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ABSTRACT

We present a novel methodoelogy for identify-
ing internal network performance characteristics

- based on end-to-end multicast measurements.,

The methodology, solidly grounded on statistical
estimation theory, can be vsed to characterize
the internal loss and delay behavier of a net-
work. Measurements on the MBonc have been
usced to validate the appreach in the case of lnss-
cs. Extensive simulation experiments provide
further validation of the approach, not only for
losses, but also for delays, We also deseribe our
strategy for deploying the methodology on the
Internet. This includes the continued develop-
ment of the Natienal Internet Measurcment
Infrastructure to support RTP-based end-to-end
multicast measurements and the development of
software fools to analyze the traces. Once com-
plete, this combined softwarc/hardware infra-
structure will provide a service for understanding
and forecasting the performance of the Internet,

INTRODUCTION

As the Internct grows in size and diversity, its
internal performance becomes ever more diffi-
cult to measure. Any one organization has
administrative access to only a small fraction of
the network’s internal nodes, whergas commet-
cial factors often prevent organizations from
sharing internal performance data. End-to-end
mcasurements using unicast traffic do not rely
on administrative access privileges, but it is diffi-
cult to infer link-ievel performance from them,
and they require large amounts of traffic to
cover multiple paths, Conscquently, there is a
need for practical and efficient procedures that
can take an internal snapshot of a significant
portion of the network.

We have developed a measurement tech-
nique that addresses these problems, Multicast
inference of network characteristics (MINC) uses

end-to-end multicast measurements to infer link-
level loss rates and delay statistics by cxploiting
the. inherent correlation in performance observed
by muliicast receivers, These measurements do
not rely on administrative access 1o internal
nodes since they are done between end hosts, In
addition, they scale lo Jarge networks because of
the bandwidth efficiency of inulticast traffic.

Focusing on loss for the mament, the intuition
behind packet loss inference is that the arrival of
a packet at a given internal node in the tree can
be inferred from the packet’s arrival at one or
more receivers descended from that node, Condi-
tioning on this latter event, we can determine the
probability of successful transmission to and
beyond the given node, Consider, for example
(Iig. 1), a simple multicast tree with a root node
{the source), two leaf nodes (receivers Ry and
Ry}, a link from the sousrce to a branch point (the
shared link), and a Jink from the branch point to
each of the receivers (the left and right links},
The source sends a stream of sequenced multicast
packets through the tree to the two receivers, If a
packet reaches cither receiver, we can infer that
the packet reached the branch point. Thus, {he
ratio of the number of packets that reach both
receivers to the total number that reach only the
right receiver gives an estimate of the probability
of successful transmission on the left link. The
prebability of successful transmission on the other
links can be found by similar reasoning,

This technique extends to general trees [13,
and it can be shown that the resulting loss rate
cstimates converge to the true loss rates as the
number of probes grows indefinitely large. This
and relatéd approaches can be used to estimate
path delay distributions [2], path delay variances
[3], and the logical multicast topology itself [4].
We have validated the accuracy of the loss rate
inference techniques against measurcments on
the MBene. Further validation of both the loss
rate and delay statistics inference techniques has
been made through simulation experiments,
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M Figure 1.4 tree connecting a sender o two
receivers.

In this article we deseribe the MINC method-
ology and the results of the network measure-
ments and simulation experiments , Follewing this,
we deseribe our efforts to deploy this methodolo-
gy. These include the further development of the
National Inicrnet Measurement [nfrastructure
(NIMI) [3] 1o support the required mullicast mea-
surcments, the extension of the Real-Time Trans-
fer Protocol (R'1P) control protocol (RTCD) to
include detailed loss reports, and the development
of the Multicast Tnference Network Tool (MINT)
to visualize and manipulate the multicast-hascd
inferred internal network performance.

A survey of related work is included, and the
last section offers sone conclusions.

