

for contentc originated at node and redirected to nodg. ecause o the presence of Integer variables and noninear

Then, Z;.o(1) ~ N (cujois.e (1), 0% .02 (1)) constraints. Here we propose the following approach which

1],C 17,cH,c i5,¢Y % ¢ . . . . . . . . . _

Finally, denote byz; (1) = . N z;.0(1), the aggre- Iconslsts in ctc:nglde(jrlrgg ?(ser!es of)k:nlxed |r|1_teger linear prob

gate predicted-step ahead demand for contemtat node (irg) (a'\glfo)ngwgame y linearizing the non-linear constraints

i. Th Tio(l) ~ (D), 1)), wh i) = : : - Lo

] en, Zj..() N(’uj (_) Ol 2W (-32re pe,j (1) First of all, we eliminate the square root—which is not

Dievy Qigettie(l) AN (1) =3 ey, o c00c(D)- differentiable in zero—Dby taking the square of both sides of
Requests can be fully served if and only if y 9 q

(16). This yields
l’jc(l) <K(ch+djc) jeVgceCil=1,....,T (10)

2
, if in the following interval of lengthl’, for all contents Z 02 ?() < K(rjo+dyo) Z aijottse(l) 17)
the aggregate demands do not exceed the site replica capaC|t§/ =
i€Vy
otherwise, users requests suffer some level of service degra—
dation. 0 < K(rje+dse) = > aijepic(l)  (18)

Let A, (1) be the event that that (10) holds. Then i€Va

PIA T — O (rje +djc) K — pje(l) 1 for j € Vg, ¢ € C, I = 1,...,T, with the second
[4j.(D] = ajc(l) (11) inequality expressing the non-negativity of the right hand

where ¥ (-) is the ccdf of the Normal standard d|str|but|onSlde of (16). (17) is a concave quadratic constraint which
We can expres®! in terms of the probabilities above bytransforms the problem to a quadratic constrained problem

using the union bound with concave constraints for which no general algorithm is
f - known.
Pl = PlUjevp,cecii=t,...7Aj(D)] < > Pl We now linearize (17). For the RHS, gt .,((d,a)) =
JEVR cECI=Ln T a2) E(je +dje) = Yies(y Yijetic(l))?. The linear term of

the Taylor expansion of; .;(d, «) around a point{d’, o) €

For sake of simplicity, in the following we will D x Ais

approximate the sum above with its dominant term Ljeci((dy )5 (d, ) =
7,¢, ) ) ) -

maxjevy ceC,i=1,...7 P[4 (1)] _ (19)
We will thus replace (9)P{ <, by Bje (K(’”JFC Fdjc) =D ie () Yidchine(l) *Vf',c,z>
PlA;.(D)]<e jeVg ceCl=1,...,T. (13) where; i = (K(rj.c +dj ) — 3 ics(j) Yijetie(l))-
which, along with (11), becomes For the LHS, we simply replaca2 by «;j ., obtaining

2 l)
ie()+2050() < K(rjeddje) jEVR keC l=1,...,T ZZLeRmO‘wc”zc( _
Hiel) +2eoge(l) S Krjetdie) 5 € Vi (14) Given (d,o/) € D x A, we call the Replica

Placement Mixed Integer Programming formulation
where z. is the e-percentile of the standard normal distri{REP — MIP((d’,a")) for short) the following optimization

bution. problem obtained fronREP by replacing the LHS and RHS
We can now express our replica placement optimizatis (17) by L;c.((d,e); (d',0/)) and 35;cq(;) ij.c0? (D),
problem,REP for short, as: respectively:
Minimize g(z,r,d, @) Min?mize g(z,r,d, ) 20
subject to (15) subject to (20)

Sies (Pietnic(l) + 2207 (1) aije — 2. Kdje  (21)