STATISTICAL METHODOLOGY

MINC works on logical multicast trees, that is,
those whose nodes are identificd as branch
points of the physical multicast tree. A single
logical link between nodes of the logical multi-
cast tree may comprise mare than one physical
link., MINC infers compuasite properties of the
logical links. 1lenceforth, when we speak of trees
we will be speaking of logical multicast trees.

Loss INFERENCE

We model packet loss as independent across dil-
ferent links of the tree, and independent
between different probes. Thus, the loss model
associztes with cach link & in.the tree, the proba-
bility o that a packet reaches the terminating
node of the link, also denoted by &, given that it
reachcs the parent node of k. The link loss prob-
ability is then (1- oy ). Hach recelver records the
outcome of cach probe sent by the source (i.e.,
whether or not it is received). The oy can be
expressed directly as a function of the probabili-
tics of all possible outcomes of success and loss
of a prohe at cach receiver. An experiment con-
sists of a scrics of probes transmitted from the
sonrce. The outcome of cach probe at each
reeeiver is recorded, and the link probabilities
are inferred by the estimators @, oblained by
using Lhe actual frequencics of the outcomes,
Reference [1] contains a detailed deseription
and analysis of the inference algorithm,

The cstimators & exhibit several desirable
statistical propertics. It was shown in [1] that &,
is the maximum likelihood cstimater (MLE} ol
o when sullicient probes are used, The MLE is
defined as the set of link probabilitics thal maxi-
mizes the probability of obtaining the observed
oulcome frequencies. The MLE property in turn
implics two further propetties of &

» Consistency: Oy converges to the true value
oy almost surely as the number of probes »
grows to infinity.

s Asymiptotic normality: The distribution of the
quantity ¥n { G — o) converges to a ner-
mal distribution as # grows to infinity.

The latter property implies that the probability

of an crror of a given size in cstimating a link

probability goes 10 zero cxponentially fast in the
number of probes.

The compulation of the 8y is performed
recursively on the tree; the computational cost is
lincar in the number of probes and number of
nodes in the trec,

DEeLAY DISTRIBUTION INFERENCE

A generalization of the loss inference methodal-
opy allows one to infer per link delay distribu-
tions. More precisely, we infer the distribution of
the variable pertion of the packet delay: what
remains once the link propagation delay and
packet transmission time arc removed. Packet
link delays are modeled as discrete random vari-
ables that can take one of a finite number of val-
ues, independent between different packets and
links. The model is specificd by a finite set of
probabilitics og(f) that a packet experiences
delay ¢ while traversing the link terminating at
node &, with infinite delay interpreted as loss.
When a probe is transmitted from the source,
we record either the time taken by a probe (o
reach each receiver or the loss of the probe, As
with loss inference, a probabilistic analysis enables
us to relate the og(s) to the probabilities of the
outcames at the receivers. We infer the link delay
probabilitics by the estimators &(r) obtained by
using instead the actual frequencics of the out-
comes arising from the dispatch of a number of
probes. In [2] it was shown that the corresponding
cstimator @(-) of the link delay distributions is
strongly consistent and asymptotically normal.

DELAY VARIANCE INFERENCE
The delay variance can he directly estimated.
Consider the binary topology of Iig. 1. Let Dy be
the packet delay on the link emanating (rom the
source, and I, i = 1, 2, the delay on the link ter-
minating at rcceiver £, The end-te-end delays
[rom the source to leaf node { = 1, 2 is expressed
as X; = Dy + Dy A shori calculation shows that,
under the assumption that the D; are indepen-
dent, var(Dg)= Cov(X), X3). Thus, the variance
of the delay Dy can be estimated from the mea-
surcd cnd-to-cnd delays from the source to the
leaves, This approach has been generalized to
estimate link delay variances in arbiteary trees [3].

TapoLOGY INFERENCE

In the loss inference methodology described
abeve, the logical multicast tree was assumed to
be known in advance, However, extensions of
the method enable inference of an unknown
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W Figure 2. The multicast routing tree during onr representative MBone experiment,

multicast topology from cnd-to-end measure-
ments. We briefly deseribe three approaches.

Loss-Based Grouping — An approach to
topology inference was suggested in [6], in the
context of grouping multicast receivers that
share the same set of network bottlenecks from
the source. The loss estimator of an carlier sec-
tion cstimates the shared loss 1o a pair of
receivers, that is, the composite loss rate on the
common portion of the paths from the source,
irrespective of the underlying topology. Since
this loss rate is larger the longer the common
path in question, the actual shared loss rate is
maximized when the two receivers are siblings.
A binary tree can be reconséructed iteratively
using this approach. Starting with the sct of
receiver nodes R, select the pair of nodes f, & in B
that maximizes the cstimated sharcd loss, and
group them together as the composite node. Iter-
ate on this and the set of remaining nodes from R
until all are grouped. The algorithm is consistent:

‘the probabilily of correct identification converges

to one as the number of probes grows [4]. Gener-
al (i.c., nonbinary) trees can be inferred using this
algorithm and then transforming the resulting
binary tree by pruning links with inferred loss
rates less than some threshold £ > (0. '

General Grouping Algorithms — The above
approach can be extended by replacing shared
loss with any function on the nodes:
+ That increases on moving further from the
source
* Whose valuc at a given node can be consis-
tently cstimated from measprements at
reccivers descended from that node
The mean and variance of the cumulative
delay from the source to a given node exhibit
these properties. Hence, multicast end-to-cnd
delay measurements can also be used to infer
the multicast topology.

Direct Maximum Likelihood Classification
— The direct ML appreach calculates the maxi-
mum likelihoad of the measured outcomes over
all possible oy. The topology that maximizes this
quantity is chosen to be our estimate. This classi-
fier is consistent [4),

Accuracy and Comparison — Expcriments
show similar aceuracy for all the approaches
described above. However, computational costs

ditfer widely. The cost of the direct ML classifier
grows rapidly with the number of receivers, The
grouping methods avoid this since each grouping
narrows the sct of viable tapologics; the binary
grouping + pruning approach has near optimal
accuracy and is simplest to implement.

EXPERIMENTAL RESULTS

In this section we bricfly describe our cttorts to
validate the MINC methodology. The next sec-

tion contains a description of the results of a
meaasurement study in which we collected cnd-to-
end loss traces from the MBone and validated the
results from inferences of loss rates collected
using the Internet toel mtrace. Another seetion
contains a description of the results [rom more
detailed simulation studies of both loss and delay.

MEASUREMENT EXPERIMENTS

To validate MINC under real network condi-
tions, we performed a number of measurcment
experiments on the MBong, the multicast-capa-
ble subset of the Internet. Across our cxperi-
menis we varicd the multicast sovrces and
receivers, the time of day, and the day of the
week, We compared inferred loss rates to divect-
ly measured loss rates for all links in the result-
ing multicast trecs. The two sets of quantitics
agreed closcly threughout. _

During cach cxperiment, & source scnt a
stream of 40-byle sequenced packeis every 100
ms lo a multicast group consisting of a collection
of rececivers over the course of one hour. The
resulting traffic stream placed less than 4 kbfs of
load on any one MBone link. At each receiver,
we made two sets of measurements on this traf-
fic stream using the mtrace (see [7] for a
description) and mbat software tools.

We used mtrace to determine the topology
of the multicast tree. mtrace traces the reverse
path from a multicast source to a recciver. It
runs at the recciver and issues trace querics that
travel hop by hop along the multicast tree toward
the source. Bach router along the path responds
to these queries with its own IT* address. We
determined the tree topology by combining this
path inlormation for all receivers,

We also used mtrace to measure per-link
packet losses. Routers also rospond 10 mtrace
queries with a count of how many packets they
have seen directed to the specificd multicast
group. mtrace calculates packet losses on a link

~ by comparing the packet counts returned by the

lwo routers at either end of the link. We ran
mtrace every 2 min during each 1-hr experi-
ment, These merace querics were also used to
verify that the topology remained constant dur-
ing each experiment.