Z azg c 7,20(1 S I((rjyC + dj,C) - Z Qij,cMi,c

2
i€s(j) i€V < 295, KTie — Yi,e

JEVR, c€C, 1=1,...,T (16) jEVR ceC, 1=1,...,C
djc+rjc > 0 jeEVg ceC djc+rje > 0, j€EVR celC
c
MAX .
ogZdj,CJrrj,C < VMAX ey Oézdj,ﬂrmc < Ve 7 jeEVR
c=1

Z Qije = 1 i€Vy Z Qije = 1 1€Vy
JER(i),cEC JER(i),ceC
Qije > 0 i€Vy, jEVR ceC aije > 0 i€Va,jeVr,cel
djer,djo— € N jeVg, cel djet,dje— € N jeVg ceCl



It is easy to realize thaREP — MIP(d’, ') has been ob-
tained by upper bounding and lower bounding by means of
suitable linear functions the left and right hand side of (17),
respectively. Thus REP — MIP(d’, @) has a smaller feasible
region thenREP; hence, ifREP — MIP(d’, ) is feasible its
optimal solution is also a solution - not necessarily an optimal
one - for REP.

We formalize this in the following lemma which ensures that
the optimal solution oREP — MIP(d’, «') is also a solution
- not necessarily the optimal one - BEP.

Lemma 1:Let (d,«) be a feasible solution of
REP — MIP((d’,a/)). Then, (d,«) is also a solution of
REP.

Proof: We have only to show that (17), i.e
223 s i a3 07 .(1) < fjei(d,a), holds for (d,«). To
this end, observe that: 1) < ;. < 1 implies that
22 Dieva a?j,caic(l) <zl D icva 5,07 (1) 3 2) fjea(d, )
is a convex function of(d,«) (it is a composition of a
convex increasing function - the square - with a lineatil)
(affine) function). Convexity implies thaif; . ;((d, o)) >

Fig. 1. NETWORK TOPOLOGY USED IN THEEXAMPLE.

Theorem 1:Consider a pair(d®,a(®) ¢ D x A and
assume thaREP — MIP(d(® «(9)) has a feasible solution.
"The following holds:

(i) the problemsREP — MIP(d®), a®), ¢ = 1,2,...,
where (d¥,a®) is the maximizer of REP —
MIP(d“~1), o~1) have a feasible solution;

The sequence(z, r, d9), () is nonincreasing and con-
verges to a valug*;

Ljci((d,@); (d,a"), (d',¢/) € D x A. Thus, Proof: The proofs are by induction. (i) We
show that (d),al®) satisfies the constraints of
, . ) ) REP — MIP(d),a®). It suffices to show that
22 ) afeoil) < Y aienidl) (22 (22)  holds, e, that 22X, al%02,(1) <
i€50)) i€50)) Lyt ((d®,a®): (D, a®)). Since (dD,a0) is a
< Ljci((d,a);(d,')) (23) feasible solution oREP — MIP(d“~1 o~ and f;., is
< fiea(d, ) (24) convex we have
u 2 ¢ 2 , (0 (0. (ge=1) _(£=1)
A question that arises is how close to optimal the quality ; Aigetiel) S Liea((d, a5 (A7, aTNRS)
of the solution ofREP — MIP is. It is easy to realize that it e © ©
< fiea(d”,at?) (26)

is the choice of the linearization poiit’, ') which mostly

affects the quality of the bounds and hence of the solution. In-
tuitively, the closer the optimizgid, o) of REP — MIP(d’, ")

(d',a’) the better, because;,,((d, «); (d';a')) gets close to  pence (22) holds. (ii) We have just shown that?), a(®)
Jfi.ju(d.) in the neighbor of d’, o). Hence, better results arejs 5 solution - not necessarily the optimal one -
expected when the linearization poifit’, ') is close to the rgp _ MIP(d®©,a®). The optimizer (d“+V, a(+D) of
optimizer itself. This suggests the following iterative approagigp _ MIP(d®,a®) then satisfieg)(z, r, d+V, at+D) <
to solve for the replica placement, whereby we considerg?(td(z)’a(e))_ Hence, the sequence(z,r, d“),a“)), ) _
sequence oREP — MIP where the optimizer of the currenty 9 s non-increasing. Convergence to a valtieis then

Ljea((d?,a®);(d?, 0" 1)).(27)

of

problem is used as the linearization point of the next.
1) Initialization: Choose an initial value for(d,«),
(d©, o).