It is important to note thal mtrace docs not
scale to measuremenis of large multicast groups
if used in parallel at all receivers, as we describe
here. Paraliel mtrace querics converge as they
travel up the tree, Enough such queries will
overload routers and links with measurement
traffic. We used mtrace in this way only to vali-
date MINC on relatively small multicast groups.

We used moat to collect traces of end-to-end
pucket losses. mbat runs at a receiver, subscribes
to a specificd multicast group, and records ihe
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sequence number and arrival time of each
incoming packet. We ran mbat at cach receiver
for the duration of each 1-hr experiment,

We then scgmenied the mbat traces into 2-
nyin subfraces corresponding to the 2-min inter-
vals on which we collected mrrace measurements,
Finally, we ran our loss inference algorithm on
cach 2-min interval and compared the inferred
loss rates with the directly measured loss rates,

Here we highlighl results from a representa-
tive experiment on August 26, 1998, Figure 2
shows the multicast routing tree in effect during
the experiment. The source was at the University
of Kentucky, and the reccivers were at AT&T
Labaratories, the University of Massachusetls,
Carncgie Mellon University, Georgia Tech, the
University of Southern California, the University
of California at Berkeley, and the Universiiy of
Washingron, The four branch routers were in Cal-
ifornia, Georgia, Massachusetts, and New Jersey,

Figurc 3 shows that inferred and directly
measured loss rates agreed closcly despite a link
experiencing a wide range of loss rates over the
course of a 1-hr experiment. Each shorl horizon-
tal segment [n the graph represents ong 2-min
1200-probe measurement interval. As shown,
loss rates on the link between the University of
Kentucky and Georgia Tech varied between 4
and 30 percent. Nevertheless, differences
between inferred and directly measured loss
rates remaincd below 1.5 percent,

In summary, our MBone experiments showed
that inferred and directly measurcd loss rates
agreed closely under a variety of real network
conditions:

* Across a wide range of luss rates (4-30 per-
cent) on the same link

* Across links with very low (< 1 percent)
and very high (> 30 percent) loss rates

« Across all links in & multicast tree regard-
less of their position in the tree

* Acrasg different multicast trees

+ Across time of day and day of the weck

Trurthermore, in all cases the inference algorithm

converged to the desired loss rates well within

each 2-min 1200-probe measurement interval.

SIMULATION EXPERIMENTS

We have performed more extensive validations of
owr inference techniques through simulation in two
different settings: the simulation of the model with
Bernoulhi losses and simuiations of networks with
realistic traffic. In the model simulations, prohe
loss and delay obey the independence assumption
of the model. We applicd the inference algorithm
to the end-to-end measurements, and compared
the inferred and actual model parameters for a
large set of topologics and parameter valucs. We
found that loss rates, mean delay, and variance
estimates converged to close to their actual values
with 2000 probes. The number of probes required
Lo accutately compuie the entire delay distributions
is higher. In our experiments we found good agree-
ment with 10,000 probes.

The second type of cxperiment is based on the
ns simulator. Here delay and loss correspond to
queuing delay and queue overflow at network
nodes as multicast probes compete with traffic
generated by TCP/UDP trattic sources, Muiticast

probes are generated by the source with fixed

._.Inférf_ed
Mirace

[

W Figure 3. Inferred vs. actual loss rates on the ink between the University

Kentucky and Georgin Tech.

mean intcrarrival times; we vsed constant bit rate -

(CBR) or Paisson probes. We simulated different
lopologies with different background fraffic mixes
comprising infinite FTT* sessions over TCP and
exponential or Pareto on-off UDP sources. We
comsidered both Drop Tail and Random Early
Deteetion (RED) buffer discard methods [8].

We compared the inferred loss and delay with
aclual probe loss and delay. We found rapid con-
vergence of the estimates, although with small
persistent ditferences. We atiribute this to the
presence of spatial dependence (i.c., dependenee
between probe losses and delays on different
links}. This can arisc through correlations in the
background traffic duc to correlation arising
from TCP dynamics, such as synchronization
between flows as a result of slow stast after pack-
ct loss, Wo have shown in [1] that small devia-
tions from the spatial independence assumptian
lead to only small errors in inference.

We also [ound that background traffic intro-
duces temporal dependence in probe behavior (c.g.,
its burstiness can canse back-to-back probe losses).
We have shown that while temporal dependence
can decrease the rate of convergence of the estima-
tors, consistency is unaffected. In the experiments
the inferred values converged within 2000 probes
despite the presence of temporal dependence.

Whiie there is understanding of mechanisms
by which temporal and spatial dependence can
occur, as far a5 we know there are no cxperi-
mental results concerning its magnitude. We
believe that large or long-lasting dependence is
unlikely in the Internet because of traffic and
link diversity. Moreover, we cxpect loss correla-
tion to be reduced by the introduction of RED,.

We also compared the inferred probe loss
rales with the background loss rates, The experi-
ments showed these to be quite close, although
not as close as inferred and actual probe loss
rates, We attribute this to the inherent differ-
ence in the statistical properties of probe tratfic
and background traffic.

s

o
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Estimated -~

B Figure 4. Inferred an sarmple deluy cedf fof a leaf link in the topology of Fig. 2.

To illustrate the distribution of delay infer-
ence results, we simulated the topelogy of the
multicast routing trec shown in Fig. 2. In order
to capture the heterogeneity betwecn the
cdges and corc of a network, interior links
have higher capacity (S Mb/s) and propagation
delay (50 ms) than those at the edge {1 Mb/s
and 10 ms). Background traffic comprises iofi-
nite FTP sessions and exponential on-off UDP
sources, Each link is modeled as a FIFO queue
with 4-packct capacity. Real buffers are usual-
ly much larger; the capacity of 4 {5 used to

reduce the time required to simulate the net-

work. The discard policy is Drop Tail. In Fig.
4 we plot the inferred vs. sample complemen-
tary cumulative distribution function (dis-
cretized in 1-ms bins) for onc of the leaf links,
using about 18,000 Poisson probes, The esti-
mated distribution closcly follows the sample

“distribution and is quile accurate for tail prob-

abilities greater than 10-2, Note that the esti-
mated distribution is not always monotonically
decreasing. This is because negative probabili-
tics arc cccasionally estimated in the ail due
to an insufficient number of samples. Tt is
worth pointing out that, given the irregular
shape of the sample distribution, the same
level of accuracy would not be possible nsing a
parametric model.

DEPLOYMENT EFFORTS

1t was abscrved in the previous section that MINC
is a very promising methodology for providing
detailed internal network perlormance character-
istics. In this section we describe our cfforts in
deploying this methodology and making it avaii-
able on the Internet. Our elforts are threefold.
First, we are continning the development of
NIMI to support multicast-based measurement
experiments, This is described next. Second, we
have identilicd RTP and its associated control
protacol, RTCP, as promising mechanisms for
generating and collecting end-to-end multicast
measurement traces. Qur efforts to develop an
RTP-based tool are deseribed later. A descrip-
tion of an analysis and visualization 1ool, MINT,
currently under development is included.

DeEpLOYMENT ON NIMI

A major difficulty with characterizing Internet
dynamics comes from the network's immensc
heterogencity [9]. Load patlerns, congestion lev-
cls, link bandwidths, loss rates, protocol mixes,
the patterns of use of particular protocols — all
of these exhibit great variation both at dilferent
points in the network, and over time as the net-
wark evalves, Aceordingly, the sound characteri-
zation of Internct behavior requires measuring 2
diverse collection of network paths. [t is not ade-
quatc Lo measurc between just a few points,
regardless of how carelully donc.

The same problem arises in assessing the accu-
racy of measurement techniques such as MINC.
To address this concern, we are deploying MINC
measurement utilities within NIMI [5]. NIMI con-
sisis of a number of measurement “platforms”
deployed at various locations around the Tnternet.
Each platform is capable of sourcing and sinking
active measurement {raffic, and recording the
timing of the traffic at both sender and receiver,
Measurement “clients” that wish te use the infra-
structurc make anthenticated requests to the plat-
forms to schedule future measurcmoent activity.