2) REP — MIP solution. Given (d“~1, al“~1), solve
the problem REP — MIP(d“~Yal*=1). Denote by
(d®, a9 the optimal solution.

3) lIteration: Iterate step 2 until
lg(a,r,d"),a9) — g(z,r,d" D o D) <6

whered is a small constant.

ensured by the fact th&EP—MIP has no unbounded solution.
[ ]

We observe that the above results, while providing an
algorithm to improve the solution, do not say anything on how
close this solution is to the optimizer &EP. Our numerical
results, nevertheless, suggest that our solution might be close
to the actual optimizer in most cases, yet we not have a proof
for that. This will be subject of further research.

VI. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the dynamic replica placement algorithm behavior. Due to the
limited space here we concentrate on the simple topology in

The following result ensures that each new iteration yieldgure 1 with 24 access nodes and 7 service nodes (sites). The

a better solution and that the iterations terminate.

thin lines denote slower links (with a weight of 2), the thick



TABLE |

SIMULATIONS RESULTS previous approaches, our solution does not rely on specific

architectures and accounts for all the major relevant constraints

T % of time with | % not served| av. utilization of the problem. Aim of our formulation is to limit the CDN

not served requests infrastructure costs (e.g., the number of replicas, the cost for
20 3.64 4 3.27 0.55 & 1.15 0.89 their installation, maintenance and removal) while guarantee-
50 19+47 T12+184 0.88 _ ' € e e )\ 9 _
100 78+6.27 1.76 £ 2.81 0.88 ing that the percentage of users requests which do not receive

a satisfactory access service is bounded by a small value.
Multiple contents and realistic constraints on the CDN servers

resources (storage and maximum load) are also accounted for.

ones fa;stfer I;\r,kast (with iwe'?httofr;)' we assE[Jme userts '5;55_ r results are twofold. First, we have modeled the problem by
requests for two types ot content. The aggregate requests al Sig ;o o, integer programming, and then solved it by a series

E)'ethvé fotrhcontentc arihrréqczﬁleddaz mctiﬁpe?dent I\/:atrko(;n&?% mixed integer linear programming problems obtained by
Irth-aeath process Jeh birth anc deatn rate equai to 9L 'earizing the non-linear constraints of the original problem.

MAX MAX
\é\(/)er fﬁetz[:epzlic;, p‘)lfgceme:ntl?/;/evge “ g Ogo’ Cdmgx z (1)3 Secondly, results are shown which assess the effectiveness of
C+ = ¢ = 0 (thus in thi:5 example We igngbraemtthe cos,t o he proposed solut_lon in I_|rr_1|t|ng the percentage of unsatl_sfled
. ) ) sers requests while avoiding to over-replicate contents in the
ad@ng.and removing replicas). The value O.f paraméteras DN networks. Such results show that all the replica hosted by
varied in the different set of experiments. Finally, for the RL DN servers are highly utilized (on average at aroge of

prediction we usen = 3 and a.forgettlng factoh = 0.99. heir maximum load), thus confirming the scheme capability
We summarize the results, in table |, where we report: ( introducing new replicas only when needed

the fraction of time when there were unsatisfied requests; (2)
the fraction of requests that could not be served, i.e.,

22:1 ZjevR,cec(xj,c(”) - 7"j,c(”))Jr
Z?:l ZjEVR,CGC mjﬁ(”) 2]

where (z)* = max{z,0}; and (3), the average utilization,
computed as
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