A key properly of such an infrastrocture is its
N? scaling: il the infrastructure consists of N
platforms, they together can measure network
traffic along O(N?) distinct paths through the
network, Conscquently, with a fairly modest N,
one can obtain a wide cross-saction of the net-
work’s diverse behavior., (The NIMI infra-
structure currently consists of 31 sites.)

Using NIMI for MINC measuremenis
required several extensions te NIMI. The first
was modifying the standard NIMI packet penera-

tor, zing, ta send and receive multicast traffic, and

the corresponding analysis program, natalie, to
incorporate the notion that a single packet might
arrive at several places (and fail to arrive at oth-
ers), MINC also required the generalization of
NIMI control mechanisms in crder (o allow for a
single medasurcment run spanning multiple
senders und receivers. A possible future change
will be to use multicast itself for both scheduling
measurements and disseminating the results,

Our experiences with using NTMT ta date
have been guite frustrating, not due to the infra-
structure itself, but becavse of the poor quality
of multicast connectivity between the different
platforms. Until recently, at best only 1/3 of the
NIMI platferms had muiticast connectivity
between then. We gather anccdotally that prob-
lems with poor interdomain multicast connectivi-
ty have been endemic Lo the Internet. Recently,
connectivity has begun te improve, and it
appears Jikely that over the next several vears if
will continue to do so, as agreement is reached
on the proper set of intradomain and interdo-
main routing protocols and the interoperation
between them, We arc also attempting to
address this problem in two ways:

* To grow the NIMT infrastructure by adding
sites with high-quality multicast connectivity
* To investigale theoretical work on inferring
network characteristics using correlated
unicast tralfic, where, instead ol exploiting
the perfect correlations inherent in multi-
cast packet reception, we send back-to-back
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unicast packets and attempt to cxploit the
considerably weaker correlations in their
loss and delay palterns

INTEGRATION WiTH RTCP

Wo are developing tools to apply MINC in real
time so that MINC can be used by applications
to respond to changing network conditions in
new and more sophisticated ways, For example,
a management program might adaptively adjust
its probes to home in on a problem router.

Our tools transmit network information using
RTCP, the control protocol [or RTP [10]. By
sharing their traces using RTCP, they benctit
from RTCP’s built-in scaling mechanisms,

The approach is based on three tools: mgen,
mflect, and mnerge (Fig. 5} mgen generates a
siream of data (and may be replaced by any
other application that multicasts data over RTP),
A copy of mElect at each receiver maintaing
traces of the packets it docs and does not receive
from mgen, It periodically multicasts these {ina
sense reflecting the data stream; hence,
“mflect”). mmerge collects the traces sent by
mflect, collates those from the different data
receivers, and makes them available to a tool
such as MIN'T lor inference.

nflact and mmerge are designed so that they
may be incorporated direetly into existing and
future multicast applications. Their joint fune-
Lionality is available as an extension to the RTP
common code library from University College
Loendon, called Extended Reporting (RTPXR),
An application using RTT'XR would be in a posi-
tion to respend adaptively to infermation on the
topology of its data distribution tree,

Ongoing research rclated to these tools con-
cerns the sealability of frace sharing. For exam-
ple, a raw bit vector loss trace for 3000 packets
would consume 375 octets, tar mare than the
four octets allocated for summary loss informa-
tion in a standard RTCP packet, To limil the
fraces to an acceptable intermedinte size we are
investigating the use of compression techniques
such as run length encoding, as well as distribut-
ed methods by which all copies of mflect ina
single session agrec on which portions of the
trace to shate in place of the whole trace,

MuLTICAST INFERENCE NETWORK TOOL
MINT is intended to facilitate multicast-bascd
inference. It takes as inputs all the traces collected
[rom the end hosts. These traces may or may not
include mtrace outputs. Currently, MINT compris-
es threce components; & Web-based user interface, a
topology discovery algorithm, and an inlerence
engine. Users interact with MINT to manipulate
Lhe inference, such as by cheosing number of sam-
ples, visualizing the multicast tree with losses, or
showing the petforimance cvolution over specific
links. Depending on the availability of mtrace out-
put, MINT discovers the tapology by cither patsing
mtrace inputs or inferring the multicast iree from
the loss traces, The inference engine takes topology
information and loss traces to infer the network
internat loss and then provides this to the user. The
user can then view the results in one of several
wiys, One way is ta lay out the logical multicast
tree and display the links in different colors to dis-
tinguish dilferent average loss rates (Fig. 6). The

flect, .7

SN

‘nflect . mflact

M Figure 5..4n RTC}Q-.bqsed wol zlepioy}ﬁé}u example on rh.e smﬁe iopology a.s'

shown in Fig. 2, with inference performed ai {/Mass.

user can also focus on a single link and observe
how the loss rate evolves over lime for that link.

Our future plans for MINT are to include
suppert lor delay inference and to test it thor-
oughly by feeding il with daily traces collected
from NIM]I,

RELATED WORK

A growing number of measurement infra-
strueture projects (e.g., AMP, Felix, IPMA,
NIMI, Surveyor, and Test Traffic [11]} aim to
collect and analyze end-to-end performance data
for a mesh of unicast paths between a set of par-
ticipating hosts, We believe our multicast-based
inference techniques wonld be a valuable addi-
tion to these measurement platforms. We are
continuing to work on jncorporating MINC
capabilities into NIML

Recent experimental work has sought to
understand internal network behavior from end-
puint petformance measurements {¢.g., TReno
[12]). In particular, pathahar [13] is under evalu-
ation as a toal for inferring link-level statistics
from end-to-cnd unicast measurements, Much
work remains fo be done in this arca; MINC con-
tributes a novel multicast-based methodology.

Rogarding multicast-based measurements, we
have already described mtrace. This forms the
basis for several tools [or performing topology
discovery (tracer [14]) and visnalizing loss on
the multicast distribution tree of an application
(Mllealth [7]}. However, mtrace suffers from
performance and applicability problems in the
context of large-scale Internct measurements,
First, mtrace needs to run once for each receiver
in order 1o cover a complete multicast tree, which
dees not scale well to large numbers of receivers,
In contrast, MINC covers the complete tree in g
single pass. Sceond, mbrace relies on multicast
routers to respond to explicit measurement
querics. Although current routers support these
gueries, providers may choose Lo disable this fea-
ture since it gives anyone access to detailed delay
and loss information about paths inside their nct-
works. Tn contrast, MINC docs not rely on coop-
eration from any inlernal network clements,

CONCLUSIONS

We deseribe a new approach to identifying inter-
nal network charuacteristics based on the use of
end-lo-end muolticast measuremenis, This
methedology is rigorously based in cstimation
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minc].cs,umass.edy

‘ 3.56%

border1-rt-atmB-D-D.gw.umass.edu

8.69%, 52.28%
0.31%

gac-mcp2p-lbl.es.net  tahoe.cs.ucsh.edu - nimi.cern.ch
Loss rate< 5%

/4.91%\1 69%
5% < loss rate < 10%

nimi.stac.stanford.edu  bip.ee.lbl.gov —— 10% < loss rate

W Figure 6. The MINT view of the logical multicast free with losses.

theory. A preliminary evaluation [or identifying
loss rates based on measurcments made over the
MBon¢ indicates that it is accurate and readily
able to irack dynamic [lucluations thal occur
over lime, Mare detailed investigalions based on
simulation further corrobarate this conclusion,
noet only for the case of losses, but for delays as
well, Finally, we describe our current efforts to
depioy this methodology on the internet and
make it available to the community at large.

We believe MINC is an imporiant new
methodology for network measurement, particu-
larly Internct measurement, Tt does not rely on
network cooperation and should scale to very
large nctworks. MINC is firmly grounded in sta-
tistical analysis backed up by packel-level simu-
lations, and now experiments under real network
conditions, We are continuing to extend MINC
along both anadytical and experimental fronts.
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